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A SIMPLE COUPLING OF RENEWAL PROCESSES

T. LINDVALL,* University of Goteborg

Abstract

We use a simple coupling to prove the classical result that the renewal function U
of a zero-delayed renewal process satisfies U(f) —A.t— A°u,/2 as t— if the
life-length distribution is of non-lattice type and has finite first and second moments
p and p, respectively; A is the renewal intensity, and is equal to 1/u.
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Let Y;, Y5, - - - be i.i.d. non-negative random variables with non-lattice distribution F,
having finite first and second moments u and u, respectively. To the zero-delayed renewal
process S =(S,);, where S,=X1Y, S,=0, we associate the point process N:N(B)=
#{n; S, e B} for B e R,, and the counting process (N,);: N, = N[0, ¢] for t=0. Let U(B) =
E[N(B)] and U(¢t) = E[N,]. Notice that U(0) =1 always, and U(0) =1 if F(0) = 0. It is rather
well known how to use a coupling to prove Blackwell’s renewal theorem, which states that

1) Ut t+A)>A. Aast—
for all A >0, cf. Lindvall (1992), p. 73ff.; here A = 1/u. The classical result
) Ult)—A.t—>Au,/2 as t—

has, however, not yet been given a coupling proof; the established route is to apply the
so-called key renewal theorem to a renewal equation which is solved by U(t) — At, cf. Feller
(1966), p. 357. The purpose of this letter is to show how a simple coupling works to prove
).
Let Yy be independent of S and have density A. (1 — F(y)), y=0. We know that if a
renewal process with lifelength distribution F has Yj as delay, it is stationary. Let S’ = (S.)q
be defined by

S, =Y;+S,, n=0,

and let N’, U’ have obvious meanings. We have

3) U@)=A.t=U(@)-U'()=E[N] - E[N]=E[N(t - Y5, 1]].
But

“4) E[N(t—Y;, t]l = E[E[N(t - Y, 1] | Y5]] = E[U(t — 5, 1]).
Now

(5) Ut—-Yg, t]>A.Y]jast—>w

due to (1). We are allowed to transpose expectation and limit in (4) because of dominated
convergence. Indeed,
UGt~ Ys, (1= U(Y3)
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for all t=0, and E[U(Y;)] < since U(s)=C. (1 +s) for some C >0 and E[Y;] <. From
(3)-(5) we may now deduce (2) since E[Y;] = Au,/2.
The idea of constructing a stationary parallel process by introducing a suitable delay phase

as above is of value for the study of regenerative processes in general. The consequences of
such coupling will be presented at a later opportunity.
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