JFP 31, el, 13 pages, 2021. (© The Author(s), 2021. Published by Cambridge University Press 1
doi:10.1017/S0956796820000301

PhD Abstracts

GRAHAM HUTTON

University of Nottingham, UK
(e-mail: graham.hutton@nottingham.ac.uk)

Many students complete PhDs in functional programming each year. As a service to the
community, twice per year the Journal of Functional Programming publishes the abstracts
from PhD dissertations completed during the previous year.

The abstracts are made freely available on the JFP website, i.e. not behind any paywall.
They do not require any transfer of copyright, merely a license from the author. A disser-
tation is eligible for inclusion if parts of it have or could have appeared in JFP, that is, if it
is in the general area of functional programming. The abstracts are not reviewed.

We are delighted to publish twelve abstracts in this round and hope that JFP readers
will find many interesting dissertations in this collection that they may not otherwise have
seen. If a student or advisor would like to submit a dissertation abstract for publication in
this series, please contact the series editor for further details.

Graham Hutton
PhD Abstract Editor

P
https://doi.org/10.1017/50956796820000301 Published online by Cambridge University Press ® CrossMark


https://doi.org/10.1017/S0956796820000301
mailto:graham.hutton@nottingham.ac.uk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956796820000301&domain=pdf
https://doi.org/10.1017/S0956796820000301

2 G. Hutton

Design and Implementation of Effect Handlers for
Object-Oriented Programming Languages

JONATHAN IMMANUEL BRACHTHAUSER
Eberhard Karls Universitit Tiibingen, Germany

Date: May 2020; Advisor: Klaus Ostermann
URL: https://tinyurl.com/yxvgtks]j

Algebraic effects and their extension with handlers offer interesting new ways to
structure programs. Effect handlers support two important aspects of software develop-
ment concisely: they can express advanced control-flow structures as well as facilitate
parametrization of software components. Unifying both aspects also guarantees well-
defined interaction between control flow and parametrization. Despite their recently
growing popularity, we identify two problems hindering adoption by a wider audience
of programmers. Firstly, programmers are immediately confronted with the full general-
ity of effect handlers. While effect handlers are expressive enough to model advanced
control-flow structures, not all use cases require this expressivity. Secondly, effect han-
dlers have been conceived in the realm of functional programming languages and have
almost exclusively been studied in the context of functional programming.

In this thesis, we propose solutions to the two aforementioned problems with the goal to
facilitate adoption of effect handlers by a wider audience.

To address the first problem, we systematically present effect handlers as a combination
of delimited control (that is, they allow control-flow transfers) and dynamic binding (that
is, they allow parametrization). We discover that dynamic binding and effect handlers form
a spectrum: a novel intermediate form of ambient functions enables abstraction similar to
effect handlers, but without modifying the control flow: Ambient functions are dynami-
cally bound, but statically evaluated. Introducing effect handlers from dynamic binding
offers programmers an alternative way to approach handlers. They can incrementally learn
and understand the different generalizations.

To address the second problem, we present a design to embed effect handlers in object-
oriented programming languages. Our design embraces the object-oriented programming
paradigm and we map abstractions of effect handlers to key abstractions of object-oriented
programming. Combining the two paradigms not only enables programmers to use effect
handlers in object-oriented programs, but also to use object-oriented programming abstrac-
tions to modularize effect handlers. Our design employs explicit capability-passing style.
That is, instead of dynamically searching for a handler at runtime, we pass instances of
handlers as additional arguments to methods. We present multiple implementations of our
design and study the extensibility properties gained by embedding effect handlers into
object-oriented programming languages.

https://doi.org/10.1017/50956796820000301 Published online by Cambridge University Press


https://tinyurl.com/yxvgtk5j
https://doi.org/10.1017/S0956796820000301

PhD Abstracts 3

A Constructive Calculus for Esterel

SPENCER P. FLORENCE
Northwestern University, USA

Date: September 2020; Advisor: Robert Bruce Findler
URL: https://tinyurl.com/y2ngncr7

The language Esterel has found success in many safety-critical applications, from air-
craft landing gear to digital signal processors. Its unique combination of powerful control
operations, deterministic concurrency, and real time execution bounds are indispensable to
programmers in these kinds of safety-critical domains. However these features lead to an
interesting facet of the language, called Constructivity.

Constructivity is a non-local property of Esterel programs which makes defining seman-
tics for the language subtle. Existing semantics tend to sacrifice some desirable facet of a
language semantics to handle this. Many sacrifice locality, and only work on whole pro-
grams. Some sacrifice adequacy, allowing them to describe transformations to programs at
the cost of being able to actually run programs. Still more decide to work in a domain other
than Esterel, such as circuits, making Constructivity easier to capture, but forcing users of
these semantics to reason in a domain which they are not programming in.

This dissertation provides the first semantics for Esterel which captures all of the above
facets, while still describing Constructivity.

https://doi.org/10.1017/50956796820000301 Published online by Cambridge University Press


https://tinyurl.com/y2nqncr7
https://doi.org/10.1017/S0956796820000301

4 G. Hutton

Mechanized Verification of the Correctness and Asymptotic
Complexity of Programs: The Right Answer at the Right Time

ARMAEL GUENEAU
Université de Paris, France

Date: December 2019; Advisor: Frangois Pottier and Arthur Charguéraud
URL: https://tinyurl.com/y3t68osm

This dissertation is concerned with the question of formally verifying that the implemen-
tation of an algorithm is not only functionally correct (it always returns the right result),
but also has the right asymptotic complexity (it reliably computes the result in the expected
amount of time).

In the algorithms literature, it is standard practice to characterize the performance of an
algorithm by indicating its asymptotic time complexity, using Landau’s “big-O” notation.
We argue that asymptotic complexity bounds are equally useful as formal specifications,
because they enable modular reasoning: they abstract over the concrete cost expression of
a program, and therefore abstract over the specifics of its implementation. We describe a
number of challenges with the use of the O notation, especially in the multivariate case,
that might be overlooked when reasoning informally.

We put these considerations into practice by formalizing the O notation in the Coq proof
assistant, and by extending an existing program verification framework with a method-
ology for establishing robust and modular proofs of asymptotic complexity bounds. We
extend Separation Logic with Time Credits, which allows reasoning at the same time about
correctness and time complexity, and introduce negative time credits. Negative time cred-
its increase the expressiveness of the logic, and enable convenient reasoning principles as
well as elegant specifications. To establish such specifications, we develop a methodol-
ogy that allows proofs of complexity in Separation Logic to be robust and carried out at
a relatively high level of abstraction, based on mechanisms for: collecting and deferring
constraints during the proof, and semi-automatically synthesizing cost expressions without
loss of generality.

We demonstrate the usefulness and practicality of our approach on a number of increas-
ingly challenging case studies. We start with simple algorithms and data structures, and
ramp up to our most challenging case study: the proof of correctness and amortized com-
plexity of a state-of-the-art incremental cycle detection algorithm. Thus, our methodology
scales up to highly non-trivial algorithms whose complexity analysis depends on subtle
functional invariants, and can formally OCaml libraries which are then actually usable as
part of real world programs.

https://doi.org/10.1017/50956796820000301 Published online by Cambridge University Press


https://tinyurl.com/y3t68osm
https://doi.org/10.1017/S0956796820000301

PhD Abstracts 5

Operational Semantics of Weak Sequential Composition

HENDRIK MAARAND
Tallinn University of Technology, Estonia

Date: June 2020; Advisor: Tarmo Uustalu
URL: https://tinyurl.com/ybasuwba

This dissertation proposes an operational semantics where sequential composition can
be relaxed for certain pairs of instructions. By this we mean that instructions are not nec-
essarily executed in the order given by the program. Our motivation is that programs are
often executed in such a relaxed manner: it is not always guaranteed that the effect of an
instruction earlier in the program becomes visible before the effect of an instruction later in
the program. For example, the hardware may execute instructions out-of-order. A typical
requirement is that such relaxations should not be visible on sequential programs. Even
then, such relaxations may become visible on concurrent programs. Formal description of
step-by-step execution of programs under such relaxed sequential composition provides a
foundation for trustworthy analysis of programs.

In our approach, we consider the set of (primitive) instructions as an alphabet and rep-
resent programs as regular expressions over this alphabet. Program executions are words
over this alphabet. The pairs of instructions for which sequential composition is weak is
given by an independence relation on the alphabet (as in Mazurkiewicz traces). Given a
program, the operational semantics should tell us which instruction we can execute next
and what is the residual program after that. As a first step towards the desired operational
semantics, we generalise the Brzozowski and Antimirov syntactic derivative operations
to what we call reordering derivatives. These allow us to construct letter-by-letter any
word in the trace closure of the language of the regular expression. The basic operational
semantics is obtained from the Antimirov reordering derivative by adding parallel compo-
sition to the syntax, adding machine states to the rules and interpreting the letters of the
alphabet as state transformers. We then also consider some extensions to describe more
intricate behaviours. As an experiment, we describe a fragment of the multicopy-atomic
ARMv8 memory model in this framework. Unrelated to relaxed memory concurrency, we
also investigate when is the set of reordering derivatives of a regular expression finite, i.e.,
when is the trace closure of the language of a regular expression regular.

https://doi.org/10.1017/50956796820000301 Published online by Cambridge University Press


https://tinyurl.com/y5asuw5a
https://doi.org/10.1017/S0956796820000301

6 G. Hutton

Reasoning About Effectful Programs and Evaluation Order

DYLAN MCDERMOTT
University of Cambridge, UK

Date: October 2019; Advisor: Alan Mycroft
URL: https://tinyurl.com/yyvqwepn

Program transformations have various applications, such as in compiler optimizations.
These transformations are often effect-dependent: replacing one program with another
relies on some restriction on the side-effects of subprograms. For example, we cannot
eliminate a dead computation that raises an exception, or a duplicated computation that
prints to the screen. Effect-dependent program transformations can be described formally
using effect systems, which annotate types with information about the side-effects of
expressions.

In this thesis, we extend previous work on effect systems and correctness of effect-
dependent transformations in two related directions.

First, we consider evaluation order. Effect systems for call-by-value languages are well-
known, but are not sound for other evaluation orders. We describe sound and precise effect
systems for various evaluation orders, including call-by-name. We also describe an effect
system for Levy’s call-by-push-value, and show that this subsumes those for call-by-value
and call-by-name. This naturally leads us to consider effect-dependent transformations that
replace one evaluation order with another. We show how to use the call-by-push-value
effect system to prove the correctness of transformations that replace call-by-value with
call-by-name, using an argument based on logical relations. Finally, we extend call-by-
push-value to additionally capture call-by-need. We use our extension to show a classic
example of a relationship between evaluation orders: if the side-effects are restricted to (at
most) nontermination, then call-by-name is equivalent to call-by-need.

The second direction we consider is non-invertible transformations. A program trans-
formation is non-invertible if only one direction is correct. Such transformations arise,
for example, when considering undefined behaviour, nondeterminism, or concurrency.
We present a general framework for verifying noninvertible effect-dependent transfor-
mations, based on our effect system for call-by-push-value. The framework includes a
non-symmetric notion of correctness for effect-dependent transformations, and a deno-
tational semantics based on order-enriched category theory that can be used to prove
correctness.

https://doi.org/10.1017/50956796820000301 Published online by Cambridge University Press


https://tinyurl.com/yyvqwepn
https://doi.org/10.1017/S0956796820000301

PhD Abstracts 7

Type-Safe Generic Differencing of Mutually Recursive Families

VICTOR CACCIARI MIRALDO
Utrecht University, the Netherlands

Date: October 2020; Advisor: Gabriele Keller and Wouter Swierstra
URL: https://tinyurl.com/y5bsbk4f

The UNIX diff tool — which computes the differences between two files in terms of a
set of copied lines — is widely used in software version control. The fixed /ines-of-code
granularity, however, is sometimes too coarse and obscures simple changes, i.e., renaming
a single parameter triggers the whole line to be seen as changed. This may lead to unneces-
sary conflicts when unrelated changes occur on the same line. Consequently, it is difficult
to merge such changes automatically.

In this thesis we discuss two novel approaches to structural differencing, generically —
which work over a large class of datatypes. The first approach defines a type-indexed rep-
resentation of patches and provides a clear merging algorithm, but it is computationally
expensive to produce patches with this approach. The second approach addresses the effi-
ciency problem by choosing an extensional representation for patches. This enables us
to represent transformations involving insertions, deletions, duplication, contractions and
permutations which are computable in linear time. With the added expressivity, however,
comes added complexity. Consequently, the merging algorithm is more intricate and the
patches can be harder to reason about.

Both of our approaches can be instantiated to mutually recursive datatypes and, conse-
quently, can be used to compare elements of most programming languages. Writing the
software that does so, however, comes with additional challenges. To address this we have
developed two new libraries for generic programming in Haskell.

Finally, we empirically evaluate our algorithms by a number of experiments over real
conflicts gathered from GitHub. Our evaluation reveals that at least 26% of the conflicts
that developers face on a day-to-day basis could have been automatically merged. This
suggests there is a benefit in using structural differencing tools as the basis for software
version control.

https://doi.org/10.1017/50956796820000301 Published online by Cambridge University Press


https://tinyurl.com/y5bs5k4f
https://doi.org/10.1017/S0956796820000301

8 G. Hutton

Assisting End Users in Workflow Systems

NICO NAUS
Utrecht University, The Netherlands

Date: June 2020; Advisor: Johan Jeuring
URL: https://tinyurl.com/yyaywdal

In today’s society, almost every company and institution employs some kind of work-
flow automation. Hospitals employ software that automates health care processes. The
coastal guard uses workflow software to assist in search and rescue operations. Naval ships
use workflow automation software to manage people, resources and mission goals.

Before automation, users knew the process by heart, and knew how their choices influ-
enced the process. Workflow systems hide the flow of processes behind interfaces. For end
users, it is not always clear how decisions influence the progress of a task. One way to
provide users with more information about their current situation is to provide them with
next-step hints. These hints are based on their current situation: their position in the work-
flow and the data in the system. In this dissertation, I attempt to answer the question, how
can we provide end users with next-step hints to aid them in making decisions?

The answer to that question is found by applying of techniques from intelligent tutoring
systems (ITS) and program analysis. Previous work on ITS strategies inspired the first
approach to generate next-step hints. By extending the original program with additional
information, it can be viewed as a rule-based problem, making it susceptible to generic
Al search and solving algorithms. The second approach comes from program analysis. By
employing symbolic execution, next-step hints are automatically calculated, without any
changes to the original code.

The application of both techniques results in two next-step hints systems. One system,
aided by the programmer, the other fully automatic. In developing the automatic system,
a formal task-oriented programming semantics is also developed, including a symbolic
execution semantics. Both systems are proven to be sound and complete. They are both
implemented, too, showing that they work in practice. Providing next-step hints to end
users is crucial in improving the quality of decisions. It helps end users by giving insight
into the effects of their choices, and makes sure that all data is taken into consideration.

https://doi.org/10.1017/50956796820000301 Published online by Cambridge University Press


https://tinyurl.com/yyaywdal
https://doi.org/10.1017/S0956796820000301

PhD Abstracts 9

Contributions to Multimode and Presheaf Type Theory

ANDREAS NUYTS
KU Leuven, Belgium

Date: August 2020; Advisor: Frank Piessens and Dominique Devriese
URL: https://tinyurl.com/yxwvxnld

Dependent type theory is a theoretical programming language in which programmers
can not only write their programs but also prove properties of these programs (e.g. that
they satisfy their specification) and have these proofs checked by the type-checker. This
type-checker is however a bad understander and requires a proof of every lemma invoked,
no matter how obvious. This damages the practical usability of these languages.

Reynolds’ framework of relational parametricity, which is based on the observation that
all type formers in a well-behaved language have an action on relations and that all poly-
morphic functions in such language respect these relations (they are parametric), gives us
a large class of “obvious” theorems for free. Based on the observation that all functions in
a well-behaved language respect isomorphism, homotopy type theory (HoTT) gives us a
different class of “obvious” theorems and isomorphisms for free.

Neither framework is entirely satisfying. Indeed, while all functions have a graph rela-
tion, a relation in general cannot be applied to an input to compute an output, so that
preservation of relations is often insufficient. On the other hand, while all isomorphisms
are functions, the converse does not hold.

Directed type theory should start from the observation that all covariant type form-
ers have an action on transformations, and that all polymorphic functions between such
types commute with these transformations (they are natural). Thus, we expect that directed
type theory can give us a class — larger than the aforementioned ones — of theorems and
computable transformations for free.

Sadly, not all type formers are covariant and not all polymorphic functions of interest
are necessarily parametric or natural. Thus, we need an (ideally automatic) bookkeeping
system for keeping track of which functions are and which are not. This bookkeeping
system is provided by modal (and more generally multimode) type theory, where every
function is annotated by a modality describing its behaviour.

This thesis makes several contributions in the areas of modal (multimode) and presheaf
type theory, which have several applications but are motivated by the development of a
directed type theory that attains the aforementioned goals.

https://doi.org/10.1017/50956796820000301 Published online by Cambridge University Press


https://tinyurl.com/yxwvxnld
https://doi.org/10.1017/S0956796820000301

10 G. Hutton

On the Implementation of Purely Functional Data Structures
for the Linearisation case of Dynamic Trees

JUAN CARLOS SAENZ CARRASCO
University of Sheffield, UK

Date: August 2020; Advisor: Mike Stannet
URL: https://tinyurl.com/y4lwb3nq

Dynamic trees, originally described by Sleator and Tarjan, have been studied in detail
for non persistent structures providing O(log n) time for update and lookup operations as
shown in theory and practice by Werneck. However, there are two gaps in current theory.
First, how the most common dynamic tree operations (link and cut) are computed over a
purely functional data structure has not been studied in detail. Second, even in the imper-
ative case, when checking whether two vertices u and v are connected (i.e. in the same
component), it is taken for granted that the corresponding location indices (i.e. pointers,
which are not allowed in purely functional programming) are known a priori and do not
need to be computed, yet this is rarely the case in practice. In this thesis we address these
omissions by formally introducing two new data structures, Full and Top, which we use
to represent trees in a functionally efficient manner. Based on a primitive version of finger
trees — the de facto sequence data structure for the purely lazy-evaluation programming lan-
guage Haskell — they are augmented with collection (i.e. set-based) data structures in order
to manage efficiently k-ary trees for the so-called linearisation case of the dynamic trees
problem. Different implementations are discussed, and their performance is measured. Our
results suggest that relative timings for our proposed structures perform sublinear time per
operation once the forest is generated. Furthermore, Full and Top implementations show
simplicity and preserve purity under a common interface.

https://doi.org/10.1017/50956796820000301 Published online by Cambridge University Press


https://tinyurl.com/y4lwb3nq
https://doi.org/10.1017/S0956796820000301

PhD Abstracts 11

Higher Inductive Types, Inductive Families,
and Inductive-Inductive Types

JAKOB VON RAUMER
University of Nottingham, UK

Date: February 2020; Advisor: Thorsten Altenkirch
URL: https://tinyurl.com/y2mls1j7

Martin-Lof type theory is a formal language which is used both as a foundation for
mathematics and the theoretical basis of a range of functional programming languages.
Inductive types are an important part of type theory which is necessary to express data
types by giving a list of rules stating how to form this data. In this thesis we we tackle
several questions about different classes of inductive types.

In the setting of homotopy type theory, we will take a look at higher inductive types
based on homotopy coequalizers and characterize their path spaces with a recursive rule
which looks like an induction principle. This encapsulates a proof technique known as
“encode-decode method”.

In an extensional meta-theory we then explore the phenomenon of induction-induction,
specify inductice families and discuss how we can reduce each instance of an inductive-
inductive type to an inductive family. Our result suggests a way to show that each type
theory which encompasses inductive families can also express all inductive-inductive

types.

https://doi.org/10.1017/50956796820000301 Published online by Cambridge University Press


https://tinyurl.com/y2mlslj7
https://doi.org/10.1017/S0956796820000301

12 G. Hutton

Equality Between Programs With Effects

NIELS VOORNEVELD
University of Ljubljana, Slovenia

Date: January 2020; Advisor: Alex Simpson
URL: https://tinyurl.com/y2zcegvr

This thesis studies notions of program equivalence for a call-by-push-value functional
language with algebraic effects and general recursion. We mainly focus on behavioural
equivalence, where program behaviour is specified by a collection of effect-specific for-
mulas. Two programs of the same type are deemed equivalent if they satisfy the same
formulas. To interpret effectful behaviour in a generic way, computation terms are evalu-
ated to trees built from effect operators. These trees are then interpreted in a logic using
modalities, which lift predicates on value types to predicates on computation types.

One of the main contributions of this thesis is identifying conditions on the modalities
under which the behavioural equivalence induced by the logic is a congruence. This means
equivalent terms cannot be distinguished by programs. To prove this property, we show
that the behavioural equivalence coincides with an appropriate notion of applicative bisim-
ilarity, where effects are interpreted using relators (which lift relations). This allows us to
prove the aforementioned congruence using a variation of Howe’s method.

The algebraic effects to which the results apply include error, nondeterminism, prob-
ability, global store, input/output, and timer. Several combinations of these effects can
also be described with the logic. However, in order to combine effects more easily, and
to give more natural descriptions of program behaviour, the logic is generalised to a logic
with quantitative formulas. Once again, the congruence property and connections with
applicative bisimilarity are established.

Finally, we show that similar results hold also if the language is extended with additional
type constructors. In particular, we consider universal polymorphic and recursive types.

https://doi.org/10.1017/50956796820000301 Published online by Cambridge University Press


https://tinyurl.com/y2zcegvr
https://doi.org/10.1017/S0956796820000301

PhD Abstracts 13

Debugging Functional Programs by Interpretation

JOHN WHITINGTON
University of Leicester, UK

Date: July 2020; Advisor: Tom Ridge
URL: https://tinyurl.com/yyg648mv

Motivated by experience in programming and in the teaching of programming, we make
another assault on the longstanding problem of debugging. Having explored why debug-
gers are not used as widely as one might expect, especially in functional programming
environments, we define the characteristics of a debugger which make it usable and thus
likely to be widely used. We present work on a new debugger for the functional pro-
gramming language OCaml which operates by direct interpretation of the program source,
allowing the printing out of individual steps of the program’s evaluation, and discuss its
technical implementation and practical use. It has two parts: a stand-alone debugger which
can run OCaml programs by interpretation and so allow their behaviour to be inspected,;
and an OCaml syntax extension, which allows the part of a program under scrutiny to be
interpreted in the same fashion as the stand-alone debugger whilst the rest of the program
runs natively. We show how this latter mechanism can create a source-level debugging
system that has the characteristics of a usable debugger and so may eventually be expected
to be suitable for widespread adoption.

https://doi.org/10.1017/50956796820000301 Published online by Cambridge University Press


https://tinyurl.com/yyg648mv
https://doi.org/10.1017/S0956796820000301

	PhD Abstracts

