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RIGID EMBEDDING OF SIMPLE GROUPS IN 
THE GENERAL LINEAR GROUP 

JOHN D. DIXON 

1. I n t r o d u c t i o n . Let K be a (commutat ive) field and n be a positive integer. 
Consider the i£-algebra E = M a t (n, K) of all n X n matrices over K, and 
the corresponding general linear group GL(n, K). We shall define the set R of 
rigid mappings of E to consist of all a in GLK(E) which can be wri t ten in one 
of two possible forms: either xa = axb for all x G E or xa = ax'b for all x Ç E 
(where a and b are fixed elements of GL(n, K) and x' denotes the transpose 
of x). I t is readily seen t ha t R is a subgroup of GLK(E) with the s t ructure of 
a wreath product GL(n, K)WrC2 where C2 is a group of order 2 generated by 
the transposition mapping. Geometrically, R may be thought of as generated 
by ' ' t rans la t ions" x i—> ax and X H X J (a, 5 £ GL(n, K)) and a "reflection" 

x i—> x'. 

For each subset 5 of £ we define Fix (5) to be the set of all a in GLK(E) 
such tha t 5e7 CI S. In general, F ix(5) need not be a subgroup of GLK(E) be­
cause Sa CI 5 need not imply 5°" = 5 . However, there is a long series of results 
by various authors (going back as far as Frobenius) which shows t ha t for 
many " n a t u r a l " choices of S} Fix(S) is not only a subgroup of GLK{E) bu t 
indeed a subgroup of R. For example, such a theorem holds in the following 
cases: (i) when 5 consists of all elements of E with de te rminant 0 (see [3]); 
(ii) when K is infinite and 5 consists of all elements of E of rank r (for fixed 
r ^ 1) (see [5]); (iii) when K = R (the field of real numbers) and S is either 
the full orthogonal group or the symplectic group in GL(n, R ) (see [11] and 
[10] respectively). A survey of further related results may be found in [9]. 
However, the survey [9] shows t ha t a l though there are many results of this 
type known, the proofs seem special in each case. (In some si tuations the full 
set of a in KndK(E) such that Sa Ç 5 has been described, bu t consideration of 
singular linear transformations a generally gives rise to series of exceptional 
cases.) I t may be noted tha t the sets 5 for which theorems of the above type 
have been proved are all algebraic sets or quasi-algebraic (such as the uni ta ry 
group in GL(n, C) considered in [8]), and overall the scattered results suggest 
t ha t for each "sufficiently twis ted" algebraic subset S of E, Fix(S) will be a 
subgroup of R. The main result of the present paper (see the Theorem in § 2) 
gives further suppor t to this vague conjecture by showing t h a t Fix(G) is a 
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subgroup of R for a large class of irreducible algebraic subgroups G. In particu­
lar, the major parts of [10] and [11] are implied by this result. We also prove 
that Fix(5) is always a subgroup of GLK(E) when 5 is an algebraic subset of 
E (Lemma 1), and a further result on the relative independence of Fix (S) 
under field extensions (Lemma 2). The former of these two results would 
simplify the arguments of a number of papers of previous authors. 

2. S t a t e m e n t of the theorem. When K is a subfield of the complex field C, 
E = Ma.t(n, K) is endowed with both the Zariski (algebraic) topology and 
the analytic topology which is induced from the usual topology of C. Let G 
be an algebraic subgroup of GL(n, K) (that is, a subgroup closed in the Zariski 
topology). Then G is a simple algebraic subgroup if it is nonabelian and con­
nected (in the Zariski topology) and it has no normal closed connected sub­
groups different from 1 and G. Similarly, a Lie subgroup of GL(n, C) is a 
subgroup G which is closed and connected in the analytic topology; and G is 
a simple Lie subgroup if in addition it is nonabelian and its only normal Lie 
subgroups are 1 and G. 

Note. For general references see [7] (especially p. 168) and [2]. An important 
theorem of Chevalley and Tuan [1] shows that an irreducible subgroup of 
GL(n, C) is a simple algebraic group if and only if it is a simple Lie group. 
Observe that such a group need not be simple in the usual group theoretic 
sense, but may have a finite nontrivial centre; however modulo its centre it is 
simple in the usual sense. For example, the special linear group SL(n, C) is a 
simple algebraic subgroup of GL(n, C) for each n ^ 2. 

Now let K be any subfield of C, and let G be an algebraic subgroup of 
GL(n, K). We shall say that G is a classical simple group if, when we consider 
G as a subgroup of GL(n, C), the Zariski-closure of G in GL(n, C) is a simple 
algebraic group. For example, the symplectic group Sp(n, C) (for n even) and 
the special orthogonal group SO(n, C) consisting of proper rotations (for n ^ 3) 
are both simple algebraic groups. In both cases they can be defined as the set 
of zeros of a family of polynomials with rational coefficients, and so for each 
subfield K of C there are classical simple groups in GL(n, K) whose closures 
in GL(n, C) are Sp(n, C) and SO(n, C), respectively. 

THEOREM. Let K be a subfield of C, and let G be an absolutely irreducible 
classical simple group in GL(n, K) for some n ^ 2. Then Fix(G) is a subgroup of 
the group R of rigid mappings except possibly in the following cases: 

(a) when n = 4 and G is of type A i; 
(b) whenn = 2m and G is of type Bm (m ^ 2). 

Remarks. 1) The types Ai and Bm refer to the classification (up to isomor­
phism) of simple algebraic groups in terms of Lie algebras (see [7, p. 215]). 
It is not known whether the cases (a) and (b) do actually yield exceptions to 
the theorem. 
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2) The condition that G should be absolutely irreducible is clearly necessary. 
Otherwise G would span a proper i^-subspace E\, say, of E and we could write 
the latter as a direct sum E = E\ © E2 of nonzero i£-spaces. But in the latter 
case there are clearly elements of Fix(G) which do not lie in R (for example, 
some whose restriction to E\ is the identity). 

3) With a suitable reformulation and using Lemma 2 we could extend the 
theorem to cover fields which contain C and hence to arbitrary fields of 
characteristic 0. 

Examples. 1) Let G = Sp(2n, K) be the symplectic group over any subfield 
K oi C. As we noted above, G is a classical simple group and it is well known 
that G is absolutely irreducible for all n ^ 1. Since G is a simple algebraic 
group of type Cn, it is not in the class of possible exceptions, and so the theorem 
shows that Fix(G) is a subgroup of R (compare with [10]). 

2) Let G = SO(n, K) be the special orthogonal group over some subfield K 
of C (n ^ 3). Again G is a classical simple group which is absolutely irreducible, 
and of type Bm when n = 2m + 1 and of type Dm if n = 2m. Thus again the 
theorem shows that Fix(G) C R. Similarly, let H = 0(n, K) be the full ortho­
gonal group, so G is the connected component of the identity in H. Suppose 
that a G Fix(H) and Ier = a, say. Define p to be the rigid mapping x i—» xa~1. 
Then ap £ Fix (H) and lap = 1. Since ap is continuous, it follows that ap G 
Fix (G). Hence a G Rp_1 = R and we conclude that Fix(H) C R (compare 
with [11]). 

3. Some general lemmas. Let K be an arbitrary field, and let Kd denote 
the i^-space of all ^-tuples over K; the group GL(d, K) acts on Kd from the 
right by matrix multiplication. Let K[X] denote the ring of polynomials in d 
indeterminates X = (Xi, . . . , Xd) over K. For each a in GL(d, K) define 
Xa = (Xi, . . . , Xd)a as a matrix product, and for each f(X) G K[X] define 
f°(X) e K[X] by f°(X) =f(Xa~1). Then the group GL(d, K) acts on the 
i^-space K[X], To each subset 5 of Kd we associate the annihilating ideal 
Ideal (S) of K[X] consisting of allf(X) such tha t / (x ) = 0 for all x G S. Thus 
S is an algebraic set if and only if the condition/(x) = 0 for al l / (X) G Ideal (5) 
implies that x G 5. 

LEMMA 1. Let S be an algebraic subset of Kd and put I = Ideal (S). Let a G 
GL (d, K). Then the following are equivalent: 

(i) 5 ' Q S; 
(ii) I*-1 Q I; 

(iii) J - 1 = I; 
(iv) S° = S. 

In particular, the implication from (i) to (iv) shows that Fix(S) = 
{a e GL(d,K)\S° Q S] is a subgroup of GL(d,K). 

Proof. First note that Sa C S if and only if /a_1(x) = f(x") = 0 for all 
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f(X) 6 I and all x G S; hence Sa C 5 if and only if /ff_1 C J. Thus (i) implies 
(ii), and (iii) and (iv) are equivalent. Since (iv) clearly implies (i), the proof 
will be complete when we have shown tha t (ii) implies (iii). 

Suppose t h a t (ii) holds. For each j ^ 1 let I j be the i^-subspace of / con­
sisting of all polynomials of degree a t most j . The linearity of a~l shows t ha t 
If1 Çz I j for each j . Since a~1 is injective, and I j is finite-dimensional over K, 
we conclude tha t the restriction of a~l to Ij is bijective. Since I is the union of 
the Ij, a~l is therefore surjective on / and (iii) is proved. This completes the 
proof of the lemma. 

Our next lemma deals with the question of what happens under field exten­
sions. 

L E M M A 2. Let k be a subfield of K and let S be an algebraic subset of kd. Put 
I = Ideal (5) C k[X] and define J = IK. Let T be the algebraic subset of Kd 

consisting of the common zeros of the polynomials in J. Suppose that a £ GL(d, k) 
Q GL (d, K). Then Sff QSif and only if T° C T. 

Proof. First suppose t ha t Sa C S. Then, by Lemma 1, P~l = I Ç. J. Hence 
for all x G T and a l l / P O Ç / we h a v e / ( x a ) = / a _ 1 (x) = 0. Since / forms an 
ideal basis for J this proves t ha t xa G T for all x Ç T. Hence Ta C T. 

Conversely, suppose t ha t Ta Ç T. We begin by considering the special case 
where K is algebraically closed. In this case Hilbert 's Nullstellensatz shows 
t ha t Idea l (T) consists of all f(X) G K[X] such tha t for some integer m ^ 1, 
f(X)m G / (see [6, p . 5]). In particular, if f(X) G J, t h e n / ( Z ) G I d e a l ( r ) , 
and so f^ÇX) G Ideal (T) by Lemma 1. Hence for some integer m ^ 1, 
{f^1(X)}m e JC\ k[X] = I. Since I = Idea l (5) , this implies t ha t f°~l(X) G / . 
T h u s wre conclude t ha t P~l C / , and so t ha t Sa C S by Lemma 1. This com­
pletes the proof of the lemma in the special case where K is algebraically 
closed. T o complete the proof in the general case we apply this special case 
to the two situations k and K, and K and K, where K denotes an algebraic 
closure of K. Then the general form of the lemma follows. 

Now let nu . . . , nr be positive integers and consider the (outer) tensor 
product GL(nu K) 0 . . . 0 GL(nr, K). The lat ter group can be embedded in 
a natural way as a subgroup of GL(n, K) where n = ri\ . . . nr, and this embed­
ding is uniquely determined to within conjugacy in GL(ny K). Moreover, if 
Gt is an algebraic (or Lie) subgroup of GL{nu K) for i = 1, . . . , r, then the 
same is t rue for the image of G\ 0 . . . 0 Gr under this embedding. In the 
special case where E = M a t ( ^ , K) we shall identify GL{n, K) 0 GL(n, K) 
with a subgroup of GLK{E) by defining xa®h = a'xb for all a, b £ GL(n, K) 
and x G E. 

L E M M A 3. Let G\ and G% be simple Lie subgroups of GL{n\, C) and GL(n<i, C ) , 
respectively. Then the only normal Lie subgroups of G\ 0 G2 are 1 , 1 0 G2,Gi 0 1 
and Gi 0 G2. 

https://doi.org/10.4153/CJM-1977-041-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-041-0


388 JOHN D. DIXON 

Remark. A similar proof would show tha t an analogous result holds for 

simple algebraic groups. The corresponding theorem for discrete groups is also 

well known. 

Proof. I t is readily seen t ha t each of the four subgroups listed is a normal 
Lie subgroup of Gi 0 G2. We also note t h a t the simplicity of Gt shows t h a t 
the connected component of the ident i ty in the centre Z(Gt) equals 1 for 
i = 1,2. This lat ter shows tha t , if N is a normal subgroup of d 0 G2 different 
from 1, 1 0 G2 and G\ 0 1, then N mus t contain an element a 0 b with 
a ? Z(Gi) and b ? Z(G 2 ) . Consider the closed normal subgroup H of G\ 
defined by H 0 1 = N H (Gi 0 1). For each c G Gi we have 

crlarlca, 0 1 = (c 0 l ) " 1 ^ ® &)_1(^ ® l ) ( a ® ô ) Ç i V 

and so c~~larlca £ J ï . Since a g Z(Gi) and c »—> c - 1 ^ - 1 ^ is a continuous map­
ping of G\ into H, H contains a nontrivial connected subset. Since H is normal 
in Gi, the connected component of the ident i ty in H is therefore a nontrivial 
normal Lie subgroup of G\. T h e simplicity of G\ shows t h a t H = Gi, and hence 
we have N H (Gi 0 1) = G\ 0 1. T h u s N contains G\ 0 1, and a similar 
a rgument shows t h a t it also contains 1 0 G2. This proves t h a t N = G\ 0 G2 

as required. 

4. Proof of t h e t h e o r e m . Fi rs t note t h a t it follows from Lemma 2 t ha t 
it is enough to prove the theorem in the case when K = C. Then by the note 
in § 2 we can restate the theorem in terms of simple Lie subgroups of GL(n, C ) ; 
and since the groups are simple we are in fact dealing with subgroups of 
SL(n,C). 

T h e key step in the proof is based on a deep classification by Dynkin of the 
(connected) semisimple Lie subgroups of SL(n, C) and their inclusions (see 
[6]). We should observe t h a t Dynkin himself suggests in [6, p . 249] t h a t his 
results can be used to prove theorems of this kind, bu t he does not seem to have 
ever given details of such an application. T o clarify the proof of our theorem 
we shall summarize the three results from [6] which we shall use. 

(A) (Theorem 2.1 of [6]). Each irreducible Lie subgroup H of SL(n, C) is 
conjugate to a subgroup of the form Hi 0 . . . 0 Hr for some r ^ 1 where 
each Ht is an irreducible simple Lie subgroup of SL(nt, C) for certain integers 
ni, . . . , nT with n\ . . . nr = n. 

(B) (Theorem 2.2 of [6]). If H has a decomposition Hi 0 . . . 0 Hr as 
described in (A), and H* is an irreducible Lie subgroup of H, then there exist 
irreducible Lie subgroups H* of Ht (i = 1, . . . , r) such t h a t H* = Hi* 0 
. . . 0 H*. 

(C) (Theorem 2.3 of [6]). T a b l e 5 of [6] gives a complete list of all inclusion 
types H* C H C SL(n, C) such t h a t H and H* are dist inct irreducible Lie 
subgroups and H is a simple Lie group which is not conjugate in GL(n, C) to 
any of SL(n, C ) , SO(n, C ) or Sp(n, C ) . 
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Remarks. The term inclusion type is defined as follows. Two pairs of sub­
groups A* C A and B* C B of SL(n, C) are of the same inclusion type if 
both A is conjugate to B and A* is conjugate to B* (in GL(n, C ) ) . Table 5 of 
[6] lists 36 families or isolated cases of exceptional pairs of subgroups. 

Now suppose tha t G satisfies the hypotheses of the theorem (and K = C ) . 
Define Go as the subgroup of SL(n, C) consisting of all elements whose t rans­
pose lies in G. Note t ha t G0 is isomorphic to G under the mapping x i—» (x ' ) _ 1 , 
and so G0 is also an irreducible simple Lie subgroup of SL(n, C ) . Pu t H* = 
Go <8> G where H* is embedded in SLC(E) ^SL(n2, C) as described in § 3. 
Since G is absolutely irreducible, G spans the C-space E by Burnside's Theorem 
(see [4, p. 36]), and so H* is irreducible. Since G is a Lie group, H* is a Lie 
subgroup of SLC(E), and evidently H* Ç Fix(G). 

On the other hand, by Lemma 1, Fix(G) is a subgroup of GLC(E), and it is 
clearly closed in the analytic topology. Therefore, its connected component of 
the identi ty, say H, is a Lie subgroup of SLC(E), and indeed the largest Lie 
subgroup which is contained in Fix(G). In particular, H* C H and H is ir­
reducible because H* is. We shall now show tha t H* = H except in a few 
specified cases. 

First suppose tha t H is not a simple Lie group. Since H 3 H* = G0 ® Gy 

it follows from (A), (B) and Lemma 3 tha t there exist irreducible Lie sub­
groups Hi and H2 of SL(n, C) containing Go and G, respectively, such t ha t 
H = Hx® H2. However, H Ç Fix(G), and so Ga®b = a'Gb C G for all a £ Hx 

and b G H2. Therefore, Hi = G0 and H2 = G, and H = H* as claimed. 
Secondly, consider the situation where H is a simple Lie group. We begin 

by showing tha t H does not contain any of the symplectic groups or special 
orthogonal groups of degree n2 in GLC(E). In fact, to each of these lat ter 
groups there is associated a nondegenerate quadrat ic form q: E —* C such t h a t 
a Ç GLC(E) lies in the group if and only if a G SLC(E) and q o a: E —> C is 
a nonzero scalar multiple of q; in suitable coordinates q is the s tandard al ter­
nat ing form or the s tandard diagonal form in the two cases (the al ternat ing 
form only arises when n is even). Now suppose tha t H contained one of these 
groups. Since G spans E over C, there exists a Ç G such t h a t q (a) ^ 0. Then 
for each b G E with q(b) 7̂  0 there is a nonzero X Ç C such tha t q(b) = q(\a), 
and so by Wi t t ' s theorem there exists a Ç GLC(E) such tha t q o a = q and 
aa = fr. Multiplying by a suitable scalar wre obtain p G SLC(E) such t ha t 
jitap = & for some nonzero ju Ç C and g o p is a scalar multiple of g. Thus , by 
hypothesis, p d H Ç1 Fix (G) and so b = juap G C*.G where C* is the group of 
nonzero scalars; in particular, the determinant det b is nonzero. Thus we have 
shown tha t det b = 0 implies t ha t q(b) = 0. If we now apply this to various 
cases where b is chosen as a matrix with a t most two nonzero entries, and use 
the nondegeneracy of q, then it is clear tha t : (i) n = 2; (ii) q has the form 

(pi «.]) = cd-xU + ft£, 
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for some a, (3 G C; and so (taking all £* equal) (iii) a = — (3 ^ 0. Bu t it is 
now clear t h a t all rigid mappings of the form x •—> xc (c G SL(2, C ) ) leave g 
invariant and lie in SLC(E) and so belong to Fix(G). This immediately im­
plies t h a t G = SL(2, C ) ; hence Fix(G) = Fix(GZ(2, C ) ) = F i x ( £ \ G L ( 2 , C ) ) 
by Lemma 1, and so Fix(G) = R by [3]. This is impossible because the con­
nected component H of the identi ty of Fix(G) is simple. T h u s we have shown 
tha t H contains no symplectic or special orthogonal group of order n2 in 
GLC(E). I t now follows from (C), Table 5 of [6] and the part icular form 
Go ® G of H* (recall t ha t G0 = G) t h a t H* = H unless: either G is of type A i, 
H is of type Db and n2 = 24 ; or G is of type Bm, H is of type D2m+i and n2 = 
22m (m = 2, 3, . . .)• 

T o complete the proof of the theorem it remains to show t h a t H — H* 
implies t ha t Fix(G) C R. Since H is the connected component of the ident i ty 
in Fix(G), it is normal in Fix(G). Therefore it is enough to show tha t each 
a G GLC(E) which normalizes H* = Go ® G lies in R. 

T h u s suppose t h a t a normalizes Go ® G. Then cr_1(l ® G)a is a normal Lie 
subgroup of Go ® G, so Lemma 3 shows t h a t it must equal either 1 ® G or 
Go ® 1. Now if (7-U1 ® G)(7 = Go ® 1, then ( ( r r ) - ^ ! ® G)(ar) = 1 ® G 
where r is the transposition mapping. Since a £ R ii and only if ar Ç i?, this 
shows tha t it is enough to consider the case where a~1(l ® G)a — 1 ® G; and 
in this case we must also have o--1(Go ® l ) o - = G o ® l b y Lemma 3. T h u s 
conjugacy under a defines two group automorphisms a and /3 of Go and G, 
respectively, satisfying the condition 

xa ® yP = (j~l(x ® y)(i for all x G G0 and y £ G. 

In part icular , taking traces Ave find 

w tr xa = t r (xa ® 1) = tr o-_1(x ® l)a = t r (x ® 1) = n t r x 

and so t r xa = tr x for all x G G0. Now o: and the na tura l embedding of G0 into 
GL(n, C) can both be considered as irreducible representat ions of G0 into 
GL (n, C ) , and from what we have jus t seen they both afford the same character . 
Therefore by the Frobenius-Schur theorem (see [4, p . 33]) these two represen­
tat ions are equivalent, and so there exists a G GL(n, C) such t h a t xa = a~lxa 
for all x G G0. Similarly there exists b G GL(n, C) such t h a t y13 = b~lyb for 
all y G G. Hence 

(7_1(x ® y)<r = (a ® &)_1(x ® 3/) (a ® &) for all x ® 3/ G G0 ® G. 

Since G0 ® G is irreducible, Schur 's lemma shows t ha t there exists a scalar X 
such t ha t a (a ® ô ) - 1 = X. T h u s cr = Xa ® b lies in R and the theorem is proved. 
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