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Abstract

We examine a semigroup analogue of the Kumjian–Renault representation of C*-algebras with Cartan
subalgebras on twisted groupoids. Specifically, we represent semigroups with distinguished normal
subsemigroups as ‘slice-sections’ of groupoid bundles.
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1. Introduction

1.1. Background. A cornerstone of groupoid C*-algebra theory is the Kumjian–
Renault Weyl groupoid representation. Specifically, given a C*-algebra A with a Cartan
subalgebra C, they showed how to construct a Fell line bundle over an étale groupoid
on which to represent A as continuous sections, thus realising the abstract algebra A as
a concrete twisted groupoid C*-algebra.

One key aspect of their construction is the use of normalisers of C to construct an
appropriate groupoid of germs. Recently it has become apparent that this normaliser
semigroup S already contains a significant amount of structural information. For
example, if A is already known to be a groupoid C*-algebra then this groupoid can be
recovered just from the semigroup structure of S and C (as the groupoid of ultrafilters
with respect to the ‘domination relation’ on S; see [4]).

This begs the question whether one can similarly represent a given abstract
semigroup S, together with some additional structure coming from appropriate
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2 T. Bice [2]

subsemigroups, as a semigroup of sections of some groupoid bundle. This is borne out
in the present paper, where we construct universal representations of S on groupoid
bundles formed from cosets and filters of S. The basic idea is to extend the relevant
theory of inverse semigroups, replacing the idempotents with normal subsemigroups
analogous to Cartan subalgebras.

1.2. Outline. As a gentle introduction to our more general results, in Section 2
we first consider simpler classes of semigroups. We start with semilattices and their
filters in Section 2.1, moving on to inverse semigroups and their cosets in Section 2.2.
Finally, we introduce structured semigroups in Section 2.3, a generalisation of
inverse semigroups that encompasses our primary motivating examples, namely the
normaliser semigroups of Cartan subalgebras of C*-algebras.

In Section 3 we introduce groupoid bundles and examine their slice-sections. We
give further motivational comments at the end to indicate how we construct groupoid
bundles on which to represent structured semigroups.

Next in Section 4 we discuss appropriate morphisms between étale groupoids
and groupoid bundles. Specifically, we consider relational Zakrzewski morphisms
between étale groupoids, which are needed to include both continuous functions
and group homomorphisms (but in opposite directions; see Remark 4.7), as well
as the filter-coset Zakrzewski morphism � appearing later in Section 12.1. Building
on these, we consider Zakrzewski–Pierce morphisms between groupoid bundles,
which we show in Theorem 4.10 correspond to semigroup homomorphisms of their
slice-sections.

From Section 5 we make the standing assumption that (S, N, Z) is a structured
semigroup. We then introduce the domination relation, a generalisation of the usual
ordering on an inverse semigroup which also has analogous properties that we proceed
to examine. Next, in Section 6, we introduce dual subsets as something of a substitute
for inverses. Optimal results here require an additional diagonality assumption on N
that we discuss in Section 6.1, which becomes more relevant again later in Section 12.

Continuing on the path of extending inverse semigroup theory, we introduce atlases
and cosets in Section 7. In Section 8 we show that the cosets form an étale groupoid;
see Theorem 8.4. Again optimal results require an additional assumption, namely that
Z is ‘symmetric’, as discussed in Section 8.1. Under this assumption, we use cosets to
construct a universal étale representation in Theorem 8.11.

In Sections 9 and 10 we show how to split up cosets into certain equivalence classes.
The main result is Theorem 10.2, which says that these form an étale bundle. Next, we
represent S on this coset bundle in Section 11. The main result here is Theorem 11.2,
which says that this is a universal bundle representation, assuming symmetry.

Finally, in Section 12, we take a closer look at filters or, more accurately, directed
cosets. These are shown to form an étale subgroupoid of the coset groupoid which
instead yield Zakrzewski universal representations (again under symmetry), as shown
in Theorems 12.15 and 12.18.
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[3] Representing structured semigroups on étale groupoid bundles 3

2. Motivation

2.1. Semilattices. To put our results in context, it is instructive to first consider
semilattices, that is, commutative semigroups consisting entirely of idempotents. For
example, the open subsets O(X) of any topological space X form a semilattice under
the intersection operation ∩. Of course the same applies to any subfamily of O(X) that
is closed under pairwise intersections, like the family of open intervals (a, b) on the
real line R.

A slightly less trivial observation is that, in fact, all semilattices are of this form,
at least up to isomorphism. Put another way, every semilattice has a faithful spatial
representation. Formally, a spatial representation of a semilattice S on a space X is a
map θ : S→ O(X) such that θ[S] covers X and, for all a, b ∈ S,

θ(ab) = θ(a) ∩ θ(b).

A representation is faithful if it is injective, that is, θ(a) = θ(b) if and only if a = b.
To construct a faithful representation of any given semilattice S, we can consider its

filters, that is, those subsets F ⊆ S such that, for all a, b ∈ S,

a, b ∈ F ⇔ ab ∈ F. (Filter)

These are just the down-directed up-sets with respect to the order on S defined by

a ≤ b ⇔ a = ab

(as products in S are meets/infima with respect to this ordering). Let F (S) denote the
filter spectrum, that is, the space of all nonempty filters with the basis (Fa)a∈S, where

Fa = {F ∈ F (S) : a ∈ F}.

Let F on its own denote the map a �→ Fa.

PROPOSITION 2.1. The map F is a faithful spatial representation of S.

PROOF. We immediately note that Fab = Fa ∩ Fb, for all a, b ∈ S, thanks to the
defining property of filters, that is, F is a spatial representation. To see that F is also
faithful, first note that, for each a ∈ S, there is a minimal filter containing a, namely

a≤ = {b ∈ S : a ≤ b}.

Thus, for any a, b ∈ S, Fa = Fb would imply a≤ ∈ Fa = Fb and b≤ ∈ Fb = Fa, that is,
b ∈ a≤ and a ∈ b≤ and hence a = ab = b. �

We call F the filter representation of S. Note, however, that this is not the only
faithful representation. Indeed, the proof above shows that the subrepresentation
obtained by restricting to principal filters (of the form a≤) is still faithful. What
distinguishes the filter representation is its universality.

Roughly speaking, this means that the filter representation contains all possible
spatial representations. To be more precise, first note that any continuous function
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φ : Y → X between topological spaces X and Y defines a semilattice homomorphism
φ : O(X)→ O(Y) (in the opposite direction) by taking preimages, that is,

φ(O) = φ−1[O].

In particular, if θ : S→ O(X) is a spatial representation and φ : Y → X is a continuous
map on another space Y, then we immediately obtain a spatial representation φ ◦ θ on
Y by simply composing θ with φ, that is, for all a ∈ S,

φ ◦ θ(a) = φ−1[θ(a)].

We call a spatial representation μ : S→ O(X) universal if every spatial representation
θ : S→ O(Y) can be written uniquely as such a composition, that is, if there exists a
unique continuous map φ : Y → X such that θ = φ ◦ μ.

PROPOSITION 2.2. The filter representation F of any semilattice S is universal.

PROOF. Take a spatial representation θ : S→ O(X). For all x ∈ X, let

φ(x) = {a ∈ S : x ∈ θ(a)}.

Note that a, b ∈ φ(x) if and only if x ∈ θ(a) ∩ θ(b) = θ(ab) if and only if ab ∈ φ(x),
showing that φ(x) is a filter. Moreover, φ(x) is also nonempty, as θ[S] covers X, so
φ(x) ∈ F (S). Further note that φ(x) ∈ Fa if and only if a ∈ φ(x) if and only if x ∈ θ(a),
and hence

φ−1[Fa] = θ(a) ∈ O(X).

Thus, φ is a continuous map from X to F (S) with θ = φ ◦ F .
For uniqueness, suppose that we had another map φ′ : X → F (S) such that φ′ ◦ F =

θ, that is, φ′−1[Fa] = θ(a), for all a ∈ S. Then again we note that x ∈ θ(a) if and only
if φ′(x) ∈ Fa if and only if a ∈ φ′(x) and hence φ′(x) = {a ∈ S : x ∈ θ(a)} = φ(x), for all
x ∈ X. �

REMARK 2.3. The filter representation has various other subrepresentations that are of
interest, particularly if one wants to represent semilattices on nicer topological spaces,
for example with better separation properties.

For example, one could restrict to irreducible filters, which are always plentiful
enough to retain faithfulness; see [8, Corollary 9]. The irreducible subrepresentation
can even be extended to a categorical duality (see [9]) generalising the classic
Stone duality between distributive lattices and spectral spaces (see [32]). The filter
representation can also be extended to a different but analogous duality between
semilattices and ‘HMS spaces’; see [16].

One could also restrict to ultrafilters, that is, maximal proper filters, as in Wallman’s
work; see [34]. The space of ultrafilters is necessarily T1, although it is only faithful
for special kinds of semilattices, for example, separative semilattices with 0. We also
briefly examine ultrafilters in more general semigroups later in Theorem 12.8. Indeed,
the present paper could be viewed as a prelude to our subsequent work in [2, 3]
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[5] Representing structured semigroups on étale groupoid bundles 5

where ultrafilters play a much greater role in noncommutative extensions of the classic
Gelfand duality (see [13, 14]).

2.2. Inverse semigroups. Our goal in the present paper is to extend Propositions 2.1
and 2.2 to noncommutative semigroups. As a first step in this direction, let us consider
inverse semigroups S (see [20]), that is, such that each a ∈ S has a unique generalised
inverse a−1, meaning that

aa−1a = a and a−1aa−1 = a−1.

So semilattices are inverse semigroups where a−1 = a. Also the idempotents

E(S) = {e ∈ S : ee = e}

of any inverse semigroup S form a semilattice. Consequently, inverse semigroups
constitute a natural noncommutative generalisation of semilattices.

Topological spaces also have a natural noncommutative generalisation, namely
étale groupoids; see [26, 29]. Let us digress for a moment to recall all the relevant
definitions. First, a groupoid is a category where all the morphisms are isomorphisms.
Following standard practice, we generally forget about the objects and just consider
groupoids as collections of morphisms on which we have an inverse operation and a
partially defined product. The units of a groupoid G are given by

G0 = {g ∈ G : gg = g}.

We denote the source and range units of any g ∈ G by

s(g) = g−1g and r(g) = gg−1.

Note that gh is defined if and only if (g, h) ∈ G2, where

G2 = {(g, h) ∈ G × G : s(g) = r(h)}.

As usual, we call B ⊆ G a bisection or slice of a groupoid G if the source and range
s, r : G→ G0 are injective on B or, equivalently, if BB−1 ∪ B−1B ⊆ G0, where B−1 =

{b−1 : b ∈ B} and AB = {ab : a ∈ A and b ∈ B}.
A topological groupoid is a groupoid G with a topology which makes the inverse

g �→ g−1 and product (g, h) �→ gh continuous (on G2). A topological groupoid is étale
if the source s (and hence the range r and product too) is also an open map, that is,
s maps open subsets of G to open subsets of G (which, in particular, implies that the
units G0 = s[G] form an open subset). Equivalently, a topology makes a groupoid étale
precisely when the open bisections

B(G) = {B ∈ O(G) : BB−1 ∪ B−1B ⊆ G0}

form both a basis for the topology of G and an inverse semigroup under pointwise prod-
ucts (A, B) �→ AB and inverses B �→ B−1; see [28, Theorem 5.18] and [5, Proposition
6.6]. This characterisation suggests that étale groupoids are natural structures on which
to represent inverse semigroups.
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Accordingly, we call a map θ : S→ B(G) an étale representation of an inverse
semigroup S if θ[S] covers the étale groupoid G and, for all a, b ∈ S,

θ(ab) = θ(a)θ(b)

(note that this is consistent with our previous notion of a spatial representation, as
AB = A ∩ B for any A, B ⊆ G0, in particular for any A, B ∈ O(X) when we consider a
space X as an étale groupoid with the trivial product xx = x, for all x ∈ X). To obtain
a faithful étale representation of an inverse semigroup S we can again consider filters
with respect to the canonical ordering on S given by

a ≤ b ⇔ a = aa−1b.

As before, we let F (S) denote the nonempty filters in S, that is, the down-directed
up-sets. These form an étale groupoid with inverse F �→ F−1 and product

E · F = (EF)≤ when (E−1E)≤ = (FF−1)≤,

where T≤ = {s ≥ t : t ∈ T} and the topology again has basis (Fa)a∈S, where Fa = {F ∈
F (S) : a ∈ F}; see [1, Propositions 2.7 and 2.38, Example 2.12 and Theorem 2.32],
which extend results from [22, 23]. We call F (S) with this étale groupoid structure the
filter groupoid of S. Again we let F on its own denote the map a �→ Fa.

PROPOSITION 2.4. The map F is a faithful étale representation of S.

PROOF. For any a, b ∈ S, we immediately see that Fa · Fb ⊆ Fab. Conversely, for any
F ∈ Fab, set E = (Fb−1)≤ ∈ Fa, as a ≥ abb−1 ∈ Fb−1. For any s, t ∈ S and e ∈ E(S), we
see that set ≤ st and hence

(FF−1)≤ ⊆ (Fb−1bF−1)≤ ⊆ (EE−1)≤.

For the reverse inclusion, first note that FF−1F ⊆ F≤ = F: for any f , g, h ∈ F, we have
i ∈ F with i ≤ f , g, h, as F is a filter, and hence i = ii−1i ≤ f g−1h. Thus,

Eb = (Fb−1)≤b ⊆ (Fb−1b)≤ ⊆ F≤ = F.

As above, it then follows that (EE−1)≤ ⊆ (Ebb−1E−1)≤ ⊆ (FF−1)≤. Thus, E−1 · F is
defined and

F = E · E−1 · F ∈ Fa · Fa−1 · Fab ⊆ Fa · Fa−1ab ⊆ Fa · Fb.

Thus, Fab = Fa · Fb, showing that a �→ Fa is indeed an étale representation. As before,
we see that F is faithful by considering principal filters. �

Of course, this is still not the only faithful étale representation and one would
expect the filter representation again to be distinguished by its universality. However,
universality fails, at least with respect to the obvious morphisms.

Specifically, we call a map φ : G→ H between étale groupoids an étale morphism
if φ is a continuous star-bijective functor. Here star-bijectivity means that φ maps each
star Ge, for e ∈ G0, bijectively on the corresponding star Hφ(e) (see [7], [15, Ch. 13];
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star-bijective functors are also called covering functors in [21]). As noted below in
Section 4, star-bijectivity ensures that preimages of slices are slices and that preimages
respect products, that is, for all A, B ∈ B(G),

φ−1[AB] = φ−1[A]φ−1[B].

Thus, any étale morphism φ : H → G again defines a semigroup homomorphism φ :
B(G)→ B(H) (in the opposite direction) between their open slice semigroups by just
taking preimages. Composing φ with any étale representation θ : S→ B(G) on G then
yields an étale representation φ ◦ θ : S→ B(H) on H.

Just like before, we call an étale representation μ : S→ B(G) universal if every
étale representation θ : S→ B(H) can be written uniquely as such a composition,
that is, there exists a unique étale morphism φ : H → G such that θ = φ ◦ μ. To see
why the proof of Proposition 2.2 no longer works note that, while it is still possible
to define φ(g) = {a ∈ S : g ∈ θ(a)}, this may not be a filter anymore. To construct
universal representations here we must consider a slightly broader inverse semigroup
generalisation of filters in semilattices.

Specifically, we call C ⊆ S a coset if, for all a, b ∈ C and c ∈ S,

c ∈ C ⇔ ab−1c ∈ C. (Coset)

Equivalently, C ⊆ S is a coset when C = C≤ = CC−1C; see [20, §1.4, Proposition
26]. The nonempty cosets C(S) again form an étale groupoid with inverse C �→ C−1,
product B · C = (BC)≤ and subbasis (Ca)a∈S, where

Ca = {C ∈ C(S) : a ∈ C};

again see [1, Example 2.12 and Theorem 2.32]. We call C(S) with this étale groupoid
structure the coset groupoid of S and again let C denote the map a �→ Ca. As in the
proof of Proposition 2.4, we see that C is a faithful étale representation of S which we
call the coset representation.

PROPOSITION 2.5. The coset representation of any inverse semigroup S is universal.

PROOF. Take any étale representation θ : S→ B(G). For g ∈ G, define

φ(g) = {a ∈ S : g ∈ θ(a)}.

If a, b, c ∈ φ(g) then g = gg−1g ∈ θ(a)θ(b)−1θ(c) = θ(ab−1c), which means that ab−1c ∈
φ(g). On the other hand, if a, b, ab−1c ∈ φ(g) then

g = gg−1g ∈ θ(b)θ(a)−1θ(ab−1c) = θ(b)θ(a)−1θ(a)θ(b)−1θ(c) ⊆ G0θ(c) ⊆ θ(c).

So φ(g) is a coset, which is also nonempty, as (θ(a))a∈S covers G, that is, φ(g) ∈ C(S).
Next, note that φ(s(g)) = s(φ(g)). Indeed, we immediately see that

s(φ(g)) = φ(g)−1 · φ(g) = (φ(g)−1φ(g))≤ ⊆ φ(g−1g) = φ(s(g)).
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Conversely, for any a ∈ φ(s(g)), taking b ∈ φ(g), we see that a ≥ ab−1b ∈ φ(g−1)φ(g)
and hence a ∈ (φ(g−1)φ(g))≤ = φ(g−1) · φ(g) = φ(s(g)), that is, φ(s(g)) ⊆ s(φ(g)). Like-
wise, φ(r(g)) = r(φ(g)) so s(g) = r(h) implies that s(φ(g)) = r(φ(h)), so φ(g) · φ(h) is
a valid product. Again φ(g) · φ(h) ⊆ φ(gh) is immediate, while the reverse inclusion
follows as above. Thus, φ is a functor.

To show that φ is star-bijective, take any i ∈ G0. If s(g) = s(h) = i and φ(g) = φ(h)
then, for any a ∈ φ(g) = φ(h), we see that g, h ∈ θ(a) and hence g = h, as θ(a) is a
slice, showing that φ is star-injective. On the other hand, for any C ∈ C(S) with s(C) =
φ(i), taking c ∈ C, we see that c−1c ∈ C−1C ⊆ s(C) = φ(i) and hence i ∈ θ(c−1c) =
θ(c)−1θ(c) = s[θ(c)], as θ(c) is a slice. Thus, we have g ∈ θ(c) with s(g) = i and hence

φ(g) = φ(g) · φ(i) = (cφ(i))≤ = C · s(C) = C,

by [1, Theorem 2.32], proving that φ is also star-surjective.
For continuity note that, as before, φ(g) ∈ Ca if and only if a ∈ φ(g) if and only if

g ∈ θ(a), so

φ−1[Ca] = θ(a) ∈ O(G).

Thus, φ is an étale morphism from G to C(S) with θ = φ ◦ C. Uniqueness follows by
the same argument as before. �

As hinted at above, there is actually an alternative approach here: instead of broad-
ening the class of filters, we can broaden the class of étale morphisms. Specifically, we
can consider more general relational Zakrzewski morphisms between étale groupoids;
see Section 4 below. Indeed, there is a Zakrzewski morphism between filters and cosets
of any inverse semigroup, which can be used to show that the filter representation is
universal with respect to Zakrzewski morphisms (see Theorems 12.14 and 12.15 below
for more general structured semigroup results).

2.3. Structured semigroups. The only problem with inverse semigroups is that
they are not general enough, not if we want to apply the theory to semigroups
commonly arising in other fields. Our primary motivating examples here come from
operator algebras, where Cartan subalgebras of C*-algebras have received increasing
attention in recent years; see [27]. A key role in their theory is played by the normaliser
semigroup S of a Cartan subalgebra C ⊆ A given by

S = {a ∈ A : aCa∗ + a∗Ca ⊆ C}. (Normalisers)

Note that if A is a projectionless C*-algebra, like the well-known Jiang–Su algebra
(which does indeed have Cartan subalgebras; see [11]), then S cannot contain any
nontrivial idempotents and thus certainly cannot be an inverse semigroup. Even when
A does have a large supply of projections, for example, when A has real rank zero, there
is still no guarantee that they will lie in S.

However, the Cartan subalgebra C here is a subsemigroup of S which still behaves
much like the idempotents in an inverse semigroup. For one thing, C is commutative,
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and its self-adjoint part Csa = {a ∈ C : a = a∗} also has a natural lattice structure. This
exposes the possibility that inverse semigroup techniques could still be applied to
Cartan pairs if we could somehow extend the relevant theory to *-semigroups S with
a sufficiently well-behaved *-subsemigroup C. This is precisely what we did in our
previous paper [1], where we examined ‘Weyl *-semigroups’ and their coset and filter
groupoids.

In the present paper we have our eye on applications even further afield (see
[2, 3]), namely to algebraic analogues of C*-algebras known as Steinberg algebras
(see [10, 31]) as well as to noncommutative Cartan subalgebras of C*-algebras
(see [12, 19]). This forces us to consider more general semigroups S without an
involution ∗, with more general noncommutative subsemigroups C. But we can always
replace C with its centre

Z(C) = {z ∈ C : for all c ∈ C (cz = zc)},

or some fixed subsemigroup Z, whenever commutativity is vital.
This naturally leads us to the concept of a ‘structured semigroup’. Formally this

a triple (S, N, Z) where S is a semigroup with distinguished subsemigroups N and
Z ⊆ Z(N) satisfying certain weak normality conditions. To describe these conditions,
first recall that N ⊆ S is said to be normal if, for all s ∈ S,

sN = Ns. (Normal)

Let us call Z ⊆ S binormal if, for all a, b ∈ S,

ab, ba ∈ Z ⇒ aZb ∪ bZa ⊆ Z. (Binormal)

If N is another subset, we call it Z-trinormal if, for all a, b ∈ S and n ∈ N,

abn = n = nab and ab, ba ∈ Z ⇒ bna ∈ N. (Z-Trinormal)

Note that if Z ⊆ Z(N), as in the structured semigroups considered below, then we
always have abn = nab whenever ab ∈ Z and n ∈ N. So, in this case, the left side of
(Z-Trinormal) could be replaced with just abn = n.

DEFINITION 2.6. We call (S, N, Z) a structured semigroup if:

(1) S is a semigroup;
(2) N is a Z-trinormal subsemigroup of S;
(3) Z ⊆ Z(N) is a binormal subsemigroup of S.

Note that every normal subsemigroup Z is binormal, as ab ∈ Z then implies
aZb = abZ ⊆ ZZ ⊆ Z. However, the converse can fail; for example, Cartan subalgebras
are always binormal in their normaliser semigroups, even though they are not
necessarily normal (see [4, Example 7.3]). Similarly, we also immediately see that
any binormal N is N-trinormal and hence Z-trinormal, for any Z ⊆ N. In particular,
for any commutative binormal subsemigroup C of a semigroup S, we get a structured
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semigroup by simply taking N = Z = C. This applies to any Cartan subalgebra C in
its normaliser semigroup S, as well as to the idempotents in any inverse semigroup,
thanks to the following observation.

PROPOSITION 2.7. The idempotents E(S) of any inverse semigroup S are normal.

PROOF. For any s ∈ S and e ∈ E(S), note that ses−1ses−1 = ss−1sees−1 = ses−1, that is,
ses−1 ∈ E(S). Moreover, se = ss−1se = ses−1s, showing that sE(S) ⊆ E(S)s, while the
reverse inclusion follows by a dual argument. �

However, inverse semigroups can also form structured semigroups in other ways,
that is, there may be other natural choices for N and Z; see, for example, Proposition
3.6 below.

The next question is how structured semigroups should be represented. As before,
we could consider étale representations, that is, semigroup homomorphisms θ : S→
B(G), for some étale groupoid G. As N is meant to be a kind of diagonal of S, it
would be natural to further require that θ maps N onto open subsets of the diagonal
of G, that is, its unit space G0, as we do in Definition 8.9 below. However, these
are the idempotents of B(G), so if θ were also faithful then this would imply that
N also consists entirely of idempotents. So again we see that these kinds of étale
representations are not general enough, not if we want structured semigroups with
few idempotents to potentially have faithful representations.

To fix this, we again take inspiration from operator algebra theory, specifically
Kumjian and Renault’s Weyl groupoid construction from a Cartan pair (A, C); see
[17, 27]. This results in the C*-algebra A being represented as continuous sections
of a saturated Fell line bundle π : F → G over a locally compact étale groupoid G.
Furthermore, the sections coming from the normaliser semigroup S are supported on
open slices of G. Restricting to these supports yields a representation of S as partial
sections defined on slices taking values in the groupoid F× of invertible elements.
This suggests that we should likewise represent more general structured semigroups
as partial sections of groupoid bundles. Accordingly, we start the paper proper with a
discussion of these bundles and their slice-sections.

3. Slice-sections

We assume that the reader is familiar with the basics of étale groupoids, as briefly
outlined in the previous section. We refer the reader to [26, 29] for further background,
the key difference in our work being that our étale groupoids (and even their unit
spaces) can be highly non-Hausdorff.

Recall that an isocofibration π : C → D between categories C and D is a functor
that is injective on objects/units or, equivalently, such that cd is defined in C
whenever π(c)π(d) is defined in D. Also a map π : X → Y on a topological space X
is locally injective if every point in X has a neighbourhood on which π is injective or,
equivalently, such that the open subsets of X on which π is injective cover X.
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DEFINITION 3.1. We call π : F → G a groupoid bundle if:

(1) F is a topological groupoid;
(2) G is an étale groupoid; and
(3) π is an open continuous isocofibration.

An étale bundle is a groupoid bundle π : F → G that is also locally injective.

If π : F → G is an étale bundle then, in particular, π is an open continuous and
locally injective map, that is, a local homeomorphism. In this case, the source map s
on F is also a local homeomorphism, which means that F is also an étale groupoid.

PROPOSITION 3.2. If π : F → G is an étale bundle then F is an étale groupoid.

PROOF. Assume that π : F → G is an étale bundle. First we show that F0 is open in F.
To see this, take any f ∈ F0. As π is locally injective, f has an open neighbourhood O
on which π is injective. We claim that

f ∈ O ∩ s−1[O] ∩ π−1[G0] ⊆ F0.

To start with, f ∈ F0 implies s( f ) = f ∈ O and π( f ) ∈ G0, as π is a functor, showing
that f ∈ O ∩ s−1[O] ∩ π−1[G0]. On the other hand, for any e ∈ O ∩ s−1[O] ∩ π−1[G0],
we see that e, s(e) ∈ O and π(e) = s(π(e)) = π(s(e)) and hence e = s(e) ∈ F0, as π is
injective on O, proving the claim. As s and π are continuous, and O and G0 are open,
it follows that O ∩ s−1[O] ∩ π−1[G0] is also open. As f was arbitrary, this shows that
F0 is open.

As π is injective on units, for any O ⊆ F,

s[O] = F0 ∩ π−1[s[π[O]]].

If O is open then this shows that s[O] is also open, that is, s is an open map on F and
hence F is an étale groupoid. �

The simplest examples of groupoid bundles come from the obvious structure on the
Cartesian product of an étale groupoid and a topological group.

EXAMPLE 3.3 (trivial bundles). If G is an étale groupoid and T is a topological group
then G × T is a topological groupoid in the product topology where

(g, t)(h, u) = (gh, tu),

when gh is defined. The projection π : G × T → G is then a groupoid bundle. If T is
discrete then π is also locally injective and hence a local homeomorphism.

More interesting ‘twisted’ bundles can be obtained by modifying the structure above
via a given 2-cocycle, just like in [26] and [29, Section 5.1].

EXAMPLE 3.4 (twisted bundles). Again suppose that G is an étale groupoid and T is
a topological group. Furthermore, suppose that σ : G2 �→ T is a continuous 2-cocycle,
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that is,

σ(r(g), g) = 1 = σ(g, s(g)),

for all g ∈ G, and, for all t ∈ T and g, h, i ∈ G such that ghi is defined,

σ(g, h)tσ(gh, i) = σ(g, hi)tσ(h, i). (3-1)

We claim that G × T is a topological groupoid in the product topology, where this time

(g, t)(h, u) = (gh, tσ(g, h)u),

when gh is defined. Indeed, we verify associativity by noting that

[(g, t)(h, u)](i, v) = (gh, tσ(g, h)u)(i, v) = (ghi, tσ(g, h)uσ(gh, i)v),
(g, t)[(h, u)(i, v)] = (g, t)(hi, uσ(h, i)v) = (ghi, tσ(g, hi)uσ(h, i)v),

where the last two expressions are equal by (3-1). Likewise, for all g ∈ G,

σ(g, g−1)t = σ(g, g−1)tσ(r(g), g) = σ(g, s(g))tσ(g−1, g) = tσ(g−1, g).

It follows that

(g−1,σ(g, g−1)−1t−1)(g, t) = (s(g),σ(g, g−1)−1t−1σ(g−1, g)t)

= (s(g),σ(g, g−1)−1t−1tσ(g, g−1))

= (s(g), 1)

and, similarly, (g, t)(g−1,σ(g, g−1)−1t−1) = (r(g), 1), that is,

(g, t)−1 = (g−1,σ(g, g−1)−1t−1).

As the cocycle is continuous, so is the product and inverse on G × T . So again G × T
is a topological groupoid and π : G × T → G is a groupoid bundle.

Our primary interest in groupoid bundles is that they form natural structures on
which to represent semigroups as ‘slice-sections’.

DEFINITION 3.5. A slice-section of a groupoid bundle π : F → G is a continuous map
a where dom(a) is an open slice of G on which π ◦ a is the identity.

So if a is a slice-section then ran(a) ⊆ F and π(a(g)) = g, for g ∈ dom(a).

PROPOSITION 3.6. The slice-sections S(π) of a groupoid bundle π : F → G form an
inverse semigroup where, for all a, b ∈ S, the product is given by

ab(gh) = a(g)b(h) when g ∈ dom(a), h ∈ dom(b) and (g, h) ∈ G2

(so dom(ab) = dom(a)dom(b)). Moreover, S(π) has normal subsemigroups

N(π) = {n ∈ S(π) : dom(n) ⊆ G0},
E(S(π)) = {z ∈ S(π) : ran(z) ⊆ F0} ⊆ Z(N(π)).

In particular, (S, N, Z) = (S(π),N(π),E(S(π))) is a structured semigroup.
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PROOF. If gh is defined in G, for some g, h ∈ G, then a(g)b(h) is also defined in
G, as π(a(g)) = g, π(b(h)) = h and π is an isocofibration. Also, for any i ∈ G, we
have at most one pair g ∈ dom(a) and h ∈ dom(b) with gh = i, as these domains
are slices. Thus, the above product yields a well-defined function ab on the slice
dom(ab) = dom(a)dom(b). Furthermore, for any g, h ∈ H such that gh is defined,

π(ab(gh)) = π(a(g)b(h)) = π(a(g))π(b(h)) = gh,

as π is a functor, so again π ◦ ab is the identity on dom(ab). As the product in F
is continuous, the function ab is also continuous and hence a slice-section. As the
inverse map in F is continuous, every slice-section a has a unique inverse slice-section
a−1(g) = a(g−1)−1, for all g ∈ dom(a)−1. Thus, the slice-sections do indeed form an
inverse semigroup S = S(π).

Certainly the diagonal N = N(π) is a subsemigroup. For any a ∈ S and n ∈ N,

dom(ana−1) ⊆ dom(a)dom(n)dom(a)−1 ⊆ dom(a)dom(a)−1 ⊆ G0,

as dom(n) ⊆ G0 and dom(a) is a slice. Thus an = ana−1a ∈ Na, showing that aN ⊆ Na,
while the reverse inclusion follows by a dual argument, that is, aN = Na, showing that
N is normal. As the only idempotents in a groupoid are units, the idempotent sections
are precisely those whose range consists of units, that is,

Z = E(S) = {z ∈ S : ran(z) ⊆ F0},

which is normal by Proposition 2.7. As units commute with isotropy elements of any
groupoid, it follows that nz = zn, for all n ∈ N and z ∈ Z, that is, Z ⊆ Z(N). �

Note here that N will be strictly bigger than Z = E(S), as long as there are at least
some slice-sections of π taking nonunit values. So in this case, the above structured
semigroup is different from the canonical one mentioned after Definition 2.6 formed
by simply taking N = Z = E(S).

We can also consider certain inverse subsemigroups of slice-sections.

EXAMPLE 3.7. If G is an étale groupoid with Hausdorff unit space G0 then pointwise
products KL of compact subsets K, L ⊆ G are again compact. If π : F → G is a
groupoid bundle then it follows that the slice-sections defined on (open) compact
slices form an inverse subsemigroup S ⊆ S(π). Here it is natural to restrict to ample
groupoids (where G0 and hence G has a basis of compact open subsets) so these
compact-slice-sections can distinguish points of G.

If we have a trivial ample groupoid bundle π : G × (F \ {0})→ G, where F is a
discrete field, then any compact-slice-section s can be extended to the entirety of G
with 0 values outside the original domain. The linear span of these then forms an
algebra A of functions from G to F commonly known as the ‘Steinberg algebra’ over G.
The compact-slice-sections of nontrivial locally injective ample groupoid bundles
π : F → G could thus be considered as ‘twisted Steinberg semigroups’.
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Concrete (sub)semigroups of slice-sections arising in other contexts often only have
‘local inverses’.

DEFINITION 3.8. Given a groupoid bundle π : F → G and semigroup S ⊆ S(π), let

Sg = {a ∈ S : g ∈ dom(a)}. (3-2)

We call S a local-inverse semigroup if, for all g ∈ G and a ∈ Sg, we have a′ ∈ Sg−1 and
b ∈ Sg with a′(h−1) = a(h)−1, for all h ∈ dom(b).

So the values of a′ above are the inverses of the values of a on some neighbourhood
of g which is also the domain of some b ∈ S. In particular, dom(b) ⊆ dom(a).

EXAMPLE 3.9. As in [18], we can consider a Fell bundle π : F → G over a locally
compact étale groupoid G with Hausdorff unit space G0. This is not quite a groupoid
bundle: even with line bundles, where the fibres are one-dimensional, each fibre
still has a 0. However, we can simply restrict π to the invertible elements F×. The
slice-sections a defined on open slices such that ‖a‖ vanishes at infinity again form a
subsemigroup S ⊆ S(π|F×). Again we can extend any such slice-section to the entirety
of G with 0 values outside the original domain. The linear span of these again forms
an algebra, this time with a natural reduced algebra norm. Taking the completion
then yields a C*-algebra A. Thus, S again forms a natural semigroup from which to
generate A.

Note that the inverse of a function vanishing at infinity may not vanish at infinity and
could even be unbounded, that is, a ∈ S does not imply a−1 ∈ S, so S is not an inverse
semigroup. However, if a ∈ Sg then we have an open neighbourhood O ⊆ dom(a) of
g on which a−1 is bounded. We can then define a function a′ ∈ Sg−1 which vanishes
at infinity but coincides with a−1 on O−1. Taking any b ∈ Sg with dom(b) ⊆ O then
witnesses the fact that S is a local-inverse semigroup.

Similarly, the sections of π with range in F0 rarely vanish at infinity (only if their
domain is also compact). Thus, it is more natural to allow scalar multiples of units as
well, that is, instead of taking Z to be the idempotent slice-sections as in Proposition
3.6, we can take Z = S ∩Z(π), whereZ(π) denotes the central-diagonal

Z(π) = {z ∈ S(π) : ran(z) ⊆ CF0}.

As the name suggests,Z(π) is a central subsemigroup of the diagonalN(π) and hence
Z = S ∩Z(π) is also a central subsemigroup of N = S ∩ N(π). Moreover, note that we
can always choose the a′ in the previous paragraph so that aa′, a′a ∈ Z. Also, unlike in
the previous examples, N and Z here may not be normal (for example, in [4, Example
7.3] mentioned above) but they will still be binormal and hence (S, N, Z) will still form
a structured semigroup.

Another possibility is to leave π as is; even though F is only a category, not a
groupoid, the slice-sections S(π) still form a semigroup with a subsemigroup S of
functions vanishing at infinity. Again taking N = S ∩ N(π) and Z = S ∩Z(π), we see
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that N may not even be binormal now; however, it will still be Z-trinormal, that is,
(S, N, Z) will still form a structured semigroup.

Our main goal is to obtain a kind of converse to Proposition 3.6. More precisely,
we want to show how to represent a structured semigroup as a subsemigroup of
S(π), for some étale bundle π : F → G, which is universal for an appropriate class
of representations on even more general groupoid bundles.

To get some hint as to how we might do this, take an étale bundle π : F → G and
consider the inverse semigroup of all slice-sections S = S(π). The sets of the form
Sg, for g ∈ G, form ‘cosets’ in an appropriate sense, generalising the usual cosets one
considers in inverse semigroups; see (Coset) above. Indeed, these general cosets can
still be defined via a domination relation < on S generalising the usual order on an
inverse semigroup (basically < corresponds to inclusion of domains; see Proposition
5.2 below). Moreover, for any g, h ∈ G such that gh is defined, the products SgSh of
slice-sections in Sg and Sh are <-coinitial in the family of slice-sections Sgh. In this
way, the product structure of S encodes that of G.

For each f ∈ F and g ∈ G with π( f ) = g, we can further consider the subfamily
S f ⊆ Sg of slice-sections taking the value f at g

S f = {a ∈ S : a(g) = f }.

These form equivalence classes in Sg modulo a relation ∼Sg again determined by the
structured semigroup. Moreover, for any e, f ∈ F such that e f is defined, Se f coincides
with the equivalence class containing SeS f , again showing how the product structure
of F is encoded by that of S.

The goal is thus to examine the domination relation < in structured semigroups and
the cosets and equivalence classes it gives rise to, in order to construct étale bundles
on which to obtain universal slice-section representations. For universality, however,
we first need to consider morphisms between groupoid bundles which correspond to
semigroup homomorphisms of the associated slice-sections.

4. Morphisms

Before considering groupoid bundles, we first need an appropriate notion of
morphism for étale groupoids. One option would be to consider the (functional) étale
morphisms from Section 2.2, which would be fine for Section 11 where we consider
general cosets. However, when we restrict our attention to directed cosets in Section 12,
we need more general (relational) Zakrzewski morphisms; see Theorem 12.14 below.

First let us consider any φ ⊆ G × H as a relation ‘from H to G’, where g φ h means
(g, h) ∈ φ. The flip of φ is denoted by φ−1 ⊆ H × G, that is, h φ−1 g if and only if g φ h.
The image of H′ ⊆ H and preimage of G′ ⊆ G are denoted by

φ[H′] = {g ∈ G : there exists h ∈ H′ (g φ h)}, (Image)

φ−1[G′] = {h ∈ H : there exists g ∈ G′ (g φ h)}. (Preimage)
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In particular, we define the domain and range of φ ⊆ G × H by

dom(φ) = φ−1[G] ⊆ H and ran(φ) = φ[H] ⊆ G.

The composition of φ ⊆ G × H and ψ ⊆ H × I is the relation φ ◦ ψ ⊆ G × I where

g (φ ◦ ψ) i ⇔ there exists h ∈ H (g φ h ψ i).

DEFINITION 4.1. If G and H are groupoids, φ ⊆ G × H is functorial if

g φ h ⇒ g−1 φ h−1, and
g φ h, g′ φ h′ and s(h) = r(h′) ⇒ s(g) = r(g′) and gg′ φ hh′.

In particular, note that dom(φ) is a subgroupoid when φ is functorial.
As usual, we call φ ⊆ G × H a function when the image φ{h} = φ[{h}] of every

singleton h in dom(φ) is again a singleton in ran(φ), in which case

g φ h ⇔ g = φ(h).

So a functorial function φ ⊆ G × H is just a functor on dom(φ) in the usual sense. We
also get functions when we restrict functorial relations to slices in the range.

PROPOSITION 4.2. If φ ⊆ G × H is functorial then

B ⊆ G is a slice ⇒ φ ∩ (B × H) is a function. (4-1)

PROOF. It suffices to show that

f , g φ h ⇒ s( f ) = s(g).

To see this, note that f , g φ h implies g−1 φ h−1 by functoriality. As s(h) = r(h−1),
functoriality again yields s( f ) = r(g−1) = s(g). �

We extend the terminology in [7, 15] from functions to relations.

DEFINITION 4.3. Assume that G and H are groupoids and φ ⊆ G × H is functorial.
We call φ star-injective (surjective, bijective) if, whenever h ∈ H and r(g) φ h ∈ H0,
there is at most (at least, precisely) one i ∈ H such that r(i) = h and g φ i.

More symbolically, these definitions can be summarised as follows:

r(g) φ h ∈ H0 ⇒ |φ−1{g} ∩ r−1{h}| ≤ 1, (Star-Injective)

r(g) φ h ∈ H0 ⇒ |φ−1{g} ∩ r−1{h}| ≥ 1, (Star-Surjective)

r(g) φ h ∈ H0 ⇒ |φ−1{g} ∩ r−1{h}| = 1. (Star-Bijective)

These have several equivalent characterisations; for example, φ is star-injective if and
only if its kernel is discrete, that is, unit-preimages are units. More important for us is
the fact that star-injectivity means φ−1 respects slices.
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PROPOSITION 4.4. The functorial φ ⊆ G × H is star-injective precisely when
φ−1[G0] ⊆ H0 or, equivalently, when

B is a slice of G ⇒ φ−1[B] is a slice of H. (4-2)

PROOF. If φ is not star-injective then we have h ∈ H0 and distinct i, j ∈ H with r(h) =
r(i) = h and g φ i, j. Then G0 � s(g) = g−1g φ i−1j � H0 by functoriality.

Conversely, if we have G0 � g φ h � H0 then g = r(g) φ r(h) � h, even though
r(r(h)) = r(h), showing that φ is not star-injective.

Now if φ−1[G0] ⊆ H0 then, for any slice B ⊆ G0, functoriality yields

φ−1[B](φ−1[B])−1 = φ−1[B]φ−1[B−1] ⊆ φ−1[BB−1] ⊆ φ−1[G0] ⊆ H0.

Likewise, (φ−1[B])−1φ−1[B] ⊆ H0, showing that φ−1[B] is a slice.
Conversely, if φ−1{g} is a slice then, in particular, i, j ∈ φ−1{g} ∩ r−1{h} implies i = j.

So if this holds for all g ∈ G then φ is star-injective. �

On the other hand, star-surjectivity means φ−1 respects products.

PROPOSITION 4.5. The functorial φ ⊆ G × H is star-surjective if and only if, for all
A, B ⊆ G,

φ−1[AB] = φ−1[A]φ−1[B]. (4-3)

PROOF. Assume that φ ⊆ G × H is functorial and star-surjective. If A, B ⊆ G then
φ−1[A]φ−1[B] ⊆ φ−1[AB] by the functoriality of φ. Conversely, take a ∈ A, b ∈ B and
h ∈ H with ab φ h. By functoriality, r(a) = r(ab) φ r(h). Star-surjectivity then yields
i ∈ φ−1{a} with r(h) = r(i). Again functoriality yields b = a−1(ab) φ i−1h and hence
h = i(i−1h) ∈ φ−1[A]φ−1[B], showing that φ−1[AB] ⊆ φ−1[A]φ−1[B] too.

On the other hand, if (4-3) holds and r(g) φ h ∈ H0 then

h ∈ φ−1{r(g)} = φ−1{gg−1} = φ−1{g}φ−1{g−1} = φ−1{g}(φ−1{g})−1.

Thus, we have i ∈ φ−1{g} and j ∈ φ−1{g−1} with h = ij. As h ∈ H0, this means that h =
r(h) = r(ij) = r(i), showing that φ is star-surjective. �

In fact, the proofs show that it suffices to consider singleton A and B in (4-2) and
(4-3). We also note that φ is star-surjective if and only if ran(φ) is an ideal of G; see
(Ideal) below.

Extending the usual notion for functions, when G and H are topological spaces and
φ ⊆ G × H, we call φ continuous if φ−1[O] is open, for all open O ⊆ G.

DEFINITION 4.6. A Zakrzewski morphism φ ⊆ G × H between étale groupoids G and
H is a continuous star-bijective functorial relation.

The idea of considering relational morphisms between groupoids comes from [35]
and was further studied in [30]. As in Section 2.2, a functional Zakrzewski morphism
will be called an étale morphism.
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REMARK 4.7. Zakrzewski morphisms include both continuous functions and group
homomorphisms but in opposite directions. Indeed, if G and H are étale groupoids
with G = G0 and H = H0, that is, if G and H are just topological spaces under the
trivial product defined on the diagonal, a Zakrzewski morphism φ ⊆ G × H is just a
continuous function from an open subset of H to G. At the other extreme, if G0 and
H0 are singletons, that is, if G and H are discrete groups, then nonempty φ ⊆ G × H is
a Zakrzewski morphism if and only if φ−1 ⊆ H × G is a group homomorphism from G
to H.

Zakrzewski morphisms can also be seen as generalisations of groupoid bundles.
Indeed, if F and G are étale groupoids then a function π : F → G is a groupoid bundle
if and only if π−1 ⊆ F × G is an open Zakrzewski morphism, that is, a Zakrzewski
morphism such that π−1[O] is open, for all open O ⊆ G.

Now suppose we have a groupoid bundle π : F → G and a Zakrzewski morphism
φ ⊆ G × H. Consider the subspace of F × H given by

φπF = {( f , h) ∈ F × H : π( f ) φ h}.

Note that φπF is a topological groupoid under the product

( f , h)( f ′, h′) = ( f f ′, hh′) when hh′ is defined.

Let πφ : φπF → H denote the projection onto H, that is, πφ( f , h) = h.

PROPOSITION 4.8. If π : F → G is a groupoid bundle and φ ⊆ G × H is a Zakrzewski
morphism then πφ : φπF → H is also a groupoid bundle.

PROOF. The definition of the topology and product on φπF ensures that πφ is a
continuous isocofibration. It only remains to show that πφ is also an open map. To
see this, take open O ⊆ F and N ⊆ H and note that

πφ[(O × N) ∩ φπF] = {h ∈ N : there exists f ∈ O (π( f ) φ h)}
= N ∩ φ−1[π[O]],

which is open because φ is continuous and π is an open map. �

This πφ : φπF → H is the pullback bundle of π induced by φ.

DEFINITION 4.9. Let π : F → G and π′ : F′ → G′ be groupoid bundles. If

(1) φ ⊆ G × G′ is a Zakrzewski morphism,
(2) τ : φπF → F′ is a continuous functor and
(3) πφ = π

′ ◦ τ (that is, π′(τ( f , g′)) = g′, for all ( f , g′) ∈ φπF)

then we call the pair (φ, τ) a Zakrzewski–Pierce morphism from π to π′. If φ is also a
function then (φ, τ) is a Pierce morphism.

Similar morphisms for ring bundles are considered in [25, Definition 6.1], hence
the name (for analogous C*-bundle morphisms, see [33, Definition 4.3]). Like in
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[25, Lemma 6.2], Zakrzewski–Pierce morphisms of groupoid bundles naturally yield
semigroup homomorphisms of their slice-sections.

THEOREM 4.10. If (φ, τ) is a Zakrzewski–Pierce morphism from π : F → G to π′ :
F′ → G′, we have a semigroup homomorphism τ/φ : S(π)→ S(π′) given by

τ

φ
(a) = τ ◦ (((a ◦ φ) × id) ◦ δ),

where δ(g′) = (g′, g′) and id(g′) = g′.

PROOF. Assume that a is a slice-section of π. In particular, dom(a) is an open slice,
as is

dom
(
τ

φ
(a)
)
= dom(a ◦ φ) = φ−1[dom(a)],

because φ is continuous and star-injective; see (4-2). As a and τ are also continuous, so
is (τ/φ)(a). Moreover, φ ∩ (dom(a) × G′) and hence a ◦ φ is function, by (4-1). Thus,
(τ/φ)(a) is a function too such that, for all g′ ∈ dom((τ/φ)(a)),

τ

φ
(a)(g′) = τ((a ◦ φ)(g′), g′)

(which is defined because ((a ◦ φ)(g′), g′) ∈ φπ, as a is a section of π). It follows that
π′((τ/φ)(a)(g′)) = π′(τ((a ◦ φ)(g′), g′)) = πφ((a ◦ φ)(g′), g′) = g′. This all shows that
(τ/φ)(a) is a slice-section of π′, that is, (τ/φ)(a) ∈ S(π′).

Now, given another slice-section b ∈ S(π), note that

dom
(
τ

φ
(ab)
)
= φ−1[dom(ab)] = φ−1[dom(a)dom(b)], and

dom
(
τ

φ
(a)

τ

φ
(b)
)
= dom

(
τ

φ
(a)
)
dom
(
τ

φ
(b)
)
= φ−1[dom(a)]φ−1[dom(b)],

so dom((τ/φ)(ab)) = dom((τ/φ)(a)(τ/φ)(b)), by the star-surjectivity of φ. Moreover,
for any g′ ∈ dom((τ/φ)(a)) and h′ ∈ dom((τ/φ)(b)) such that g′h′ is defined, note that

τ

φ
(ab)(g′h′) = τ((ab ◦ φ)(g′h′), g′h′)

= τ((a ◦ φ)(g′)(b ◦ φ)(h′), g′h′)
= τ(((a ◦ φ)(g′), g′)((b ◦ φ)(h′), h′))
= τ((a ◦ φ)(g′), g′)τ((b ◦ φ)(h′), h′)

=
τ

φ
(a)(g′)

τ

φ
(b)(h′)

=

(
τ

φ
(a)

τ

φ
(b)
)
(g′h′).

This shows that (τ/φ)(ab) = (τ/φ)(a)(τ/φ)(b), that is, (τ/φ) is semigroup homo-
morphism. �
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5. Domination

We now make the following standing assumption throughout.

(S, N, Z) is a structured semigroup (see Definition 2.6).

DEFINITION 5.1. We define relations on S as follows:

a <s b ⇔ asb = a = bsa, as, sa ∈ N and bs, sb ∈ Z;
a < b ⇔ there exists s ∈ S (a <s b).

When a <s b, we say that b dominates a via s.

To get some intuition for domination, we imagine that S is a subsemigroup of the
slice-sections S(π) of some groupoid bundle π : F → G. As long as N lies in the
diagonal N(π), a <s b means that s is an inverse of b on the domain of a.

PROPOSITION 5.2. If π : F → G is a groupoid bundle and a, s, b ∈ S(π),

a = asb and as ∈ N(π) ⇔ for all g ∈ dom(a) (s(g−1) = b(g)−1)

(implicit in s(g−1) = b(g)−1 is that g−1 ∈ dom(s) and g ∈ dom(b)).

PROOF. If a = asb and g ∈ dom(a) then a(g) = asb(g) = a(h)s(i)b(j), for some h, i, j ∈
G with g = hij. Thus, r(g) = r(hij) = r(h) so g = h, as dom(a) is a slice. If as ∈ N(π) too
then gi = hi ∈ dom(as) ⊆ G0 and hence i = g−1. Thus, g = hij = gg−1j = j so a(g) =
a(g)s(g−1)b(g) and hence s(g−1)b(g) ∈ F0, that is, s(g−1) = b(g)−1. This proves⇒.

Now suppose that s(g−1) = b(g)−1, for all g ∈ dom(a). In particular, dom(a) ⊆
dom(s)−1 and hence dom(as) = dom(a)dom(s) ⊆ dom(s)−1dom(s) ⊆ G0 so as ∈ N(π).
Also

asb(g) = a(g)s(g−1)b(g) = a(g)b(g)−1b(g) = a(g),

for all g ∈ dom(a). In particular, s[dom(a)] ⊆ dom(sb) and hence

dom(asb) = dom(a)dom(sb) = dom(a)

which, together with the above computation, yields a = asb, proving⇐. �

In particular, if π : F → G is a groupoid bundle and (S, N, Z) is a structured
semigroup with S ⊆ S(π) and N ⊆ N(π) then it follows from the above that

a < b ⇒ dom(a) ⊆ dom(b).

On the other hand, if S = S(π), N(π) ⊆ N and E(S) ⊆ Z then the converse holds. If
we instead consider functions vanishing at infinity as in Example 3.9 then < is instead
equivalent to compact containment � of domains, that is, a < b means dom(a) ⊆ K ⊆
dom(b), for some compact K ⊆ G (see [4, Proposition 4.4]).

On inverse semigroups, < is just the usual ordering.
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PROPOSITION 5.3. If S is an inverse semigroup and N = Z = E(S) then

a < b ⇔ a ∈ Nb ⇔ a <b−1 b. (5-1)

PROOF. If a < b then we have s ∈ S with a = asb ∈ Nb. Conversely, if a = nb, for
some n ∈ N, then ab−1 = nbb−1 ∈ N and ab−1b = nbb−1b = nb = a. Likewise b−1a =
b−1nb ∈ N and bb−1a = bb−1nb = nbb−1b = nb = a. As bb−1, b−1b ∈ N, this shows that
a <b−1 b. �

Our primary goal in this section is to show that the domination relation < on general
structured semigroups still has many of the same properties as the usual order relation
on inverse semigroups.

First we note that < could have been defined in a more one-sided way. Note that
here and elsewhere we make use of the fact that a result proved from S immediately
yields a dual result for the opposite semigroup Sop (where a ·op b = ba).

PROPOSITION 5.4. For any a, b, b′ ∈ S,

a <s b ⇔ asb = a, as ∈ N and bs, sb ∈ Z,
⇔ bsa = a, sa ∈ N and bs, sb ∈ Z.

PROOF. If asb = a, as ∈ N and bs, sb ∈ Z then as ∈ N commutes with bs ∈ Z.
Thus, bsa = bsasb = asbsb = a and bsas = asbs = as ∈ N so sa = sasb ∈ N, as N
is Z-trinormal. Thus, a <s b, proving the first⇔, while the second follows dually. �

From now on we use the above characterisations of <.

PROPOSITION 5.5. For all a, b′, b, c′, c ∈ S,

a <b′ b <c′ c ⇒ a <c′ c. (Transitivity)

PROOF. If a <b′ b <c′ c then we see that ac′ = ab′bc′ ∈ NN ⊆ N and ac′c = ab′bc′c =
ab′b = a. �

We can also switch the subscript with the right argument as follows.

PROPOSITION 5.6. For all a, b, c, c′ ∈ S,

ab ∈ N and b <c′ c ⇒ abc′ <c c′. (Switch)

PROOF. If ab ∈ N and b <c′ c then we see that abc′c ∈ NZ ⊆ N and abc′cc′ = abc′. �

Next we show that < preserves the product.

PROPOSITION 5.7. For any a, b′, b, c, d′, d ∈ S,

a <b′ b and c <d′ d ⇒ ac <d′b′ bd. (Multiplicativity)

PROOF. If a <b′ b and c <d′ d then b′bb′acd′ = b′acd′ ∈ NN ⊆ N so acd′b′ =
bb′acd′b′ ∈ N, as N is Z-trinormal. Also acd′b′bd = ab′bcd′d = ac, as b′b ∈ Z
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commutes with cd′ ∈ N. Moreover, as Z is binormal,

d′b′bd ∈ d′Zd ⊆ Z ⊇ bZb′ � bdd′b′. �

Next we note multiplying by elements of N on the left does not affect <.

PROPOSITION 5.8. For any a, b′, b ∈ S and n ∈ N,

a <b′ b ⇒ an, na <b′ b. (N-Invariance)

PROOF. If a <b′ b then nab′ ∈ NN ⊆ N and nab′b = na and hence na <b′ b, while
an <b′ b follows by duality. �

We also have a similar result for elements of Z.

PROPOSITION 5.9. For any a, b, b′ ∈ S and z ∈ Z,

az = a <b′ b ⇒ a <b′ bz and a <zb′ b. (Z-Invariance)

PROOF. If az = a <b′ b then b′bz, bzb′ ∈ Z and ab′bz = az, that is, a <b′ bz. Also
azb′ = ab′ ∈ N and azb′b = a, that is, a <zb′ b. �

We can even split up pairs whose products lie in Z.

PROPOSITION 5.10. For any a, b, b′, c, c′ ∈ S with cc′, c′c ∈ Z,

acc′ = a <b′ b ⇒ ac <c′b′ bc. (Z-Splitting)

PROOF. If acc′ = a <b′ b and cc′ ∈ Z then c′b′bc, bcc′b′ ∈ Z, acc′b′bc = ac and
acc′b′ = ab′bcc′b′ ∈ NZ ⊆ N, that is, ac <c′b′ bc. �

For use in the next section, we denote the up-closure of A ⊆ S by

A< = {b > a : a ∈ A}.

6. Duals

DEFINITION 6.1. The dual of A ⊆ S is defined by

A∗ = {s ∈ S : A � a <s b}.

So s ∈ A∗ precisely when some a ∈ A is dominated by another element via s.
In particular, if A ⊆ B then A∗ ⊆ B∗, a simple fact we often use below. In inverse
semigroups, duals are just up-closures of inverses.

PROPOSITION 6.2. If S is an inverse semigroup and N = Z = E(S) then

A∗ = A−1<.

PROOF. If s ∈ A∗ then we have a ∈ A with a <s b and hence a <b−1 b, by (5-1), so

aa−1 = ab−1ba−1 = ab−1(ab−1)−1 = ab−1 = asbb−1 = bb−1as = as.

Then a−1 = a−1aa−1 = a−1as ∈ Ns so a−1 < s, showing that A∗ ⊆ A−1<.
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Conversely, if s ∈ A−1< then we have a ∈ A with a−1<s. Again (5-1) yields a−1<s−1 s.
Taking inverses yields a <s s−1 so s ∈ A∗, showing that A−1< ⊆ A∗. �

Again we want to show that duals in structured semigroups still behave much
like up-closures of inverses. For example, from (Multiplicativity), we see that the
∗ operation is a kind of antimorphism, that is, for all A, B ⊆ S.

A∗B∗ ⊆ (BA)∗. (Antimorphism)

Next we note some relations between the ∗ and < operations.

PROPOSITION 6.3. For any A ⊆ S,

A<∗ ⊆ A∗<, (6-1)
A<< ⊆ A∗∗. (6-2)

Consequently, A∗ � ∅ whenever ∅ � A ⊆ A<.

PROOF.

(6-1) If c′ ∈ A<∗ then we have a, b, b′, c ∈ S with A � a <b′ b <c′ c. Then a <b′bc′ c
by (Transitivity) and (Z-Invariance), so A∗ � b′bc′ <c c′ ∈ A∗< by (Switch).

(6-2) If c ∈ A<< then we have a, b′, b, c′ ∈ S with A � a <b′ b <c′ c. Then again A∗ �
b′bc′ <c c′ and hence c ∈ A∗∗.

For the last statement, note that if A∗ = ∅ and A ⊆ A< then (6-2) would yield A ⊆ A<< ⊆
A∗∗ ⊆ ∅∗ = ∅. �

If A is closed under ‘triple products’, these inclusions become equalities.

PROPOSITION 6.4. If AA∗A ⊆ A then

A<∗ = A∗< ⊆ A∗. (6-3)
A<< = A∗∗. (6-4)

PROOF.

(6-3) Take a′ ∈ A∗< so we have a, b, b′, c ∈ S with A � c <b′ b and b′ <a a′.
As ab′ba′ ∈ Z, ba′ab′ = bb′ ∈ Z and bb′c = c, (Z-Splitting) and (Switch)
yield

ab′c <b′ba′ ab′b <a′ a.

Then (N-Invariance) yields cb′ab′c < ab′b <a′ a and (Transitivity) yields
cb′ab′c <a′ a. Thus a′ ∈ A<∗ ∩ A∗, as

cb′ab′c ∈ AA∗A∗∗A∗A ⊆ A(AA∗A)∗A ⊆ AA∗A ⊆ A,

showing that A∗< ⊆ A<∗ ∩ A∗ and hence A<∗ = A∗< ⊆ A∗, by (6-1).
(6-4) If we take a ∈ A∗∗ then we likewise have a′, b, b′, c ∈ S with A � c <b′ b and

b′ <a a′, which again yields cb′ab′c < ab′b < a and hence a ∈ A<<. Combined
with (6-2), this shows that A<< = A∗∗. �
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6.1. Diagonality. We can improve some results when N is ‘diagonal’.

DEFINITION 6.5. We call D ⊆ S diagonal if, for all a, d, b ∈ S,

ad, d, db ∈ D ⇒ adb ∈ D. (Diagonal)

EXAMPLE 6.6. If S is a semigroup of slice-sections of a groupoid bundle π : F → G
then the canonical diagonal N = {n ∈ S : dom(n) ⊆ G0} is indeed diagonal in S. To see
this just note that if an, n, nb ∈ N then anb ∈ N because

dom(anb) = dom(a)dom(n)dom(n)dom(b) = dom(an)dom(nb) ⊆ G0.

EXAMPLE 6.7. Any subsemigroup I ⊆ S of idempotents (for example, all idempotents
in an inverse semigroup S) is diagonal, as ai, i, ib ∈ I implies aib = aiib ∈ II ⊆ I.

More generally, any regular subsemigroup R ⊆ S (that is, for every r ∈ R we have
r′ ∈ R with rr′r = r) is diagonal, as ar, r, rb ∈ R yields r′ ∈ R with

arb = arr′rb ∈ RRR ⊆ R.

EXAMPLE 6.8. The range of any ‘conditional expectation’ Φ satisfies (Diagonal): if
R = ran(Φ) for an idempotent map Φ on S such that, for all a, b ∈ S,

Φ(Φ(a)b) = Φ(a)Φ(b) = Φ(aΦ(b)),

then ar, r, rb ∈ R implies Φ(arb) = arΦ(b) = aΦ(rb) = arb so arb ∈ R.

Diagonality allows us to exchange the subscript and right argument of < in a slightly
more general situation than in (Switch).

PROPOSITION 6.9. If N is diagonal then, for all a, b, c, d, d′ ∈ S,

ab, bc ∈ N and b <d′ d ⇒ abc <d d′. (Exchange)

PROOF. If b <d′ d and ab, bc ∈ N then abcdd′ = add′bc = abc and (Diagonal) yields
abcd = add′bcd ∈ N, as ab = add′b, d′b, d′bcd ∈ N, that is, abc <d d′. �

This yields is a kind of transitivity, namely,

a <b′ b and b′ <c c′ ⇒ a <c′ c. (*-Transitivity)

Indeed, if a <b′ b and b′ <c c′ then (Exchange) yields a = ab′b <c′ c.
Then (6-3) and (6-4) hold even without the triple product assumption.

PROPOSITION 6.10. If N is diagonal then, for any C ⊆ S,

C∗< ⊆ C∗, C∗∗ = C<< and C∗∗∗ ⊆ C∗. (6-5)

PROOF. If a′ ∈ C∗< then we have a, b, b′, c ∈ S with C � c <b′ b and b′ <a a′. By
(*-Transitivity), c <a′ a and hence a′ ∈ C∗, showing that C∗< ⊆ C∗.

If a ∈ C∗∗ then we have a′, b, b′, c ∈ S with C � c <b′ b and b′ <a a′. By (Exchange),
c <b′ bb′b <a′ a and hence a ∈ C<<, showing C∗∗ ⊆ C<<. The reverse inclusion was
already proved in (6-2).

Now it follows that C∗∗∗ ⊆ C∗<< ⊆ C∗< ⊆ C∗. �
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7. Atlases

DEFINITION 7.1. We call A ⊆ S an atlas and C ⊆ S a coset if

AA∗A ⊆ A ⊆ A<, (Atlas)

CC∗C ⊆ C = C<. (Coset)

So an atlas is a triple-product-closed round subset, and a coset is also an up-set.
These generalise the same notions for inverse semigroups from [20, Section 1.4 before
Proposition 26] (as the order there is reflexive, all subsets are trivially round).

REMARK 7.2. When S is a group with identity e and N = Z = {e}, a coset C of S is
precisely a coset in the usual sense, specifically a left coset of the subgroup C−1C or
a right coset of the subgroup CC−1. In particular, each singleton {a} is a coset of the
trivial subgroup {e}.

More generally, if S is an inverse semigroup and N = Z = E(S) then every principal
filter a≤ is a coset. If S is the normaliser semigroup of a Cartan subalgebra C of some
C*-algebra and N = Z = C then again we have principal filters a<, for each a ∈ S,
which are also cosets, by Proposition 12.3 below. We also have principal filters in the
more general structured C*-algebras considered in [2], thanks to [2, Proposition 6.11]
and [3, Lemmas 5.2 and 5.3].

However, general structured semigroups can have few cosets, for example, S itself is
the only nonempty coset in Example 11.4 below. Indeed, an important consequence of
one of our results is that we have faithful bundle representations precisely when there
are enough cosets to distinguish the elements of S via their corresponding equivalence
relations, at least when Z is symmetric; see Corollary 11.3 below.

First we show that atlases generate cosets.

PROPOSITION 7.3. If A is an atlas, A∗ and A< = A∗∗(⊇ A) are cosets.

PROOF. If A is an atlas, A∗A∗∗A∗ ⊆ (AA∗A)∗ ⊆ A∗ by (Antimorphism). Also A∗ ⊆
A<∗ = A∗< ⊆ A∗ by (6-3), that is, A∗ = A∗<. This shows that A∗ is a coset and hence
A∗∗ = A<< = A< is also a coset, by (Transitivity), A ⊆ A< and (6-4). �

PROPOSITION 7.4. If A, B ⊆ S are atlases and c ∈ S then

A ⊆ B and A∗ = B∗ ⇒ (Ac)∗ = (Bc)∗. (7-1)

PROOF. Assume that A, B ⊆ S are atlases with A ⊆ B and A∗ = B∗. If d ∈ (Bc)∗, then
we have b ∈ B and d′ ∈ S with bc <d d′. As A ⊆ A< and B ⊆ B<, we can take n ∈ AA∗ ∩
N, z ∈ A∗A ∩ N and b′ ∈ B∗ with b′b ∈ Z. As Z is binormal, nbzb′ ∈ NZ ⊆ N and hence
(N-Invariance) yields nbzb′bc <d d′. Also

nbzb′b = nbb′bz ∈ AA∗BB∗BA∗A = AB∗BB∗BB∗A ⊆ AB∗A = AA∗A ⊆ A,

so d ∈ (Ac)∗, showing that (Bc)∗ ⊆ (Ac)∗ ⊆ (Bc)∗. �
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DEFINITION 7.5. For any A ⊆ S and b ∈ S we define

A|b ⇔ there exists b′ ∈ S (bb′, b′b ∈ Z and there exists a ∈ A (a = abb′)),
b|A ⇔ there exists b′ ∈ S (bb′, b′b ∈ Z and there exists a ∈ A (a = b′ba)).

We read A|b and b|A as saying b acts on A (from the right and left, respectively).
Indeed, when b acts on A, the product is another atlas; see Proposition 7.7 below.

PROPOSITION 7.6. If A, B ⊆ S are atlases satisfying A∗A ⊆ (BB∗)< then their product
AB is also an atlas. Consequently, (AB)∗ is a coset and, for all a ∈ A,

a|B and (aB)∗ = (AB)∗. (7-2)

PROOF. If A∗A ⊆ (BB∗)< then (Multiplicativity) and the fact B is an atlas yields
A∗AB ⊆ (BB∗)<B< ⊆ (BB∗B)< ⊆ B< and hence

(AB)∗A ⊆ (AB)∗A∗∗ ⊆ (A∗AB)∗ ⊆ B<∗ = B∗< ⊆ B∗.

Thus, AB(AB)∗AB ⊆ ABB∗B ⊆ AB ⊆ A<B< ⊆ (AB)< by (Multiplicativity), so AB is an
atlas.

Take a′, c ∈ S with A � c <a′ a. Then a′c ∈ A∗A ⊆ (BB∗)< so, taking any b ∈
B, a′cb ∈ (BB∗)<B ⊆ B<. Taking e, d ∈ S with B � e <d a′cb, we see that a′ae =
a′aa′cbde = a′cbde = e so a|B. For any other f ∈ A, (N-Invariance) yields

( f B)∗ ⊆ (aa′ f B)∗ ⊆ (aA∗AB)∗ ⊆ (aB<)∗ = (aB)∗

by (7-1) (applied to Sop with a, B< and B in place of c, A and B, respectively). This
shows that (AB)∗ ⊆ (aB)∗ ⊆ (AB)∗. �

Note that we can take B = A∗ above, as A∗A ⊆ A<∗A< ⊆ (A∗A)<, that is,

A is an atlas ⇒ AA∗ is an atlas.

In this case, the cosets (AA∗)∗ and (AA∗)< they generate are the same as (AA∗)∗ ⊆
(A∗∗A∗)∗ ⊆ (AA∗)∗∗ = (AA∗)< and (AA∗)< ⊆ (A∗∗A∗)< ⊆ (AA∗)∗< = (AA∗)∗. Likewise,
(A∗A)∗ and (A∗A)< coincide, and we denote these cosets by

s(A) = (A∗A)∗ = (A∗A)< and r(A) = (AA∗)∗ = (AA∗)<.

We soon see that these are the source and range in a groupoid of cosets.

PROPOSITION 7.7. If A|b and A is an atlas then Ab is an atlas with

r(Ab) = r(A).

PROOF. Take b′ ∈ S with bb′, b′b ∈ Z and a ∈ A with a = abb′. As A ⊆ A<, we can
also take a′ ∈ A∗ with aa′, a′a ∈ Z.

First, note that

b′A∗ ⊆ (Ab)∗. (7-3)
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To see this, take any c′ ∈ A∗, so we have c, d ∈ S with A � d <c′ c. Then (N-Invariance)
yields da′a <c′ c and (Z-Splitting) yields da′ab <b′c′ cb. Thus b′c′ ∈ (Ab)∗, as da′a ∈
AA∗A ⊆ A, showing that b′A∗ ⊆ (Ab)∗.

Next we claim that

b(Ab)∗ ⊆ A∗.

To see this, take c′ ∈ (Ab)∗, so we have c ∈ S and d ∈ A with db <c′ c. Take d′ ∈
A∗ with dd′, d′d ∈ Z and let n = da′ad′ ∈ N so (N-Invariance) yields ndb <c′ c.
Also ndbb′ = da′ad′dbb′ = da′abb′d′d = da′ad′d = nd and hence ndbb′b = ndb so
(Z-Splitting) yields nd = ndbb′ <bc′ cb′. Thus bc′ ∈ A∗, as nd ∈ AA∗AA∗A ⊆ A, show-
ing that b(Ab)∗ ⊆ A∗ and hence

Ab(Ab)∗Ab ⊆ AA∗Ab ⊆ Ab. (7-4)

Next, note that a′aa′ = a′abb′a′ = bb′a′aa′, so b and a′aa′ ∈ A∗AA∗ ⊆ A∗ witness
b′|A∗. Thus, (7-3) applied in Sop yields A∗∗b ⊆ (b′A∗)∗. Then (6-4) and (7-4) yield

Ab ⊆ A<<b = A∗∗b ⊆ (b′A∗)∗ ⊆ (Ab)∗∗ = (Ab)<< ⊆ (Ab)<,

showing that Ab is an atlas.
Note that Ab(Ab)∗ ⊆ AA∗ ⊆ A∗∗(Abb′)∗ ⊆ (Abb′A∗)∗ ⊆ (Ab(Ab)∗)∗ = r(Ab), so tak-

ing duals yields r(Ab) ⊆ r(A) ⊆ r(Ab)∗ = r(Ab). �

PROPOSITION 7.8. If A ⊆ S is an atlas and n ∈ N then

A|n ⇔ n ∈ s(A) ⇒ (An)< = A<. (7-5)

PROOF. If n ∈ s(A) then An ⊆ A<(A∗A)< ⊆ (AA∗A)< ⊆ A< and hence

A< ⊆ (An)< ⊆ A<< ⊆ A<.

Also, we have m, n′ ∈ S with A∗A � m <n n′, so nn′, n′n ∈ Z and mnn′ = m. Taking any
a ∈ A, note that am ∈ AA∗A ⊆ A and amnn′ = am, showing A|n.

Conversely, if A|n, we have n′ ∈ S with nn′, n′n ∈ Z and a ∈ A with a = ann′. Then
a′a = a′ann′, for any a′ ∈ A∗ with a′a ∈ N, so a′a <n n′ and n ∈ s(A). �

8. Cosets

Our goal here is to show that the nonempty cosets

C(S) = {C ⊆ S : CC∗C ⊆ C = C< � ∅}

form an étale groupoid. This generalises similar results for filters in inverse semigroups
in [23, 24] (we have more to say about filters in Section 12).

THEOREM 8.1. C(S) is a groupoid with inverse C �→ C∗ and product

B · C = (BC)< when s(B) = r(C).
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PROOF. If (B, C) ∈ C2 = {(B, C) : B, C ∈ C(S) and s(B) = r(C)} then (BC)< is a coset,
by Propositions 7.3 and 7.6. Also, as B � ∅ � C, it follows that ∅ � BC ⊆ B<C< ⊆
(BC)<, so the product is well defined on C(S). Moreover, if c ∈ C, Proposition 7.6
yields B|c and (BC)< = (Bc)<, so Proposition 7.7 yields

r((BC)<) = r((Bc)<) = r(Bc) = r(B).

Thus, (A, B) ∈ C2 if and only if (A, (BC)<) ∈ C2, in which case, for any c ∈ C,

(A(BC)<)< = (Abc)< ⊆ (ABC)< ⊆ (A(BC)<)<.

Likewise, for any (A, B) ∈ C2, we see that s((AB)<) = s(B), so ((AB)<, C) ∈ C2 if and
only if (B, C) ∈ C2, in which case ((AB)<C)< = (ABC)< = (A(BC)<)<, showing that the
product is associative.

Again by Proposition 7.3, as well as the last part of Proposition 6.3, if C ∈ C(S) then
C∗ ∈ C(S), so the involution is well defined on C(S). Also, for any (B, C) ∈ C2, c ∈ C
and c′ ∈ C∗ with cc′ ∈ N,

B ⊆ (Bcc′)< = (BCC∗)< ⊆ (B(B∗B)<)< ⊆ B,

showing that C · C∗ is a unit. Likewise, (B∗BC)< = C so B∗ · B is a unit, showing that
the involution takes each element to its inverse. Thus, C(S) is a groupoid. �

The units of this groupoid have a couple of simple characterisations.

PROPOSITION 8.2. C ∈ C(S) is a unit if and only if C ∩ N � ∅ if and only if C ∩ Z � ∅.

PROOF. If C ∈ C(S) is a unit then C = (CC∗)< ⊇ CC∗. Taking any b, b′, c ∈ S with
C � c <b′ b, we see that bb′ ∈ CC∗ ∩ Z ⊆ C ∩ Z. Conversely, if n ∈ C ∩ N then, for
any B with (B, C) ∈ C2, Proposition 7.6 and (7-5) yield B = (Bn)< = (BC)<. Likewise,
B = (CB)< for any B with (C, B) ∈ C2, so C is a unit in C(S). �

The following slices of C(S) will play an important role very soon.

PROPOSITION 8.3. For every a ∈ S, we have a slice in C(S) given by

Ca = {C ∈ C(S) : a ∈ C}.

PROOF. If B, C ∈ Ca and s(B) = s(C) then, by (7-2),

B = B · s(B) = (as(B))< = (as(C))< = C · s(C) = C.

Likewise, r(B) = r(C) implies B = C, so Ca is a slice. �

The canonical topology on C(S) is generated by the slices (Ca)a∈S. So a basis for
this topology is given by CF =

⋂
f∈F C f , for finite F ⊆ S.

THEOREM 8.4. The coset groupoid is étale in the canonical topology.

PROOF. If C∗ ∈ Cb then b ∈ C∗, so we have a, b′ ∈ S with C � a <b b′ and hence C ∈
Ca and C∗a ⊆ Cb, showing that the involution C �→ C∗ is continuous on C(S). Similarly,
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if B · C ∈ Ca then a ∈ B · C, so we have b ∈ B and c ∈ C with bc < a, that is, B ∈ Cb,
C ∈ Cc and Cb · Cc ⊆ Ca, showing that the product is also continuous.

To see that the source s is an open map on C(S), take any finite F ⊆ S and C ∈ CF.
Further, take finite G ⊆ C with F ⊆ G< and fix some a, b′, b ∈ S with G � a <b′ b ∈ F.
We claim that

s(C) ∈ Cb′G ⊆ s[CF].

To see this, first note that b′ ∈ G∗ ⊆ C∗ and G ⊆ C imply b′G ⊆ C∗C ⊆ s(C) and hence
s(C) ∈ Cb′G. Next note that if B ∈ Cb′G then b′a ∈ B ∩ N so B is a unit, by Proposition
8.2, and b′bb′a = b′a so b|B and (bB)< ∈ Cbb′G ⊆ CF (as A ∈ Cbb′G implies bb′G ⊆
A and hence F ⊆ G< ⊆ (bb′G)< ⊆ A< ⊆ A). Thus B = s(B) = s(bB) ∈ s[CF], showing
that Cb′G ⊆ s[CF]. As C was arbitrary, this shows s[CF] is open, which, as F was
arbitrary, shows that s is an open map. �

8.1. Symmetry. The structured semigroups we are interested in often satisfy a
certain additional assumption, which also allows us to say more about cosets.

DEFINITION 8.5. We call Y ⊆ S symmetric if, for all a, b ∈ S,

ab ∈ Y ⇒ baba ∈ Y . (Symmetric)

For example, the idempotents E(S) in any semigroup S are always symmetric,
as ab ∈ E(S) implies b(ababab)a = baba ∈ E(S). Likewise, one can verify that the
slice-sections S(π|F×) of the invertible part of a Fell bundle π have a symmetric
central-diagonalZ(π|F×) (see Example 3.9).

Symmetry yields more one-sided versions of < than in Proposition 5.4.

PROPOSITION 8.6. If Z is symmetric and a, b ∈ S then

asb = a, as ∈ N and (bs ∈ Z or sb ∈ Z) ⇒ a <s bsb and a <sbs b.
bsa = a, sa ∈ N and (bs ∈ Z or sb ∈ Z) ⇒ a <s bsb and a <sbs b.

PROOF. If bs ∈ Z then bsbs ∈ ZZ ⊆ Z and sbsb ∈ Z, by symmetry. If sb ∈ Z then,
likewise, sbsb ∈ ZZ ⊆ Z and bsbs ∈ Z, by symmetry. If asb = a and as ∈ N too then
asbs ∈ NZ ⊆ N and asbsb = asb = a, so a <s bsb and a <sbs b. This proves the first⇒
and the second follows by a dual argument. �

PROPOSITION 8.7. If Z is symmetric then, for all a, b ∈ S and n ∈ N,

a <b′ nb ⇒ a <b′nbb′n b. (8-1)

If N is diagonal and Z is symmetric then, for all a, b ∈ S and n ∈ N,

a <b′n b ⇒ a <b′ nbb′nb.

PROOF. If a <b′ nb then ab′n ∈ NN ⊆ N, ab′nb = a and b′nb ∈ Z so a <b′nbb′n b, by
Proposition 8.6 with s = b′n.

Now suppose that N is also diagonal and a <b′n b. In particular, bb′n ∈ Z
so, by symmetry, nbb′nbb′ ∈ Z ⊆ N. As ab′n, n ∈ N too, diagonality yields
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ab′ = ab′nbb′nbb′ ∈ N. As ab′nb = a and b′nb ∈ Z, it follows that a <b′ nbb′nb, again
by Proposition 8.6 but with s = b′ and nb replacing b. �

PROPOSITION 8.8. If Z is symmetric, A ⊆ S is an atlas and a, b′, b ∈ S, then

abb′ = a ∈ A and bb′ ∈ Z ⇒ A|b. (8-2)

PROOF. If bb′ ∈ Z then b′bb′b ∈ Z by symmetry. Also bb′bb′ ∈ ZZ ⊆ Z and abb′bb′ =
abb′ = a, showing that b′bb′ witnesses A|b. �

Let us now extend our notion of étale representation from Section 2.2.

DEFINITION 8.9. An étale representation of the structured semigroup (S, N, Z) on an
étale groupoid G is a semigroup homomorphism θ : S→ B(G) to the open slices of G
such that θ[S] covers G, θ[N] ⊆ O(G0) and, for all g ∈ G and a ∈ S,

g ∈ θ(a) ⇒ there exists b < a (g ∈ θ(b)). (LocallyRound)

Intuitively, (Locally Round) is saying we can always shrink open neighbourhoods
arising from the representation. On a more technical level, we must restrict the
representations in this way for the coset representation to be universal, as shown
below. The following observation shows that we can at least rest assured that requiring
(Locally Round) and θ[N] ⊆ O(G0) is still consistent with the original notion of an
étale representation of an inverse semigroup introduced in Section 2.2.

PROPOSITION 8.10. If S is an inverse semigroup and N = Z = E(S) then any semi-
group homomorphism θ : S→ B(G) is an étale representation.

PROOF. As θ is semigroup homomorphism, it maps idempotents in S to idempotents
in B(G), which are precisely the open subsets of the unit space G0, that is, θ[E(S)] ⊆
O(G0). Moreover, the domination relation < here is just the usual order on the inverse
semigroup S; see (5-1). In particular, < is reflexive so (Locally Round) is immediately
verified by taking b = a. �

As before in Section 2.2, we call an étale representation μ : S→ B(G) universal
if, for every étale representation θ : S→ B(H), there exists a unique étale morphism
φ : H → G such that θ = φ ◦ μ, where φ : B(G)→ B(H) is the preimage map. Again
as before, we let C denote the map a �→ Ca.

THEOREM 8.11. If Z is symmetric, C is a universal étale representation.

PROOF. First, we must show that C is a semigroup homomorphism. For a, b ∈ S,
certainly Ca · Cb ⊆ Cab. Next, for n ∈ N, we have a partial converse, namely,

Can ⊆ Ca. (8-3)

Indeed, if C ∈ Can then we have c ∈ C with c < an. This implies c < a, by (8-1), and
hence a ∈ C< ⊆ C, that is, C ∈ Ca, which proves (8-3).

More generally, if C ∈ Cab then we have c, c′ ∈ S with C � c <c′ ab. In particular,
abc′ ∈ Z and abc′c = c and hence bc′|C, by (8-2). By Proposition 7.7, B = (bc′C)< is
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a coset with s(B) = s(C). Also B ∈ Cbc′c ⊆ Cb, by (8-3), as c′c ∈ N. As b ∈ B, we have
b′ ∈ B∗ with bb′ ∈ Z ⊆ N and hence C · B∗ ∈ Cab · Cb′ ⊆ Cabb′ ⊆ Ca, again by (8-3).
Thus, C = C · B∗ · B ∈ Ca · Cb. This shows that Cab = Ca · Cb, for all a, b ∈ S, so C is
indeed a semigroup homomorphism.

To see that C is even an étale representation, note first that n ∈ N implies that Cn

consists entirely of unit cosets, thanks to Proposition 8.2. Also any coset C must satisfy
C ⊆ C< by definition, so if C ∈ Ca then we have b ∈ C with b < a and hence C ∈ Cb,
that is, (Locally Round) is also satisfied. As each C ∈ C(S) is nonempty, we have a ∈ C
and hence C ∈ Ca, that is, (Ca)a∈S covers C(S), as required.

To see that C is universal, take any other étale representation θ : S→ B(G). For
each g ∈ G, define φ(g) ⊆ S by

φ(g) = {a ∈ S : g ∈ θ(a)}.

We claim that φ(g) ∈ C(S). Certainly φ(g) � ∅, as θ[S] covers G. Also φ(g) ⊆ φ(g)<,
as θ is required to satisfy (Locally Round). Conversely, suppose that φ(g) � a < b so
g ∈ θ(a) = θ(asb) = θ(a)θ(s)θ(b) and θ(a)θ(s) = θ(as) ∈ θ[N] ⊆ O(G0). Arguing as in
the proof of Proposition 5.2 (or considering the special case of Proposition 5.2 where
π : G→ G is the identity bundle and hence B(G) ≈ S(π)), it follows that g ∈ θ(b)
and hence b ∈ φ(g), showing that φ(g)< ⊆ φ(g). Finally, note that if b ∈ φ(g)∗ then
a <b c, for some a ∈ φ(g), which means that g ∈ θ(a) and hence g−1 ∈ θ(b), again by
Proposition 5.2. This shows that φ(g)∗ ⊆ φ(g−1) so, for any a, c ∈ φ(g) and b ∈ φ(g)∗,
we see that g = gg−1g ∈ θ(a)θ(b)θ(c) = θ(abc), that is, abc ∈ φ(g). Thus, we have
shown that φ(g) is a nonempty coset, proving the claim.

Now φ(g)∗ ⊆ φ(g−1) = φ(g−1)∗∗ ⊆ φ(g)∗, that is, φ(g)∗ = φ(g−1). Also

r(φ(g)) = φ(g) · φ(g)∗ = (φ(g)φ(g)∗)< = (φ(g)φ(g−1))< ⊆ φ(gg−1)< = φ(r(g)).

As φ(r(g)) contains a unit coset and hence an element of N, φ(r(g)) is also a unit coset.
Taking any a ∈ φ(g) and a′ ∈ φ(g−1), we see that r(g) = gg−1 ∈ θ(a)θ(a′) = θ(aa′).
Thus, aa′ ∈ φ(r(g)) and then (6-4) and (7-2) yield

φ(r(g)) = (φ(r(g))aa′)< ⊆ (φ(r(g))φ(g)φ(g−1))< ⊆ (φ(r(g)g)φ(g−1))< = r(φ(g)).

Likewise, s(φ(g)) = φ(s(g)). If we have another h ∈ G with s(g) = r(h) then

s(φ(g)) = φ(s(g)) = φ(r(h)) = r(φ(h)),

so φ(g) · φ(h) is defined and

φ(g) · φ(h) = (φ(g)φ(h))< ⊆ φ(gh)< = φ(gh).

Likewise, φ(gh) · φ(h−1) ⊆ φ(ghh−1) = φ(g) and hence

φ(gh) = φ(gh) · φ(h−1) · φ(h) ⊆ φ(g) · φ(h).

This shows that φ(gh) = φ(g) · φ(h) and hence φ is a functor.

https://doi.org/10.1017/S1446788722000064 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788722000064


32 T. Bice [32]

Now suppose that x ∈ G0, C ∈ C(S) and r(C) = φ(x). Taking any c ∈ C and c′ ∈ C∗,
we see that cc′ ∈ CC∗ ⊆ r(C) = φ(x), so x ∈ θ(cc′) = θ(c)θ(c′) and hence x = r(g), for
some g ∈ θ(c) ∩ θ(c′)−1. Then (6-4) and (7-2) again yield

C = r(C) · C = (r(C)c)< = (φ(x)c)< = (φ(x)φ(g))< = φ(g).

This shows that φ is star-surjective. To see that φ is also star-injective, just note that
r(g) = r(h) and φ(g) = φ(h), or even just φ(g) ∩ φ(h) � ∅, implies g = h, as a ∈ φ(g) ∩
φ(h) implies that g and h are in the same slice θ(a).

Now note that, for any a ∈ S, φ−1[Ca] = θ(a) ∈ B(G) because

φ(g) ∈ Ca ⇔ a ∈ φ(g) ⇔ g ∈ θ(a).

Thus, φ is an étale morphism from G to C(S) with θ = φ ◦ C.
Finally, for uniqueness, suppose that we had another map ψ : G→ C(S) such that

ψ ◦ C = θ, that is, ψ−1[Ca] = θ(a), for all a ∈ S. Then again we see that g ∈ θ(a) if and
only if ψ(g) ∈ Ca if and only if a ∈ ψ(g) and hence ψ(g) = {a ∈ S : g ∈ θ(a)} = φ(g),
for all g ∈ G. �

REMARK 8.12. If the subbasic slices of a groupoid are closed under pointwise
products then the same is true of arbitrary open slices; see the proof of [6, Proposition
3.18]. In particular, this applies to C(S) if C is a semigroup homomorphism, as shown
in the first part of the proof above. As C �→ C∗ is immediately seen to be continuous
on C(S), as mentioned at the start of the proof of Theorem 8.4, the open slices of
C(S) are also closed under pointwise inverses. It follows that C(S) is étale, again by [6,
Proposition 3.18], which provides an alternative proof of Theorem 8.4 in the symmetric
case.

While the coset representation C is universal, it can only be faithful when N consists
entirely of idempotents. If we want faithful representations of more general structured
semigroups, including those with few idempotents, then we need to consider finer
representations on groupoid bundles. In particular, to construct such a bundle over the
coset groupoid, we split up the cosets into equivalence classes with respect to certain
relations that we now proceed to examine.

9. Equivalence

DEFINITION 9.1. For any A ⊆ S, we define a relation ∼A on A< by

a ∼A b ⇔ there exists s, t ∈ A∗ (sat = sbt).

Here A will usually be an atlas, in which case A< is a coset.
We think of a ∼A b as saying that a and b have the same ‘germ’ at A.

EXAMPLE 9.2. Suppose that S = N = Z = C0(X) are continuous functions from X to
C vanishing at infinity, where X is a locally compact Hausdorff space. Then each x ∈ X
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defines a coset (in fact an ultrafilter)

Sx = {a ∈ S : a(x) � 0}

(note that this is consistent with (3-2) when we identify each a ∈ S with the restriction
to its support a|supp(a)). Moreover, for all a, b ∈ Sx,

a ∼Sx b ⇔ a(y) = b(y) for all y in some neighbourhood N of x.

Indeed, if a ∼Sx b, that is, sat = sbt, for some s, t ∈ S∗x = Sx, then a(x) = b(x), for all
x ∈ supp(s) ∩ supp(t). Conversely, if a(y) = b(y) for all y in a neighbourhood N of x
then, taking any s ∈ Sx with supp(s) ⊆ N, we see that sas = sbs so a ∼Sx b.

Another example to think of would be inverse semigroups, where a ∼A b is just
saying that a and b have a common lower bound in A. We prove something similar for
more general semigroups in (9-4) below by considering the subsets

AZ = {z ∈ Z : there exists a ∈ A (az = a)},
ZA = {z ∈ Z : there exists a ∈ A (za = a))}.

First, however, we need to examine their basic properties.

PROPOSITION 9.3. If A is an atlas then AZ is a subsemigroup of Z and

AZ = A<Z = Z(A∗) = (AZ)Z = s(A)Z ⊆ s(A), (9-1)
A � a′′ <a′ a ⇒ a′ZAa ⊆ AZ , (9-2)

a ∈ A ∩ S> ⇒ ZAa = aAZ . (9-3)

PROOF. If y, z ∈ AZ then we have a, b ∈ A with ay = a and bz = b. As A is an atlas, A ⊆
A<, so we have a′, a′′ ∈ S with A � a′′ <a′ a. Then ba′a ∈ AA∗A ⊆ A and, moreover,
ba′ayz = ba′az = bza′a = ba′a. Thus, yz ∈ AZ , which shows that AZ is a subsemigroup
of Z. A dual argument works for ZA.

(9-1) If z ∈ A∗Z then we have a, a′, a′′ ∈ S with A � a′′ <a′ a and a′z = a′ and hence
za′′ = za′′a′a = a′′a′za = a′′a′a = a′′, showing that z ∈ ZA. Conversely, if z ∈
ZA, then we have a ∈ A with za = a. As A ⊆ A<, we have a′, a′′ ∈ S with
A � a′′ <a′ a and hence a′aa′z = a′zaa′ = a′aa′ ∈ A∗AA∗ ⊆ A∗, showing that
z ∈ A∗Z . Thus, ZA = A∗Z and, likewise, Z(A∗) = AZ . Then (6-4) yields A<Z =

A∗∗Z = Z(A∗) = AZ .
Now if z ∈ AZ then we have a ∈ A with az = a. Taking a′, a′′ ∈ A with

A � a′′ <a′ a, we see that AZ � a′a = a′az, so z ∈ (AZ)Z , and a′a <z z, so
z ∈ (A∗A)< = s(A). This shows that AZ ⊆ s(A) and AZ ⊆ (AZ)Z ⊆ s(A)Z .
Conversely, if z ∈ s(A)Z then we have b ∈ s(A) with bz = b. Taking
a ∈ A, note that abz = ab ∈ As(A) ⊆ A< so z ∈ A<Z = AZ , showing that
s(A)Z ⊆ AZ .

(9-2) If A � a′′ <a′ a and zb = b ∈ A then we have b′, b′′ ∈ S with A � b′′ <b′ b and
hence bb′a′′ ∈ AA∗A ⊆ A and bb′a′′a′za = zbb′a′′a′a = bb′a′′, that is, bb′a′′

witnesses a′za ∈ AZ .
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(9-3) If A � a <a′ a′′ and z ∈ ZA then (9-2) yields a′za′′ ∈ AZ and hence za =
zaa′a′′ = aa′za′′ ∈ aAZ . �

Dually to (9-2), A � a′′ <a′ a also implies aAZa′ ⊆ ZA.

PROPOSITION 9.4. If A ⊆ S is an atlas and a, b ∈ A< then

a ∼A b ⇔ ZAaAZ ∩ ZAbAZ � ∅ (9-4)

⇔ there exists s ∈ A∗ (sa = sb ∈ AZ and as = bs ∈ ZA). (9-5)

PROOF. Take a, b ∈ A<. If s ∈ A∗ and sa = sb or as = bs then sas = sbs so a ∼A b. This
proves the last⇐.

If a ∼A b then we have s, t ∈ A∗ with sat = sbt. Taking any s′, s′′, t′, t′′ ∈ S with A∗ �
s′′ <s′ s and A∗ � t′′ <t′ t, we see that ZAaAZ � s′satt′ = s′sbtt′ ∈ ZAbAZ . This proves
the first⇒.

Conversely, assume that ZAaAZ ∩ ZAbAZ � ∅. First, we claim that aAZ ∩ bAZ � ∅.
To see this, take w, x ∈ ZA and y, z ∈ AZ with way = xbz. As a ∈ A<, we have
a′, a′′ ∈ S with A � a′′ <a′ a. Note that waya′a = waa′ay = aa′way ∈ aa′ZAaAZ ⊆ aAZ

by Proposition 9.3. Likewise, as b ∈ A<, we have b′, b′′ ∈ S with A � b′′ <b′ b and then
xbzb′b ∈ bAZ . As way = xbz,

aAZ ⊇ aAZb′b � waya′ab′b = xbzb′ba′a ∈ bAZa′a ⊆ bAZ .

This proves the claim.
Next, we claim that we have t ∈ A∗ with at = bt ∈ ZA and ta ∈ AZ . To see this, take

p, q ∈ AZ with ap = bq. As p ∈ AZ , we have c ∈ A ⊆ A< with cp = c and c′, c′′ ∈ S
with A � c′′ <c′ c. Likewise, we have d, d′, d′′ ∈ S with A � d′′ <d′ d and dq = d. Let
z = c′cd′d = d′dc′c ∈ AZ ∩ A∗A by Proposition 9.3. Now just note that az = ac′cd′d =
ac′cpd′d = apc′cd′d = apz and, likewise,

bz = bd′dc′c = bd′dqc′c = bqd′dc′c = bqz = apz = az.

Taking the a′ above, note that t = za′ ∈ A∗AA∗ ⊆ A∗, ta = za′a ∈ AZAZ ⊆ AZ and
bza′ = aza′ ∈ aAZa′ ⊆ ZA by Proposition 9.3, proving the claim.

Likewise, we have u ∈ A∗ with ua = ub ∈ AZ and au ∈ ZA. Again Proposition 9.3
yields taub = taua ∈ AZAZ ⊆ AZ and btau = atau ∈ AZAZ ⊆ AZ , that is,

sa = sb ∈ AZ and as = bs ∈ ZA,

for s = tau. This completes the cycle of equivalences. �

One could also write down other characterisations of ∼A that lie somewhere in
between (9-4) and (9-5). One could also replace A∗ with some coinitial subset A′. That
is to say, if A is an atlas and A′ ⊆ A∗ = (A′)< then, for example,

a ∼A b ⇔ there exists s ∈ A′ (as = bs). (9-6)
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Indeed, if we have s ∈ A′ ⊆ A∗ with as = bs then aAZ ∩ bAZ � ∅ and so certainly
ZAaAZ ∩ ZAbAZ � ∅ and hence a ∼A b, by (9-4). Conversely, if a ∼A b then we have
s ∈ A∗ with as = bs by (9-5). If A∗ = (A′)< too then we have a′, t ∈ S with A′ � a′ <t s
and hence aa′ = asta′ = bsta′ = ba′, proving (9-6).

We can now finally show that ∼A is an equivalence relation.

COROLLARY 9.5. If A ⊆ S is an atlas then ∼A is an equivalence relation.

PROOF. We immediately see that ∼A is a reflexive and symmetric relation on A<.
On the other hand, if a ∼A b ∼A c then we have s, t ∈ A∗ with sa = sb and bt = ct by
(9-5). Thus, sat = sbt = sct, showing that a ∼A c. So ∼A is also transitive and hence an
equivalence relation on A<. �

Also, multiples of ZA and AZ do not change the equivalence class.

COROLLARY 9.6. For any atlas A ⊆ S, y ∈ ZA, z ∈ AZ and a ∈ A<,

ya ∼A a ∼A az. (9-7)

PROOF. As y2 ∈ ZA, z2 ∈ AZ and y(ya)z2 = y2az2 = y2(az)z, (9-4) yields (9-7). �

Moreover, these equivalence relations even respect products.

COROLLARY 9.7. If A, B ⊆ S are atlases with s(A) = r(B) then

a ∼A c and b ∼B d ⇒ ab ∼AB cd. (9-8)

PROOF. If a ∼A c and b ∼B d then (9-5) yields s ∈ A∗ and t ∈ B∗ with sa = sc and
bt = dt. Then tsabts = tscdts so ab ∼AB cd, because ts ∈ B∗A∗ ⊆ (AB)∗ (as s(A) = r(B),
AB is an atlas; see Proposition 7.6). �

10. Bundles

In the present section we show that the equivalence classes of the previous section
form an étale bundle over the coset groupoid. Firstly, if A ⊆ S is an atlas and a ∈ A<,
we define [a, A] to be the pair consisting of the ∼A-equivalence class of a together with
the coset A< generated by A, that is,

[a, A] = (a∼A , A<).

We denote the set of all such pairs by

C̃(S) = {[c, C] : c ∈ C ∈ C(S)}.

PROPOSITION 10.1. C̃(S) is a groupoid under the product

[a, A][b, B] = [ab, AB] when s(A) = r(B),

where [c, C]−1 = [c′, C∗], for any c′ with C � d <c′ c.
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PROOF. By (9-8), the product is well defined. Also, as S is a semigroup and C(S) is a
groupoid, C̃(S) can be viewed as a semicategory with unit cosets as objects. To show
that C̃(S) is a category we must find a unit [z, U] ∈ C̃(S) for every unit U ∈ C(S).

We claim that [z, U] ∈ C̃(S) is a unit, for any z ∈ UZ = U∗Z = ZU, by (9-1). Indeed,
if C ∈ C(S) and s(C) = U then CZ = UZ by (9-1). For any c ∈ C, this means that
cz ∼C c so [c, C][z, U] = [cz, CU] = [c, C]. Likewise, if r(C) = U then ZC = ZU so
[z, U][c, C] = [zc, UC] = [c, C], proving the claim. Thus, C̃(S) is a category.

Next note that, for any c ∈ C, we have c′, d ∈ S with C � d <c′ c and then
[c′, C∗][c, C] = [c′c, s(C)] and [c, C][c′, C∗] = [cc′, r(C)]. As c′c ∈ CZ = s(C)Z and
cc′ ∈ ZC = Zr(C), these are both units in C̃(S) by what we just proved and hence

[c′, C∗] = [c, C]−1. (10-1)

This shows that every [s, C] ∈ C̃(S) is invertible so C̃(S) is a groupoid. �

Let ρC : C̃(S)→ C(S) denote the canonical projection onto C(S), that is,

ρC([a, A]) = A<.

The canonical topology on C̃(S) is generated by the sets

C̃s = {[s, C] : s ∈ C ∈ C(S)},
C̃s = {[c, C] : c, s ∈ C ∈ C(S)} = ρ−1

C [Cs].

THEOREM 10.2. ρC : C̃(S)→ C(S) is an étale bundle.

PROOF. To see that the inverse map on C̃(S) is continuous, suppose that [a, A]−1 ∈
C̃b′ . This means that [a, A]−1 = [b′, A∗] so, in particular, b′ ∈ A∗. Taking b, c ∈ S with
A � c <b′ b, (10-1) yields [a, A] = [b′, A∗]−1 = [b, A], so [a, A] ∈ C̃b ∩ C̃c. Moreover,
for any other [b, B] ∈ C̃b ∩ C̃c, we see that B � c <b′ b and hence [b, B]−1 = [b′, B∗] ∈
C̃b′ , by (10-1). Likewise, as in the proof of Theorem 8.4, if [a, A]−1 ∈ C̃b′ then again
b′ ∈ A∗ so, taking b, c ∈ S with A � c <b′ b, we see that [a, A] ∈ C̃c and (C̃c)−1 ⊆ C̃b′ .
Thus, the inverse map is continuous.

For the product, suppose that [a, A][b, B] ∈ C̃s. As [a, A][b, B] = [ab, AB], this
means that ab ∼AB s, so (9-6) yields a′ ∈ A∗ and b′ ∈ B∗ with abb′a′ = sb′a′. Taking
a′′, b′′, c, d ∈ S with A � c <a′ a′′ and B � d <b′ b′′, we see that [a, A] ∈ C̃a ∩ C̃c and
[b, B] ∈ C̃b ∩ C̃d. Also, for any other [a, C] ∈ C̃a ∩ C̃c and [b, D] ∈ C̃b ∩ C̃d such that
[a, C][b, D] is defined, (9-6) again yields ab ∼CD s, as c ∈ C and d ∈ D, so a′ ∈ C∗ and
b′ ∈ D∗, and hence [a, C][b, D] = [ab, CD] ∈ C̃s. Similarly, if [a, A][b, B] ∈ C̃s, then
we have c ∈ A and d ∈ B with cd < s. Then [a, A] ∈ C̃c and [b, B] ∈ C̃d. Moreover, for
any other [e, C] ∈ C̃c and [ f , D] ∈ C̃d such that [e, C][ f , D] is defined, [e, C][ f , D] =
[e f , CD] ∈ C̃cd ⊆ C̃s. This shows that the product is continuous.

So C̃(S) is a topological groupoid, and we already know that C(S) is an étale
groupoid, by Theorem 8.4. It only remains to prove that ρC is a locally injective
continuous open isocofibration. Local injectivity is immediate from the fact that ρC
is injective on C̃s, for all s ∈ S. Continuity is immediate from the fact that C̃s = ρ

−1
C [Cs]
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is open, for all s ∈ S. The definition of the product on C(S) also immediately shows
that ρC is an isocofibration.

To see that ρC is also open, suppose that F and G and finite subsets of S and

[a, A] ∈ C̃F
G =
⋂
f∈F
C̃ f ∩

⋂
g∈G
C̃g.

For all f ∈ F, this means that a ∼A f , so we have a′f ∈ A∗ with aa′f = f a′f . Then we
can take a f , b f ∈ S with A � b f <a′f a f . Note that

H = {a} ∪ {b f : f ∈ F} ∪ F ∪ G ⊆ A

and hence ρC([a, A]) = A ∈ CH . Moreover, for all B ∈ CH and f ∈ F, note that b f ∈ B,
so a′f ∈ B∗ and hence a ∼B f . Thus, [a, B] ∈ C̃F

G, so B = ρC([a, B]) ∈ ρC[C̃F
G], showing

that CH ⊆ ρC[C̃F
G]. This shows that ρC is also an open map. �

We refer to ρC : C̃(S)→ C(S) as the coset bundle.

11. Representations

Recall the notion of an étale representation from Definition 8.9.

DEFINITION 11.1. A bundle representation of the structured semigroup (S, N, Z) on
a groupoid bundle π : F → G is a semigroup homomorphism θ : S→ S(π) such that
a �→ dom(θ(a)) is an étale representation.

If θ : S→ S(π) is a semigroup homomorphism then so is a �→ dom(θ(a)). To verify
that it is an étale representation, it thus suffices to check that these domains cover G,
(Locally Round) holds and N gets mapped to O(G0), that is, θ[N] ⊆ N(π). Note that
(Locally Round) here ensures that θ[S] is a local-inverse semigroup, as per Definition
3.8; see Proposition 5.2.

Again, we call a bundle representation μ : S→ S(π) universal if, for every bundle
representation θ : S→ S(π′), there exists a unique Pierce morphism (φ, τ) from π to π′

such that θ = (τ/φ) ◦ μ for τ/φ : S(π)→ S(π′) defined as in Theorem 4.10.

THEOREM 11.2. If Z is symmetric then a �→ ã is a universal bundle representation
where ã ∈ S(ρC) is such that, for all C ∈ dom(̃a) = Ca,

ã(C) = [a, C].

PROOF. For any a ∈ S, dom(̃a) = Ca is a slice by Proposition 8.3. To see that ã is
continuous, first note that ã−1[C̃s] = Ca ∩ Cs. On the other hand, if ã(C) = [a, C] ∈ C̃s

then az = sz, for some z ∈ CZ . Take any b ∈ C with bz = b. If B ∈ Ca ∩ Cb then z ∈ BZ

and hence ã(B) = [a, B] = [s, B] ∈ C̃s. Thus, C ∈ Ca ∩ Cb ⊆ ã−1[C̃s]. We have shown
that preimages of subbasic sets are open and hence ã is continuous.

If Z is symmetric then a �→ dom(̃a) = Ca is an étale representation, thanks to
Theorem 8.11. In particular, for any a, b ∈ S, dom( ãb ) = dom(̃a) · dom(̃b) and, for any
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A ∈ dom( ã) and B ∈ dom(̃b) with s(A) = r(B),

ãb (A · B) = [ab, AB] = [a, A][b, B] = ã(A)̃b(B).

This shows that ãb = ã̃b, which in turn shows that a �→ ã is a semigroup homomorph-
ism and hence a bundle representation.

To see that a �→ ã is universal, take a bundle representation θ : S→ S(π). By
Theorem 8.11, we have a unique étale morphism φ : G→ C(S) such that dom(θ(a)) =
φ−1[Ca], for all a ∈ S. Indeed, the proof shows, for all g ∈ G, that

φ(g) = {a ∈ S : g ∈ dom(θ(a))}.

We claim we have a continuous functor τ : φρCC̃(S)→ F given by

τ([a, φ(g)], g) = θ(a)(g).

To see that τ is well defined, take a, b ∈ φ(g) with a ∼φ(g) b. Then as = bs, for some
s ∈ φ(g)∗ = φ(g−1), and hence

θ(a)(g)θ(s)(g−1) = (θ(a)θ(s))(r(g)) = θ(as)(r(g)) = θ(bs)(r(g)) = θ(b)(g)θ(s)(g−1).

Multiplying by θ(s)(g−1)−1 yields θ(a)(g) = θ(b)(g), as required. To see that τ is a
functor, note that ([a, φ(g)], g), ([b, φ(h)], h) ∈ φρCC̃(S) and s(g) = r(h) implies

τ(([a, φ(g)], g)([b, φ(h)], h)) = τ([ab, φ(gh)], gh) = θ(ab)(gh) = θ(a)(g)θ(b)(h)

= τ([a, φ(g)], g)τ([b, φ(h)], h).

For continuity, note that if τ([a, φ(g)], g) = θ(a)(g) ∈ O, for some open O ⊆ F, then
the continuity of θ(a) yields open O′ ⊆ G with g ∈ O′ and θ(a)[O′] ⊆ O. Then
([a, φ(g)], g) ∈ C̃a × O′ and, for any other ([a, φ(h)], h) ∈ (C̃a × O′), we see that

τ([a, φ(h)], h) = θ(a)(h) ∈ θ(a)[O′] ⊆ O.

This shows that τ is continuous, completing the proof of the claim. Furthermore, noting
that π(τ([a, φ(g)], g)) = π(θ(a)(g)) = g = ρCφ([a, φ(g)], g), that is, π ◦ τ = ρCφ, we see
that (φ, τ) is a Pierce morphism from ρC to π.

For all g ∈ G and a ∈ φ(g), we see that

θ(a)(g) = τ([a, φ(g)], g) = τ(̃a(φ(g)), g) = τ((̃a ◦ φ)(g), g) =
τ

φ
(̃a)(g),

where τ/φ : S(ρC)→ S(π) is the homomorphism from Theorem 4.10. Also

dom
(
τ

φ
(̃a)
)
= φ−1[dom(̃a)] = φ−1[Ca] = dom(θ(a))

and hence θ(a) = (τ/φ)(̃a), for all a ∈ S, that is, θ = (τ/φ) ◦ C̃, where C̃(a) = ã.
To see that (φ, τ) is unique, take another Pierce morphism (φ′, τ′) such that

θ = (τ′/φ′) ◦ C̃. It follows that a �→ dom(θ(a)) = dom((τ′/φ′)(̃a)) = φ′−1[Ca] is an étale
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morphism and hence φ′ = φ, by the uniqueness part of Theorem 8.11. Now, for any
([a, φ(g)], g) ∈ φρCC̃(S), just note that

τ′([a, φ(g)], g) =
τ′

φ′
(̃a)(g) = θ(a)(g) = τ([a, φ(g)], g).

Thus, τ′ = τ, proving uniqueness and hence universality. �

It follows that cosets and their equivalence classes determine when structured
semigroups have faithful bundle representations, at least under symmetry.

COROLLARY 11.3. If Z is symmetric then the following assertions are equivalent.

(1) (S, N, Z) has a faithful bundle representation.
(2) The coset bundle representation of (S, N, Z) is faithful.
(3) For all distinct a, b ∈ S, we have C ∈ C(S) with {a, b} ∩ C � ∅ and

a �C b.

PROOF. Certainly (2) implies (1). Conversely, if θ is a faithful bundle representation
then Theorem 11.2 yields a Pierce morphism (φ, τ) such that θ = (τ/φ) ◦ C̃, where
C̃ is the coset bundle representation. As θ is injective, so is C̃, showing that (1)
implies (2).

More explicitly, (2) is saying that, for any distinct a, b ∈ S, we have C ∈ C(S) such
that either only one of ã and b̃ is defined at C, so certainly a �C b, or they are both
defined at C but have different values at C, that is,

[a, C] = ã(C) � b̃(C) = [b, C],

which again means a �C b. We immediately see this is equivalent to (3). �

Unlike the situation with inverse semigroups in Proposition 2.4, it is indeed possible
for a (symmetric) structured semigroup to have no faithful representations.

EXAMPLE 11.4. Take S = N = Z = {0, a} where a2 = a0 = 0a = 00 = 0. This is cer-
tainly a structured semigroup with symmetric Z. For any representation a �→ â on a
groupoid bundle π : F → G, we would have dom(̂a) = dom(̂0) ⊆ G0, as a2 = 0 ∈ N,
and ran(̂0) ⊆ F0, as 00 = 0, and hence 0̂ = â0 = â̂0 = â, showing that the representa-
tion cannot be faithful.

REMARK 11.5. On the one hand, this might motivate one to look for even more
general kinds of representations than those arising from slice-sections of groupoid
bundles. On the other hand, one might look for some natural restrictions or additional
structures to place on structured semigroups to ensure that they do have faithful bundle
representations. In our subsequent work (see [2, 3]) we actually do a bit of both,
considering semigroups that sit nicely within larger rings and their representations
as sections of more general category bundles.
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12. Filters

As usual, we call D ⊆ S directed if

a, b ∈ D ⇒ there exists d ∈ D (d < a, b). (Directed)

A filter is a directed up-set D = D<. So the nonempty directed cosets

D(S) = {D ∈ C(S) : D is directed}

are all filters. Directed cosets offer a number of advantages over arbitrary cosets.
For example, one immediately notes that the canonical subbasis of C(S) becomes a
basis when restricted toD(S), namely (Da)a∈S, whereDa = Ca ∩D(S). Our goal here
is to show that the directed coset subbundle is still a groupoid bundle and that the
corresponding subrepresentation of S is ‘Zakrzewski universal’.

REMARK 12.1. There will be plenty of directed cosets arising from principal filters in
our primary motivating examples, as already noted in Remark 7.2. But in general, a
structured semigroup S may have few directed cosets; again we see in Corollary 12.19
below that we have faithful bundle representations precisely when there are enough
directed cosets to distinguish the elements of S via their corresponding equivalence
relations, at least when Z is symmetric.

First we look at products. Recall the notation c | D from Definition 7.5.

PROPOSITION 12.2. For any c ∈ S and D ⊆ S,

c | D and D is directed ⇒ cD is directed. (12-1)

PROOF. If c′cd = d ∈ D and D is directed then, for any a, b ∈ D, we have e ∈ D with
e < a, b, d. In particular, we have d′ ∈ S with e <d′ d and hence e = dd′e = c′cdd′e =
c′ce. Then (Z-Splitting) (applied to Sop) yields ce < ca, cb, showing that cD is
directed. �

Likewise, duals respect directedness.

PROPOSITION 12.3. If D ⊆ S is directed then so is D∗ and

D∗DD∗ ⊆ D∗<. (12-2)

PROOF. Take b′, d′ ∈ D∗, so we have a, b, c, d ∈ S with D � a <b′ b and D � c <d′

d. As D is directed, we have e, f ∈ D with e < f ′ f < a, c so (Transitivity) yields
e, f <b′ b and e, f <d′ d. Then (Switch) yields b′ f d′ <b b′ and b′ f d′ <d d′. Also
e <b′ f d′ d f ′b, as eb′ f d′ ∈ NN ⊆ N and eb′ f d′d f ′b = eb′ f f ′b = f f ′eb′b = e. Thus,
b′ f d′ ∈ D∗, showing that D∗ is indeed directed.

Now suppose that e ∈ D and b′, d′ ∈ D∗, so we again have a, b, c, d ∈ S with D �
a <b′ b and D � c <d′ d. As D is directed, we have f , g ∈ D with g < f ′ f < a, c, e.
We immediately verify that g <b′ f d′ d f ′b (for example, gb′ f d′d f ′b = gd′db′ f f ′b =
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f f ′gb′b = g) so b′ f d′ ∈ D∗. Taking e′ ∈ S with f <e′ e, we also immediately ver-
ify that b′ f d′ <de′b b′ed′ (for example, b′ f d′de′bb′ed′ = b′ f e′bb′ed′ = b′bb′ f e′ed′ =
b′ f d′) and hence b′ed′ ∈ D∗<, showing that D∗DD∗ ⊆ D∗<. �

When N is diagonal, directed cosets are precisely filters and, moreover, for any
(d∼D , D) ∈ D̃(S), the second coordinate is just the up-closure of the first (where D̃(S) =
ρ−1
C [D(S)] = {(d∼D , D) ∈ C̃(S) : D ∈ D(S)}).

PROPOSITION 12.4. Any directed D = D∗∗ ⊆ S is a filter and a coset. Conversely, if N
is diagonal then every filter is a coset and

d ∈ D ∈ D(S) ⇒ D = (d∼D )<.

PROOF. As D is directed and hence round, D< ⊆ D<< ⊆ D∗∗ = D, that is, D is also an
up-set and hence a filter. Also (Antimorphism), (6-1) and (12-2) yield

DD∗D = D∗∗D∗D∗∗ ⊆ (D∗DD∗)∗ ⊆ D∗<∗ ⊆ D∗∗< = D< = D,

so D is also a coset.
When N is diagonal, any filter D ⊆ S satisfies D = D<< = D∗∗ by (6-5), and is thus a

coset by the above argument. Moreover, for any c, d ∈ D, we have a, b′, b ∈ S with D �
a <b′ b < c, d. Taking c′, d′ ∈ D with b <c′ c and b <d′ d, we see that cc′bb′d = bb′d
and c′bb′d = c′dd′bb′d ∈ N by diagonality, because c′dd′b, d′b, d′bb′d ∈ N. Thus,
d ∼D bb′d <c′ c, by (9-7), that is, c ∈ (d∼D )<, showing that D ⊆ (d∼D )< ⊆ D< ⊆ D. �

DEFINITION 12.5. In a groupoid G, we call I ⊆ G an ideal if

g ∈ I or h ∈ I ⇒ gh ∈ I, (Ideal)

for all (g, h) ∈ G2.

In particular, if I ⊆ G is an ideal then g ∈ I implies gg−1 ∈ I and hence
g−1 = g−1gg−1 ∈ I, that is, I = I−1 = II. It follows that ideals are precisely the
replete/isomorphism-closed full subgroupoids. Moreover, if G has an étale topology,
the subspace topology on any ideal is again étale; see [1]. In particular, D(S) is an
étale subgroupoid of C(S), by the following result.

PROPOSITION 12.6. D(S) is an ideal of C(S) (and hence an étale groupoid).

PROOF. If C ∈ C(S), D ∈ D(S) and (C, D) ∈ C2 then cD is directed, by (12-1), and
hence so is (CD)∗ = (cD)∗ and (CD)∗∗, by Proposition 12.2 and (7-2). Likewise,
(D, C) ∈ C2 implies that (DC)∗∗ is directed and henceD(S) is an ideal. �

Next, we note that units inD(S) are just units in C(S) generated by N.

PROPOSITION 12.7. Let U ∈ C(S) be a unit coset.

(1) (U ∩ N)< is a directed unit coset.
(2) (U ∩ N)< = U when U is directed.
(3) (U ∩ N)< = UZ< when N is diagonal.
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PROOF. (1) First we claim that U ∩ N is directed. Indeed, if m, n ∈ U ∩ N then we
have U � t <m′ m and U � u <n′ n. Noting that t = (tm′)m ∈ NN ⊆ N and u = (un′)n ∈
NN ⊆ N, it follows that tu ∈ NN ⊆ N. As U is a unit coset, tu ∈ UU = UU∗ ⊆ U. Thus,
U ∩ N � tu < m, n, by (N-Invariance). This proves the claim, and hence (U ∩ N)< and
(U ∩ N)<∗∗ are also directed, by Proposition 12.2.

Moreover, by Proposition 8.2,

∅ � U ∩ N ⊆ (U ∩ N)< ⊆ (U ∩ N)<<< ⊆ (U ∩ N)<∗∗.

Also, for any u ∈ (U ∩ N)<∗∗ ⊆ U<∗∗ = U and n ∈ U ∩ N ⊆ (U ∩ N)<∗∗, directedness
yields t ∈ (U ∩ N)<∗∗ ⊆ U with t < u, n. Then t ∈ N too, as n ∈ N, that is, t ∈ U ∩ N
and hence u ∈ (U ∩ N)<. This proves that (U ∩ N)< = (U ∩ N)<∗∗ and hence (U ∩ N)<

is a unit coset, by Propositions 8.2 and 12.3.
(2) In particular, if U = (U ∩ N)< then U is directed. Conversely, if U is directed

then, as above, for any u ∈ U and n ∈ U ∩ N, we have t ∈ U with t < u, n and hence
t ∈ N, as n ∈ N. Thus, u ∈ (U ∩ N)<, showing that U ⊆ (U ∩ N)<⊆U< = U.

(3) By (9-1), UZ ⊆ s(U) ∩ Z ⊆ U ∩ N and hence UZ< ⊆ (U ∩ N)<. For the reverse
inclusion, assume that N is diagonal and take u ∈ (U ∩ N)< so we have t, u′ ∈
S with U ∩ N � t <u′ u. Then we can further take s, t′ ∈ S with U � s <t′ t. As
t′t, t, tu′ ∈ N and N is diagonal, t′tu′ ∈ N and hence UZ � t′t <u′ u, showing that
(U ∩ N)< ⊆ UZ<. �

While D(S) might have a nice basis, it need not be Hausdorff or even T1 (when
C � D, for C, D ∈ D(S), any neighbourhood of C is a neighbourhood of D). For better
separation properties, we can consider ultrafilters

U(S) = {U ⊆ S : U is a maximal proper filter},

at least when Z has a zero, that is, 0s = s0 = 0 ∈ Z, for all s ∈ S.

THEOREM 12.8. If Z has a zero thenU(S) is a locally Hausdorff ideal.

PROOF. First, note that 0 <0 s, for all s ∈ S, as 0 ∈ Z ⊆ N. So a filter F ⊆ S is proper
precisely when 0 � F.

Next, we show that every U ∈ U(S) is a coset. By (6-2), U = U<< ⊆ U∗∗. As 0 � U,
it follows that 0 � U∗, 0 � U∗∗ and hence 0 � U∗∗<. By Proposition 12.2, U∗ and U∗∗

are directed and hence U∗∗< is a proper filter containing U∗∗ and hence U. As U is an
ultrafilter, U = U∗∗ = U∗∗< and hence U is a coset, by Proposition 12.3.

Now suppose that C is another coset with (C, U) ∈ C2 and take any c, d ∈ C and
c′ ∈ C∗ with cc′d = d. We already saw above that (CU)∗∗ = (cU)∗∗ is a filter. Extending
to an ultrafilter V ⊇ (cU)∗∗, we see that (c′V)∗∗ is another filter containing U, so
U = (c′V)∗∗ by maximality. Then (cU)∗∗ = (cc′V)∗∗ = V , that is, (CU)∗∗ = (cU)∗∗ was
already maximal. Likewise, (U, C) ∈ C2 implies that (UC)∗∗ is an ultrafilter, showing
that the ultrafilters form an ideal in C(S).

It follows that U(S) is an étale subgroupoid of C(S) by [1, Proposition 2.7]. In
particular, U(S) is locally homeomorphic to its unit space, so to prove that U(S) is
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locally Hausdorff it suffices to show that its unit space is Hausdorff. To see this,
take any distinct unit ultrafilters U, V ∈ U(S). By (Multiplicativity), (UV)< is again
a filter. By Proposition 8.2, we have m ∈ U ∩ N and n ∈ V ∩ N. By (N-Invariance),
U ⊆ (Un)< ⊆ (UV)< and V ⊆ (mV)< ⊆ (UV)<. As U and V are distinct and maximal,
we must have (UV)< = S. In particular, we must have u ∈ U and v ∈ V with uv < 0
and hence uv = 0. Thus, Uu ∩Uv = Cu ∩ Cv ∩U(S) = ∅. Indeed, if we had W ∈
Uu ∩Uv then 0 = uv ∈ WW = WW∗ ⊆ r(W) = W, as W has to be a unit coset, again
by Proposition 8.2. But this would mean W = 0< = S and, in particular, W � U(S).
This shows that the unit space ofU(S) is Hausdorff and hence the entirety ofU(S) is
locally Hausdorff. �

REMARK 12.9. We have more to say about U(S) in future work. For the moment we
simply remark that ultrafilters are more natural to consider than arbitrary filters when
dealing with groupoid C*-algebras and more general ‘bumpy semigroups’; see [1, 4].

12.1. Zakrzewski universality. By Proposition 12.6, the identity embedding of
D(S) in C(S) is an étale functor. For Zakrzewski universality, we need a Zakrzewski
morphism in the opposite direction.

DEFINITION 12.10. For any C ∈ C(S), we define

D � C ⇔ D is a maximal directed subset of C.

So dom(�) ⊆ C(S) and ran(�) ⊆ P(S). In fact, ran(�) ⊆ D(S).

PROPOSITION 12.11. If D � C then D is a coset and hence D ∈ D(S). If D(S) � D ⊆
C ∈ C(S) then

r(C) ∩ N = r(D) ∩ N ⇔ D � C ⇔ s(C) ∩ N = s(D) ∩ N. (12-3)

Moreover, if d ∈ C ∈ C(S) then we have a unique D ∈ D(S) with d ∈ D � C.

PROOF. If D � C then C ∈ C(S) and, in particular, C = C∗∗. As D is directed, so too
are D∗ and D∗∗, by Proposition 12.2. Then (6-2) yields

D ⊆ D< ⊆ D<< ⊆ D∗∗ ⊆ C∗∗ ⊆ C

so D = D∗∗, by maximality. Thus, D is a coset by Proposition 12.3.
Assume that d ∈ C ∈ C(S). Taking c, d′ ∈ C with c <d′ d, we see that c = cd′d and

cd′ ∈ r(C) ∩ N ⊆ (r(C) ∩ N)< (as r(C) ∩ N is directed; see the proof of Proposition
12.7). Thus, (r(C) ∩ N)<|d so, by Proposition 7.7, we have a coset

D = ((r(C) ∩ N)<d)< ⊆ (r(C)C)< = C

with r(D) = r((r(C) ∩ N)<) = (r(C) ∩ N)<, by Proposition 12.7. Moreover,

r(C) ∩ N = r(D) ∩ N

because r(C) ∩ N ⊆ (r(C) ∩ N)< ∩ N ⊆ r(C) ∩ N. Also (r(C) ∩ N)<d � cd′d <d′ d and
hence d ∈ D ∈ D(S), by Proposition 12.7 and (12-1).
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We claim that D is actually the largest element ofD(S) with d ∈ D ⊆ C. To see this,
take any other A ∈ D(S) with d ∈ A ⊆ C. Then r(A) is directed, by Proposition 12.6,
and hence r(A) = (r(A) ∩ N)< ⊆ (r(C) ∩ N)< = r(D), by Proposition 12.7. Then (7-2)
yields

A = (r(A)A)< = (r(A)d)< ⊆ (r(D)d)< = (r(D)D)< = D,

proving the claim. Moreover, note that if we had r(A) ∩ N = r(C) ∩ N then we would
have r(A) = (r(A) ∩ N)< = (r(C) ∩ N)< = r(D) which would yield A = D above. It
follows that D is the unique element of D(S) with d ∈ D � C and also the unique
element ofD(S) with d ∈ D ⊆ C and r(C) ∩ N = r(D) ∩ N, which yields the first⇔ in
(12-3). The second follows by a dual argument. �

Note that the second statement above is saying that any coset C can be partitioned
uniquely into maximal directed sub(co)sets. In fact, uniqueness holds even among
more general families of directed cosets covering C.

PROPOSITION 12.12. For any C ∈ C(S),

C� = {D ∈ D(S) : D � C}

is the unique subfamily ofD(S) with union C and a common source.

PROOF. Take a family D ⊆ D(S) with C =
⋃

D . We claim that

s(C) ∩ N =
⋃
D∈D

s(D) ∩ N. (12-4)

To see this, take any n ∈ s(C) ∩ N. By Proposition 12.11, we have B � C with
s(B) ∩ N = s(C) ∩ N so n ∈ s(B) = (B∗B)<, that is, we have b ∈ B and b′ ∈ B∗ such that
b′b < n. Taking e, f ∈ B with e <b′ f , directedness yields a ∈ B with a < b, e and
hence a <b′ f . As C =

⋃
D , we have D ∈ D containing a, so b ∈ D and b′ ∈ D∗, which

means that n ∈ (D∗D)< ∩ N = s(D) ∩ N, proving the claim.
If the directed cosets in D also have a common source then the only way (12-4)

could hold is if s(C) ∩ N = s(D) ∩ N, for all D ∈ D . Then Proposition 12.11 again
yields D = C�, as required. �

If N is diagonal, we can also determine when D � C from CZ and DZ .

PROPOSITION 12.13. For any C ∈ C(S) and D ∈ D(S),

D � C ⇒ CZ = DZ . (12-5)

The converse also holds when D ⊆ C and N is diagonal.

PROOF. Note that CZ = (s(C) ∩ N)Z because, by (9-1),

CZ = (CZ)Z ⊆ (s(C) ∩ N)Z ⊆ s(C)Z = CZ .

Thus, by (12-3), D � C implies s(C) ∩ N = s(D) ∩ N and hence CZ = DZ .
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Conversely, if N is diagonal, D ⊆ C and CZ = DZ then Proposition 12.7 yields

s(C) ∩ N ⊆ (s(C) ∩ N)< = CZ< = DZ< = (s(D) ∩ N)< = s(D).

Thus, s(C) ∩ N = s(D) ∩ N and hence D � C, by (12-3). �

Next, we show that � is a Zakrzewski morphism such that the coset representation
C factors through the directed coset representationD via preimages of �.

THEOREM 12.14. � is a Zakrzewski morphism from C(S) toD(S) with

C = � ◦ D. (12-6)

PROOF. If D � C then D∗ � C∗. If D′ � C′ too and s(C) = r(C′) then Proposition 12.7
and (12-3) yield s(D) = (s(C) ∩ N)< = (r(C′) ∩ N)< = r(D′) and

r(C · C′) ∩ N = r(C) ∩ N = r(D) ∩ N = r(D · D′) ∩ N,

so D · D′ � C · C′. This shows that � is functorial.
Now suppose that r(D) � U, for some unit coset U. For any d ∈ D, we see that

r(D)|d so U|d and D = (r(D)d)< ⊆ (Ud)<, as r(D) ⊆ U. By Proposition 7.7, (Ud)< is a
coset with r(Ud) = U. Thus, r(D) ∩ N = U ∩ N = r(Ud) ∩ N and hence D � (Ud)<, by
(12-3), showing that � is star-surjective. On the other hand, if we had another C ∈ C(S)
with D � C and r(C) = U then C = (r(C)d)< = (Ud)<, as d ∈ D ⊆ C, showing that � is
also star-injective.

Lastly, note that if Da � D � C then certainly C ∈ Ca, while conversely if C ∈ Ca

then Proposition 12.11 yields D ∈ Da with D � C. This shows that �−1 [Da] = Ca, so
� is also continuous and hence a Zakrzewski morphism satisfying (12-6). �

We call an étale representation μ : S→ B(G) Zakrzewski universal if, for every étale
representation θ : S→ B(H), there exists a unique Zakrzewski morphism φ ⊆ G × H
such that θ = φ ◦ μ, where φ : B(G)→ B(H) is the preimage map.

THEOREM 12.15. If Z is symmetric then the directed coset representation D is a
Zakrzewski universal étale representation.

PROOF. As C is an étale representation by Theorem 8.11, andD(S) is an ideal of C(S)
by Proposition 12.6, it follows thatD is also an étale representation.

To see that D is Zakrzewski universal, let us take another étale representation θ :
S→ B(G). Let φ be the étale morphism in the proof of Theorem 8.11 given by

φ(g) = {a ∈ S : g ∈ θ(a)}.

By Theorem 12.14, � is also a Zakrzewski morphism and hence so is the composition

ψ = � ◦ φ.

Moreover, ψ ◦ D = φ ◦ � ◦ D = φ ◦ C = θ, by (12-6) and the proof of Theorem 8.11.
The only thing left to prove is that ψ is unique. Accordingly, suppose that

we had another Zakrzewski morphism ψ′ ⊆ D(S) × G with ψ′ ◦ D = θ, that is,
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ψ′−1[Da] = θ(a), for all a ∈ S. Then we see that g ∈ θ(a) if and only if D ψ′ g, for
some D ∈ Da, and hence ⋃

Dψ′ g

D = {a ∈ S : g ∈ θ(a)} = φ(g).

As ψ′ is a functorial relation, all those D ∈ D(S) with Dψ′ g must have a common
source. By Proposition 12.12, it follows that

{D ∈ D(S) : D ψ′ g} = φ(g)� = {D ∈ D(S) : D ψ g}.

This shows that ψ′ = ψ, as required. �

As in Proposition 4.8, we can consider the pullback bundle

ρ�D : �ρD D̃(S)→ C(S),

which is continuously isomorphic to the coset bundle ρC : C̃(S)→ C(S).

PROPOSITION 12.16. Whenever d ∈ D � C, we can define

ι([d, D], C) = [d, C].

The resulting function is a continuous isomorphism ι : �ρD D̃(S)→ C̃(S).

PROOF. If d ∈ D � C then CZ = DZ and ZC = ZD, by (12-5), so d∼C = d∼D , by (9-4). In
particular, ι is well-defined. Whenever d ∈ C ∈ C(S), Proposition 12.11 yields a unique
D � C with d ∈ D. This shows that ι is a bijection, which is immediately seen to be
a groupoid isomorphism. Moreover, for all s ∈ S, we see that ι−1[C̃s] = ρ�−1

D [Cs] and
ι−1[C̃s] = �ρD D̃(S) ∩ (D̃s × Cs), so ι is also continuous. �

We now have the following extension of Theorem 12.14. As before, let C̃ and D̃
denote the maps a �→ ã = ãC and a �→ ãD = ã|D(S), respectively.

COROLLARY 12.17. (�, ι) is a Zakrzewski–Pierce morphism from ρD to ρC such that

C̃ = ι

�
◦ D̃,

where ι/� : S(ρD)→ S(ρC) is the semigroup morphism from Theorem 4.10.

PROOF. By Theorem 12.14 and Proposition 12.16, (�, ι) is a Zakrzewski–Pierce
morphism. For any C ∈ dom(̃aC) = Ca, we have a unique D ∈ D(S) with a ∈ D � C,
by Proposition 12.11. Then we see that

ãC(C) = [a, C] = ι([a, D], C) = ι((̃aD◦�)(C), C) =
ι

�
(̃aD)(C).

This shows that ãC = (ι/�)(̃aD), which in turn shows that C̃ = (ι/�) ◦ D̃. �

Again, we call a bundle representation μ : S→ S(π) Zakrzewski universal if, for
every bundle representation θ : S→ S(π′), there exists a unique Zakrzewski–Pierce
morphism (φ, τ) from π to π′ such that θ = (τ/φ) ◦ μ.
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THEOREM 12.18. If Z is symmetric then the directed coset bundle representation D̃ is
a Zakrzewski universal bundle representation.

PROOF. As C̃ is a bundle representation by Theorem 11.2, andD(S) is an ideal of C(S)
by Proposition 12.6, it follows that D̃ is also a bundle representation.

To see that D̃ is Zakrzewski universal, let us take another bundle representation
θ : S→ S(π). Let ψ = � ◦ φ be the Zakrzewski morphism in the proof of Theorem
12.15, where φ is the étale morphism in the proof of Theorem 8.11 given by φ(g) =
{a ∈ S : g ∈ θ(a)}. Further, let τ : φπC̃(S)→ F be the continuous functor in the proof
of Theorem 11.2 given by τ([a, φ(g)], g) = θ(a)(g). We then get another continuous
functor σ : ψρDD̃(S)→ F defined by

σ([a, D], g) = τ(ι([a, D], φ(g)), g) = τ([a, φ(g)], g) = θ(a)(g)

whenever a ∈ D � φ(g). Thus, (ψ,σ) is a Zakrzewski–Pierce morphism with

σ

ψ
(̃aD)(g) = σ((̃aD ◦ ψ)(g), g) = σ([a, D], g) = θ(a)(g),

where D is the unique directed coset with a ∈ D � φ(g). This shows that (σ/ψ)(̃aD) =
θ(a), which in turn shows that θ = (σ/ψ) ◦ D̃.

For uniqueness, suppose that we had another Zakrzewski–Pierce morphism (ψ′,σ′)
with θ = (σ′/ψ′) ◦ D̃. By Theorem 12.15, we must have ψ′ = ψ. For any ([a, D], g) ∈
ψρDD̃(S),

σ′([a, D], g) =
σ′

ψ′
(̃aD)(g) = θ(a)(g) = σ([a, D], g).

Thus, σ′ = σ, proving uniqueness and hence universality. �

As in Corollary 11.3, it follows that even directed cosets and their equivalence
classes determine when structured semigroups have faithful bundle representations.

COROLLARY 12.19. If Z is symmetric then the following assertions are equivalent.

(1) (S, N, Z) has a faithful bundle representation.
(2) The directed coset bundle representation of (S, N, Z) is faithful.
(3) For all distinct a, b ∈ S, we have D ∈ D(S) with {a, b} ∩ D � ∅ and

a �D b.

PROOF. Exactly like the proof of Corollary 11.3, just using Theorem 12.18. �
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