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ON SINGULAR SETS OF FLAT HOLOMORPHIC MAPPINGS
WITH ISOLATED SINGULARITIES

HIDEO OMOTO

Introduction

In [4] B. Iversen studied critical points of algebraic mappings, using
algebraic-geometry methods. In particular when algebraic maps have
only isolated singularities, he shows the following relation; Let V and
S be compact connected non-singular algebraic varieties of dimgV = =,
and dim, S = 1, respectivelly. Suppose f is an algebraic map of V onto
S with isolated singularities. Then it follows that

0.1) x(V) = (=" 22 p,(0) + x(S}F) ,

where y denotes the Euler number, x,(p) is the Milnor number of f at
the singular point p, and F is the general fiber of f:V — 8.

The purpose of this paper is to generalize the above relation (0.1)
as follows; Let V and W be connected compact complex manifolds of
dim; = n, and k respectively. And let f be a flat holomorphic map of
V into W with isolated singularities ([Def. 1.2]). Moreover we assume
that rank f =k — 1. Then for generic points p on singular set J(f) of
J ([Def. 1.1]), we can define obstruction numbers uq(p)cZ ([Def. 1.8])
associated with f and p which are Milnor numbers of f at p in the case
k =1. However these numbers p,(p) are constant on irreducible com-
ponent containing p of X,(f). Therefore we put, with respect to, the
irreducible decomposition 2'(f) = -, 2.

2/A20) = p(p) for any generic pe3?

Now our main theorem is to show the next relation; For the gen-
eral fiber F or f: V- W,

0.2) KV = (=" 35 O ) 3) + 2(WyF)
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where C(#;) are the Chern numbers of line bundles #; over 27 induced
from f (rank f =k — 1).

In §1 we state some properties of singular set 2(f) (I8]) and give
the definition of x,(p). In §2 we review differential geometrical defini-
tions of connections, curvature and boundary forms ([2] and [6]). In §3
we show the duality formula of boundary forms which play an important
role in proving the main theorem. The proof of the main theorem is
done in §4.

§1. Singularities of holomorphic maps

1.1. Let V be a complex manifold of complex dimension » and T*V
be the holomorphic cotangent bundle of V. Let f be a holomorphic
mapping of V into a complex k-dimensional complex manifold W (n = k).

DEFINITION 1.1. A point p of V is called a singular point of f, if
rank, f <k, where rank, /' denotes the rank of the linear map f: T%,, W
— T#V. Moreover we denote by X(f) the set of all singular points of
f, called the singular set of f.

DEFINITION 1.2. pe X(f) is generic if the following conditions are
satisfied ;

1) rank,f=F%—1,

ii) there exists a neighborhood U of p in V such that U N 2(f) is

a (kK — 1)-dimensional complex submanifold of V.

Let peX(f) be generic. In order to define a topological number
concerned with p, we take holomorphic coordinates {z!};., on an open
set Upap in V with 24(p) =0,7i=1,---,7 and also local coordinates
{w*¥_, of f(p) in W such that w(f(»)) =0, e =1,---, k. Set g = wo f
and g = (g%, --+,9%). Further let dg/0z be the Jacobian matrix of g,

that is,
ag' ... 99"
ag azl’ ’ azl
oz |39 . ag|
az"’ " gzn

If we write V(n, k; C) for the Stiefel manifold consisting of all k-frames
of C*, then we have the holomorphic map
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_gg.;up—Z(g)—»V(n,k;C).

As p is generic, we can take a complex submanifold 31(p) as follows;

(@ 2+ N 3(9) = {p}.

() 2i(p) intersects transversally to X(g) at p.

(y) the boundary 9X+(p) of 3i(p) is a smooth manifold which is
diffeomorphic to the 2(n — k) + 1-dimensional unit sphere S*®-#+1
in CZ(n—k+l).

We call the above submanifold X+(p) a complemental submanifold to 2(g)
at p. Finally we choose 2(n — k) 4+ 1-form w,; on V(n,k; C) whose
cohomology class @, is the generator of 2(n — k) + 1 dimensional
cohomology group of V(n,k; C), H**» ¥+ (V(n,k; C); Z) = Z. Here put

(1.1) ﬂa(p) = fﬁfl(z’) (%g_)*wn,k )

One notes that #,(p) is an integer and that j,(p) is independent of
choosing local coordinates {z%}7_,, {w*}:., and complemental submanifolds
2Li(p) to X(g) at p. Therefore the following definition is well-defined.

DEFINITION 1.3. Let p € J(f) be generic. Then the obstruction num-
ber p(p) at p of f is defined by

1.1y 1/(p) = fi,(p) .

1.2. Isolated singularities

We shall restrict our discussion to a holomorphic map f:V —-W
such that

i) f has only isolated singularities, i.e., for any point ¢ e W, f~(q)
N 2(f) is an isolated points set in V.

i) f is flat.
For simplicity we call f satisfying the above conditions i) and ii) an
(IF)-holomorphic map. The following proposition is well-known.

PROPOSITION 1.4. Let f:V — W be (IF)-holomorphic. Then the
singular set 3(f) of f is an analytic set of V such that

dim; 2(f) = dim, W — 1.

From now on we assume that V and W are connected compact com-
plex manifolds of dim,V =n, and dim;W =k and that f:V - W is
(IF)-holomorphic such that rank f > k& — 1.
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LEMMA 1.5. Let f:V — W be as above and let X(f) = i, Z® be
an irreducible decomposition of X(f). Then for each 3 the obstruc-
tion number p/p;) of f at any generic point p,c 3 is defined and con-
stant.

Proof. It is clear from Proposition 1.4 and rank f = k£ — 1 that
generic points of Z(f) become regular points of the analytic set Z(f) in
V, and conversely. Since the regular set of X is connected, this lemma
is trivial from the definition of the obstruction number. Q.E.D.

By the above lemma we can put x,(3%) = pu,(p,) for any generic
point p; e I,

Next les us consider the following sequence concerning with f:V
— W;

@ 0 — Ker T(f) —> fH(T*W) EG—)) T*V ,

where f*(T*W) is the induced bundle of T*W by f and T(f) is the linear
map defined by

T()p,v) =fFfv  for any (p,v) e f4(T*W) .
As rank f =k — 1 (dimg W = k), we have
Ker T(f), = {0} if pe2(f)
and
dimg (Ker T(f)), =1  for pe 3(f) .

Thus the restricted bundle Ker T'(f)|2(f) becomes a topological one-
dimensional complex vector bundle. Let us denote by Q(2(f)) the quo-
tient bundle f4(T*W)/Ker T(f)|2(f), and let ~ : fHT*W)|2(f) — Q' ()))
be the natural projection. Now let p e X(f) be generic. Suppose that
o is a type (1,0)-differential form defined on an open set Us f(p) such
that

1.2 zeros of f*(w) N fAA(U)=1p.
Here let f*(w) be the cross-section of f#(T*W) defined by

JHo)®) = @, 0s4p) for any pe U .

Then %) is the continuous section of QZ(f)) on f~Y(U) NI (),
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and from (1.2) we get

zeros of ??(w) = {p},

that is, f*()(®) ¢ Ker T(f),. Since p is generic, there exists a neighbor-
hood U, of p in 3(f), which is a complex submanifold of V of
dimg (k — 1), included in f~'(U). Therefore Q(/N|U, is a (K — 1)-
dimensional holomorphic vector bundle. Here we can define canonically

the order of zeros I,(f(w)) of f¥w) at p.

DEFINITION 1.6. Let p e 3(f) be generic and let o be a (1,0)-type
differential form on an open set Us f(p) satisfying (1.2). Then the
restricted index [ o of o at p is the order of zeros of f%w) at p, i.e.

~ ~~/
1.3) I (o) = 1,(fY o)) .
Before we state our theorem, we need

DEFINITION 1.7. Let f:V — W be as before, we call a (1,0)-type
differential form o on W, an f-form, when the following conditions are
satisfied ;

i) The zeros of v is a finite points set such that
S N zeros of w = ¢

ii) 2(f) N zeros of f*w is also a finite points set whose points are
all generic.
Let w be an f-form. Then from the above condition ii) we can define
the restricted index 7 »(@) for each p e 3(f) N zeros of f*w. The follow-
ing existence proposition is proved by using the transversality theorem
in [5].

PROPOSITION 1.8. Let V and W be compact complex manifolds and let
S:V—>W be an (IF)-holomorphic map with rank f =k — 1, (dimc W = k).
Then there exists an f-form w.

We shall prove this proposition in Appendix. Now we are in a
position to state the following

THEOREM 1.9. Let V and W be connected compact complex manifolds
of dim¢V =n and dimeW = k. Suppose that f:V —-W is an (IF)-
holomorphic mapping such that rank f =k — 1. Then if F denotes a
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general fiber of f:V — W, we have

1.4) xV) = jZ: (=D, (@p,0y) + x(W(F)

where y represents the Euler number and o is an f-form such that
2(f) N zeros of f*w = {py, -, 0} (cf. Def. 1.7).

Moreover we claim that (1.4) is independent of f-forms w.

MAIN THEOREM. Under assumptions in Theorem 1.9, let X(f)=\J;., X®
be the irreducible decomposition of the singular set X(f) of f. Let
Q) = fH(I*W)/Ker T(f)|12(f) as in 1.1. Here put B, = Q(f)|I?,
G=1,-.-,7). Then it follows that

(1.5) (V) = (=" iZZZIC(%)pf(Z D) + x(W(F) ,

where C(#;) denotes the topological (k — 1)-th Chern number of the
complex (k — 1)-dimensional vector bundle %; over T®, in the sense of
Steenrod [T7].

Proof. Without loss of generality we can assume that 3(f) is ir-
reducible, because any point of Y® N X (i £ j) is not generic. Then
we have from Lemma 1.5 and (1.4)

1.6 (V) = (—D”jZ:lf 2@ (E() + y(W)g(F) .

Since 2(f) is a compact analytic set of V, X(f) becomes a compact CW-
complex. Thus one can define the (k& — 1)-th chern number C(Q())) of

Q(f) in virtue of Steenrod. On the other hand, %) is a continuous

cross-section of Q(f) and we see zero (%)) = {py, - -+, P}, here ~ is the
natural projection of f#T*W)|3(f) onto Q(f). The Steenrod’s theorem

shows that
C@QU = 33 L,
that is
CQRUY =5 I, .
Combining this fact with (1.6), we can prove (1.5). Q.E.D.
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In particular in case of k =1, that is, W is a compact Riemann
surface, 3(f) is a finite points set, say {p,---,»,} and p,(p, is the
Milnor number of f at the isolated singular point p,, j =1,-.-,7. Here
from the main theorem we have

COROLLARY 1.10 [4]. Let W be a connected compact Riemann sur-
face and f a holomorphic map of a connected compact complex manifold
V into W with isolated singularities, say X(f) = {p,, ---,p;}. Then we
get

«(V) = (=1 ;lepf(m) + 1 (Wy(F) |

where F is a generic fibre of f:V —-W and n = dim,V.

Proof. We know that f is flat, because 2(f) is a finite points set
and dim; W = 1. Here the proof is trivial. Q.E.D.

§2. Connections and boundary forms ([2], [6])

In this section we review several geometrical definitions in [2] and
[6] to be used in the next section.

2.1. Let V be a complex manifold and A*(V) the set of all k-forms
onV, k=1,.-..,2m (dimp V =2m). Let E be a holomorphic vector
bundle of fibre dimension # over V and N be a hermitian norm on E.
Here we denote by <, > the inner product induced by N. Then we can
define a canonical connection D(N) on E as in [2], as follows; Let U be
an open set of V such that there exists a holomorphic frame s = (s;, - - -,
s,), where s; is a holomorphic section of E|U. Put N(s) = ||<{8s, ;D |li<s,j<nr
and

n

2.1) 6 =0(s,N) =d'N(s)-N(@s)™', 1ie., 0;;= kzld’N(s)i,,(N(s)“)w ,
where d’ is the type (1,0)-derivation. For a section & = > 2_, &*s, of
E|U, we define the covariant differential D& = > 7., d&*-s, + > E¥Dsy,
where Ds; = >;6,,;, Then D& is an FE-valued l-form and d<{§,)
= (D&, > + <&, Dy) for sections &,y of E.

We call the above connection D = D(N) the N-connection of E.
Moreover the curvature form K(s,D) = ||K;| is given by

2.2 K(s, D(N)) = dé(s, N) — 6(s, N) \ 6(s, N) .
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K(s, D(N)) is called the curvature matrix of D(N) relative to the frame
s. Take another frame s’ = (s},s;) of E|U, and put s;=2;4,-s;.
Then we get

2.3) AK(s,D)A™' = K(s', D) .
Now we shall define the k-th chern form C.(F) of E associated with the

—
norm N. Let M, be the n X n-complex matrices. Let b?: M, X --- X M,
— C be a k-linear map defined by

1 0"

bYA,, - A) =~ O
4 & k! oA, --- a4,

det (1, + 4,4, + - + L4

2= ee=2z=0

for A;eM,, where 1, denotes the unit matrix of degree n. For sim-
plicity we set b2(4, ---,A) = b%((4)). Then it follows from (2.3) and the
definition of b7 that b:«—”z_lK(s, D))) is independent of the frame s.
T
DEFINITION 2.1. Let D = D(N) be an N-connection on E. Then the
k-th Chern form C,(E,D) induced by N is a type (k, k)-real form on V
defined as follows; for any frame s of E|U (s may be smooth),

cu®, D)y = 0y (Y=LK, D))

73

The next proposition is directly proved from the above definition

p.
ProPOSITION 2.2. C.(E,D) is closed, i.e., dC,(F,D) = 0.

2.2. Duality formula and boundary form.
Suppose now that the following sequence (X) of holomophic vector
bundles over a complex manifold V is exact,

) 0—-F,-E—->E;—0.

If F has a hermitian norm N, then in virtue of the sequence (J) norms
N; and Ny are induced from N, on E; and E, respectively. Let p;:
E - E; and py: E — Ey be orthogonal projections and D = D(N) be the
N-connection on E. It follows then that P,DP; = D, becomes the N,-
connection on F; for ¢ =1I1,1I. Moreover put D, =D + (¢! — 1)P;DP;
(teR). D, is also a connection on F, called R-family of D. The fol-
lowing proposition is used to define the boundary form of E.
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Duality formula [2]. Let all notations be as above. Snppose that
dimE = n and dim E; = k. Then it follows that

C.(E,D) = Cy(E\, D)C,_i(E\, Dy)
@4 — L%rd{lim i f’ bg((*/z';—lz{w, D,J; mPI»dt}

t——co 2r

n-1

where d° = +/—-1(d” — d’), b*((4; b)) = b*(B,A, ---,A) + --- + b4, -,
A,B) and K[E,D,] is the curvature element of D,, defined as follows;
for any frame s of E,

K[E’ D,;](S) = K(S’ Dz) .

Now let E be a holomorphic vector bundle with a norm N over V
of fiber dimension n» and let = be the projection of E onto V. Set
E,={veE;v+ 0} and z|E,=r,. And let n{(E) be the induced bundle
of E by n,., Then one defines naturally the induced norm ={(N) by =,
and N. Let L(E) = ez, {(e, Ce)} be the line bundle over E, and Q(E)
the quotient bundle of zi(F) by L(E). Then clearly we get the following
exact sequence;

2(E) , 0 — L(E) — nf(E) —» Q&) — 0,
At first we have

ProrosITION 2.3. [6].
(2.5) Co(n§(E), D(ziN)) = = C,(E, D(N)) .

Let 4: E,— L(F) be the global holomorphic section defined by 4(e)
= (e,e) for ec E,. Then we know

2.6) CAL(E), DNY) = i}ddc log (N)(4) ,

where N; is the norm on L(E) defined by the sequence X(E) and the
norm z#}(N) on zi{(E) as before. Applying the duality formula (2.4) to
the sequence Y(E), we obtain from (2.5) and (2.6)

7 Co(E, DIN)) = Z—ld{dc log miN(4) - C,_{(Q(E), D(N1)
T

+ lim d° j bi((KI={E, D(N)]; eP0)dt} ,
t

t——o0
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V=1

where ¢ = .
T

Here let us put

7B, N, 4) = —;f—l{dc log BN()-C,_(QE))
T

@.7) .
+ lim d° j 2K 2B, D(N)]; xPI»} .

t—oo

It is trivial
2.8) dy,(E,N, 4) = z}C,(E, DIN)) .
‘We resume the above discussions as the following

DEFINITION 2.4 [6]. Let £ be a holomorphic n-dimensional vector
bundle over a complex manifold ¥V with a norm N. Then the (2n — 1)-
form »,(E,N,4) on E, defined by (2.7) is called the boundary form of
F with the norm N.

For simplicity we abbreviate 7,(E, N, 4) to 5,(E) or 7,(E,N).

§3. Duality formula of boundary forms

Let V be a complex manifold and A*(V) the k-forms on V. Assume
there exists an exact sequence () of holomorphic vector bundles over V

‘(2) OQE[‘—)E_)EII"')O.

Put (BD, = {veE;; v+ 0} and let [[; be the projection of (&), onto
V. Moreover let ¢: (FD),— E be the inclusion linear map in (¥). The
purpose of this section is to prove the following

MAIN LEMMA. All notations are as in §2. Let dimFE, =k and
dim E = n, and let N be a norm on E. Then it follows that, on (&),

3.1 9 (B) = 9(ED[]¥ CrerB) + [ E+ dD,
where £ A (V) and @ e A*™ *((H1),).

3.1. In order to show (8.1) we need several lemmas. At first we
have the following

LEMMA 3.1. There exists an element & e A* V) satisfying the
following condition; Let us put
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(3.2) Vo= *n(B) — 9 (B [[§ CoEr) + [1F €.
Then + s closed, that is, dy = 0.

Proof. Let [[,: E,— V be the natural projection as before (E, C E).
It is clear by (2.8) that

d(!*ﬂn(E) - ﬂk(EI) nik Cn—k(EII))
= [[§ Col) — [[¥ Cr(EY [1¥ Cpip(Ew)
= H;k{cn(E) - Ck(EI)Cn—k(EII)} .

Here we get &’ ¢ A>» (V) by the duality formula in §2 such that
Co(E) — CL(EDCp_ (B = dE” .

Thus putting & = —¢&”, we can prove (3.2). Q.E.D.
Next let S(E) be the sphere bundle of E,, that is, S(ED) = {v e E;;
Ni(v) =1}, and let P: S(E;) —» V be the projection. Clearly each fibre
of S(E;) has the canonical orientation. One can here define the fibre
integral P, : AYS(E)) — A= ®-(V) ag follows; for any 6 € A(S(EY),

P,(0), =j o6 @eV).

P-1(x)
The following lemma is proved in Hirzebruch-Borel [1].
LEMMA 3.2 [4]. There is we A*™ (S(E)) such that do =0 and
P (w) = 1. Moreover for any closed form 6e AYS(E)) we write § the
cohomology class of 8. Then it follows that
§ = P*(Py () N o + P*(&)
where & ¢ H(V; R).

PROPOSITION 3.3. Let ¢,: S(E) — (E)), be the inclusion map and let
+ be the (2n — 1)-form on (E)), as in Lemma 3.1. Then we obtain

3.3) PiGw =0.

If (3.3) is proved, we get our main lemma as Corollary. Indeed it fol-
lows from Lemma 3.2 that

N .
() = P*(Pylfy)) N o + P*(E)

where & is a (2n — 1)-closed form on V. Therefore we have from (3.8)
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F@) —PE) =0.

Set here ¢ = — [[¥(&) ([IF is the projection of (E;), onto V). Notic-
ing P = [[io¢, it follows

N\ PAS DS
Go=y—PE) =0.

However since H*»'((Ey,; R) is isomorphic to H** Y(S(Ep; R) by ¢, we
have ¢ =0 in H*™ ((EpD,; R). Thus it follows ¢ = ¢ — [[¥(&) = dD for
some @ c A *((E),) and so (3.1) in main lemma is proved.

3.2. The proof of Proposition 3.3.

All notations in §2 are used in this paragraph.

Let N be the norm on E and let N; be the norm on FE, induced by
N (¢ =1LII) in terms of the sequence (2):0 - FE; - E — E; —0. The
inclusion map ¢: (Epy,— E(C E) induces the canonical linear map of [[#(E)
into []{(E), which we denote by ¢ without confusion. Note ¢ ([[§(E))
= [[¢(E) and ¢ (L(E)) = L(E;). Then we have the following diagram

@D:0— LE) — [[{(E) —> fQE) —> 0 on (Ky),

Lo koo |
C):0—LE) — [} () — QE) —>0 on E,.
Remark. (2, is the restriction of (¥,) to (E.), and Y, is exact for
i=12.
First of all, using Proposition 3.5 in [6], it follows from the exact
sequence (2,) that

(B, N) = — }{dc log [T (V)W 0 0)-*C . (QE))
T
(3.4)
+ lim d° j" b(CRKITTE (B), Do([T3 N1 : nPI))}

t——o0

where 4: E, — L(F) is the section defined by
d(e) = (e, e) for ecE,.

Let us consider the form *C,_,(Q(E)) in the left hand side of (3.4).
For this purpose take the following commutative diagram over (Ey),;
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0 0 0

0— (Ey 3 LE)—> 0 —0

A

0 —> [t (Er) —> ]t (B) —> [[t (Bx) —> 0

(E): 0—> QE) —> tQUE) —> [[1(Er) —> 0

\ l \

0 0 0

where each sequence is exact.
It is well-known (cf. (3.23) in [6] that

*Cra(QE)) = C,_(FQE)) .

Therefore using the exact sequence (X,) in the above diagram, we find
from duality formula,

*C,_(QUED) = Co,,QETF Co_ (B
~Zalima f b2 (K[AQ(E), D9 ; kP9))dt

t——o0

(3.5)

where P¢: #Q(E) — Q(E;) is the orthogonal projection associated with
(%, and the norm #(N9 on #Q(F) induced by N, and D¢ is R-family of
D(/#N9) as in §2.

Furthermore, noting that 4o¢: (Ey), — L(E)) is the canonical section
for the boundary form #.(E;), we have from the first vertical exact se-
quence in the above diagram,

(B = — ng-r{dc log [T Nx(d 0 )C . _(Q(E)
3.6)
+ lim & || BYGKLIT B, DATTENDI; ePED)dL]
t——o 1
where PFi: [[4(E;) — L(E,) is the orthogonal projection.
Here it follows from (3.4), (3.5) and (3.6) that
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Fpa(B) — 9e(ED T[F Cry(E'r)
= const. d°log [[{ N:(d-0)-d El:nm s j(: broi(K[AQ(E), D?1; PY)dt
3.7 + const. [[¥ Cr_(Ew
TTE Cons(Bn) lim @ [ BH(KITTE B, DATTE NOY; PN

+ const. lim d° f: bA(KITTT E, D[[1 N)]; Po)dt ,

t——co

(note P; is the orthogonal projection of £ onto E; in the sequence
2).

We shall show next that the first term of the right hand side of
(3.7) has zero fibre integral, that is, if P, denotes the fibre integral of
the sphere bundle S(Z,) of E;, then

B.1"  Pydlog [[IN:(d<0)-dlim d° J.O br i (K[4AQE), DY ; P)dt = 0,

t——oo

where ¢,: (Ey), — S(F} is the inclusion.

For this aim let 1 <4, /< n,1<a,f<k, and1<A,B<n—Fk. In
the sequence (2):0 —-FE,—F —- FE;—0, n and k are dimensions of F
and FE,, respectively, and N is the norm on E and N, denotes the in-
duced norm on E, defined by (2) and N,¢ =1,1I.

Now let {&,;}7., be an orthonormal frame of E over an open set UcvVv
such that

{¢.}:_, is the orthonormal frame of E |U .
If D = D(N) is the N-connection of E, one finds
Dé‘i:Z’jé“éj, 9«“6‘4.1(&).

Let []1: (B, — V be the natural projection and put ﬂ;‘(f]’) = U. Since
{¢.} is the frame of E;|U, we find U = U x C* — {0} (diffeomorphic). Let
us denote the canonical coordinates of C* by {z°}%_,.

Clearly {€;o []:}7-, becomes the orthonormal frame of [[{(E)|U, with
respect to the induced norm [[#{(XN). Putting &;0[[; =€, G =1,---,m)
we get

(3.8) D(n¥ N)ei‘ = Zjﬁijej 9 0¢j € A](U)

Where 6¢j == n;k (é,;j).
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On the other hand for 4.¢, we find
Aoz, 2, ., 2" = X 2% () for (x,2' - +,25)e U x C* — {0} .

Let here u, be the smooth-section of L(E;) defined by

L gk = AO!) L gk
uy (@, 2'y - -+, 25) (H‘{NI (@, 2 -+, 2%)
K
= 2*_ Z e (x) .
a=1 \/zlzl + .. + zkzk ( )
Set U, = {(z, 2", ---,2¥); 2+ 0} C U. Then we can choose another sec-
tions u, - -+, u, of [[#(Ey)|U, such that {u,:_, is the orthonormal frame.

Thus we have

3.9) {u“ = 2 50ap€; @, € AUY

ey = Z.byu, b, e AU

Then a = |la,|, and b = | b,|/, are elements of the group of k¥ X k-unitary
matrices U(k) and a = b~'. Here let us put

wa'q = Zrdaar'bng .
For simplicity we consider U(k) as the subspace of n X n-matrices M,
a

in the following way; a € U(k) corresponds to (3%) eM,.

Now let D* = D([[{N) be the [[{N-connection of [[{E. Then it
follows directly from (3.8) and (3.9) that with respect to the orthonormal
frame {uly sy Uy €y 0ty en},

k n—k
Dty, :‘BL_V_‘{ {a)aﬁ + (a'a'b)aﬂ}uﬁ + AZ_;(G/'e)n,k+Aek+A
Diey,q = 25 (60-D)pyas ta + ZB O+ 4,k48€k+B

(3.10)

where 6 = [|0;;lh<i,j<n:

Next let Py : [[H(E) — #Q(E) be the orthogonal projection associated
with the exact sequence: 0 — L(E) — [[{(E) — #Q(E) — 0. Remember
that if we denote by D the canonical connection of #Q(F), then

De = PIID“PII

and that {u, ---,u, €51, -+, €,} is the orthonormal frame of F#Q(E).
Here let 2 < @, 5 < k. Then it follows from (3.10) that
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DQua = § {(I)aﬁ + (a/‘ﬁ'b)ap}uﬁ + Z (a-ﬁ),;,“,lek“l
4

3.11)
DQek+A = Z (0'b)k+A,&ua + Z Ok+a,k+8Ck4B -
a B

For calculations of 02 }(K[#Q(E), D?]; P?)) recall that D¢ = D@
+ (et — 1)PED?P¢, where P¢: #Q(E) — Q(E)) and P§: FfQE) — [[# (Ew) are
the orthogonal projections induced from the exact sequence

0 —> QEY — fQE) —> [[{(Ew) —> 0.

Let K(D?) be the curvature matrix of D¢ with respect to the above frame
‘ {uzy sty Upy €1y 0 0y en} of !#Q(E) and put

IXI

KII II

KD} =k — 1{” K%:
n — k|| Ki .

Then we get (cf. Lemma 4.8 [1])
K}, = K[Q(E,), PEDP?] + €' [,
(3-12) KII I = K[H* (EH) P%DQP?I] + e On
K{ I = tPII(DQ)Z’Pv K‘n 1= tPI(DQ)ZPII
where
Clx = P¢DOPEDPY
and
Ou = PRDCPEDOPY; .
Remark. It is clear from the choice of the frame {u,, .-, U, €x.1s
-+, e,} that
P?u:i:uﬁ’ P?ek-rA:O
Pfu, =0 and Pfes = €4ia -
Using this remark and (3.11), we shall compute each term in (3.12).
At first we introduce the following notations. In general let P be a
differential fibre bundle over a differential manifold M, and [] be the
projection. Let o be any differential form on P. We say that o is at
most of k-fibre degree, denoted by F(w) < k, when the following condi-

tion is satisfied; Let y be any point of P and F, be the fibre space
passing through y. Then for any k + 1 vectors X, - -, X;,, € T, (F,) the
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inner derivative X; A --- A X;,1 Jo of o with respect to X, ---, X,,, is
zero, i.e., X, A -+ ANX; Jo=0.
Under this notation each term in the right hand side of (3.12) is

calculated as below.
a) KIQ(Ey), PEDPY] = oz A wlﬁ”zs&,ﬁﬁk + @,, where F(0) < 1.

Proof. First of all find from (3.11)
P?DQME = Z {(055 + (a-ﬁ-b)&ﬁ}uﬁ .
]
Thus

KIQ(E,), PYDOPY] = Hdwa; — X ow A g + 0,

where
o, = I]d(a-&-b)ﬁﬁ — 3 (@-0-b)y A g + (@-6-0))

- 2; (0z + (@-0-D)z) A (@-0-D)g

However as do,;, — 2 ¥, 0, N\ 0, =0, we get
K[Q(EY), P?DQP?] = [loa N wlﬁ“ +9,.

The fact that @, is at most fibre degree one is shown from 6 = [[#(9)
(note []:: (B, — V). Q.E.D.
b) K[ﬂ}' Em P%DQP%] = ||d0k+A,k+B - ; 0k+A,k+c TAN 0k+0,k+B“A,B-

This is trivial.
¢ F(Oy=0.

Proof. As P%D%u, = >, (-0)s 5\ 461,40 We have
A4

PEDP D%, = 3 (0 0)a, i aP$D%; 1 4

A

= AV_.; (af‘a)a,kﬂi(ﬂ' b)k+A,ﬁu1§ .
4,

This fact shows that F(J, = 0.
d) Ou= =122 Oesailsrrsll + 11206 Orsa,5%,8150,, 5+ 51l-

Proof. Direct calculations show that
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A,B

Ou = H—Z (0'b)k+4,a AN (a‘a)a,lﬁB

= - ”Z 0k+A,ﬂbﬁ&aa70)—,k+B
Bar

AZ: 0k+A(5ﬁr - bﬂla’lr)ay,k+B
T

= —”Zﬁ: 0k+A.ﬁ A 05,k+B

here we used ‘@ = a~' = b in the third equality. Q.E.D.
e) PDYPE = 123 OO0, 4 alla,a + D,
s

where F(®,) = 0.

£) PUDYPy = —Y|Gatb, 1, all + O
where ¢||-|| denotes the transpose of the matrix ||.| and F(@;) = 0.

Since we can obtain e) and f) by the same computation before, we
omit these calculations.

Hence it follows from a) ~ f) that, with respect to the frame {u,, - - -,
Ugy Cs1y * * +» €n} OF PQE),

(3.13) K[#Q(E), D¢]

+ ‘l;:: Ok s a,,0150150, 14 8] -
T

k-1 n—k
———A e I s ~
=k —1{[[loa N ollas + 9, € loa N 0,0, x4 allz,a + Df

— —= A /
= 1@a A\ By all + @5 ”dﬁk+A,k+B - ; Oksakrc N\ Ovicken B

n—k —e"

; 0k+A,ﬁ /\ Hﬁ,k-}-B

+ et

‘ ﬁZl Okt a,50150:,0, 145

where F(9,) <1 and F(9,) = F(®;) = 0.
On the other hand for P¢ we get

0

0

1k+1

0

with respect to {u, « -+, U, €x41s ++ +5 €5}
finally we need the following elementary

(3.14) P? =

)

LEMMA 8.4. Let AeM, and let 4,;(A) be the (i,j)-cofactor of A.

Then one has
1,10 k
(o (312)) o
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Proof. From the definition of b2((A; B)) in §2 this lemma is triv-
ial. Q.E.D.
Now applying Lemma 3.4 to (3.13) and (3.14), we have

broi (K[#Q(E), DY PP) = ZAM(KD“Q(E), D)) .

Thus from (3.13) it follows that any term in 4,,(K[#QE); D) (=1, -.-,
k — 1) is of type

X

< =

v
k
(3.15) “)(é g A e Ao ABuA e A akl)-(am g, Bag) + Dogs

where @ ¢ AU), F( @) <2k —8 and 2< 7, f; <k, G=1,---,1).
Let us here represent a,, using the coordinates {z!,---,2%} of C*.

From 3.9), u,=>f%_a.,,. But as u, = 2 e, it
( ) 1 Z 1Y 1 Z a\/zlzl + .. + zkzk

follows that

Vil

||
Put 2 = dd°log|z]} on C* — {0}. Then we have the following

, (2] = V22" + -+ + 2¥z%) .

a’la =

LEMMA 3.5. Let o, be as before A L a, 8 < k). Then it follows
that

e
=1}

y, v
S A oo Awg ABu A c-- A @y = const. 262,
a=2

k-2 times

N ——
where Q* 2 =0 N\ --- N\ Q.
Proof. Noting that o,, = 3, da,b,,, we get

21 0a N\ Bz = Z daw VAN ddlﬂ .
& 8

But from the representations of a,, with respect to {z!, ..., 2"}, we see
that
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2 0m A\ O = Z*d(m ) A d(%)

-5 i(2)2)
= const. 2 .

From this fact lemma is proved. Q.E.D.
Moreover we have the next lemma concerned with the above one.

LEMMA 3.6, Let S(C*) be the unit sphere of C* and js:S(C*) — C*
— {0} be the inclusion. Furthermore let a = (o, -+, ;) and = (B, -+,
B:) be t-multiple indices for any positive integer t such that 1 < o;, f; < k
(t=1,.-..,t). Then we find

(3.16) 7H@*) A dc(lz“?j )=0.
z

where z* = zm...z2% qnd zZ* = zf... %%,

Proof. It suffices to prove (3.16) in case of ¢ =1, that is 1 < a,
B < k. Clearly we get

= 37 (B — 220z A dzF

a,f=1

where 4,, is Kronecker index.
Here let us put

1 — 22, —z%, ..., —Z2%
B —z%, 1 — 722
—z2, ceey, 1 — z*z*®
Then
@ 8
Vv Vv

7E@% ) = const. > 4,,(B)dz' N\ --- N dz¥ AN dZ N --- N dEF,
a,B

where 4,,(B) denotes the (a, p)-cofactor of B. Now we find

d’( z"‘Z") — dzz* 2% ( Z . dzf)

2] |2[* R
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And so it follows that

i@ A a(22)
2

= const. {3} ((—1)«~14a,(3) -3 (_1)6-1zazw,,,(3))
I3 3
7
V
XA A oo AdeEAdEA - /\dz"}.
Fixing 7 in the right hand side of this equation, we obtain

<—1)a-l(A.,T(B> -3 (—1)“"2"2"115,(3))

317 = (D3 (=D — 2204, (B))
_ (et B =1—|2F, ifa=7
{0 , otherwise.

But as |z| =1 on S(C*), the right hand side of (3.17) equals to zero

for any 7, so that
azp
j?(d/( TZT ) A .Q) —0.

Similarly we can prove

jg(d"(%) A=) =0,

Thus from d¢ = i(d”’ — d’), (8.16) follows. Q.E.D.
Now we are in a position to prove (3.7)’ For simplicity, set

§— =00

I = dlog ([ No(doo) A lim de f br-i(KI4(E), D9 ; PO)ds .

By the definition of the canonical section 4 (see the above of (3.9)),
log ([T§ Npd oz, 2, - - -, 2%) = log |z,
and so we find from (3.15) and Lemma 3.5 that

azh
318) I= 3 yo.diloglef A ddc(m-l- |zz|z“> + Dy,
13
a=(a1,*++,az)
B=(B15:8¢)
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where the @,,, are functions on the base space U (c V), and F(@,,_,)
< 2k — 2. Further using d’Q = d”’Q2 = 0, it follows from (3.18) that

I= Z‘i Vs — (& og 2P A 24 A a( lzzlii )

azp
oA d“(ﬁ» + Dy, .

|zIZt

As before let ¢ be the inclusion of S(#;) into (E:), Then by (3.16),

azf
Al=3 zfg"(—\b,ﬁ,t)dcf‘g‘(dc log |2 A Q52 A d(l_zzl%)) + a0, , .
a,p

And noting that ., is constant on each fibre of II;: (Ep, — V, we see
that the fibre integral P, (:51) of (41 is zero;

P(fD) = 0.

Thus the fibre integral of the first term in the right hand side of (3.7)
is equal to zero and we can prove similarly that other terms are so.

The above facts show Proposition 3.3, and so our main lemma is
proved as stated after this Proposition.

§4. Proof of Theorem 1.9

As in the statement of Theorem 1.9 let V and W be compact con-
nected complex manifolds of dim;V = n and dim;W = k. Moreover let
f be an (IF)-holomorphic map with rank f = k — 1, and let us denote
by 2 the singular set of f (cf. Definition 1.1).

Then in terms of Proposition 1.8 we take an f-form o on W (Defi-
nition 1.7) such that

i) o is a (1,0)-type differential form on W
i) zeros of w is isolated, say, {qi, - - -, @,} and f(2) N zeros (o) = ¢.
iii) % N (zeros of f*w) = {P,, - -+, P,}, where the P, are generic points
of 2.
Let N be a hermitian norm on the holomorphic cotangent bundle T*V

of V and let C,(T*V) be the n-th Chern form defined by N as in §2.
First it is well-known that

“.1) 2(V) = (—D"L C(T*V) ,
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where ¥(V) is the Euler number of V.

On the other hand, as rank f = k — 1, it is easy to see, from the
above conditions i), ii) and iii), that f*(w) becomes the smooth-section of
(T*V), = {vd*V ;v #= 0}, over V—{P,---,P} U U, f *q,;). Moreover
since g, is the regular values of f by ii), (/ =1, - --, m), we can choose the
e-balls U,(p,) with center q; in W such that for each j

S (Ulgp) — Ulqy is a fibre bundle,

and

Ug)NUGg)=¢ fori=j.
Take also the e-ball V (p,) for each p; such that
Vo) N V.(p) =¢ for i+ j

and
V.ipy) N FY(U(q)) = ¢ forl<j<s,1<i<m.

Here put

V,=V— ju V.o, — j(”) FUL)) -

One remarks that f is onto, because f is flat and both of V and W
are connected compact manifold. Then if we write »,(T*V) the boundary
form of T*V with the norm N (Definition 2.4), we have from (2.8) and
Stokes’ formula,

I C(T*V) = lim [ ¢ (T*V)
14 Ve

=0

4.2) = —> lim (F*0)y(T*V)

7=1 =0 Jar-1wetam

+ 3 lim TV

i=1 =0 JaUe(p;

We shall actually compute in two parts (A) and (B) each term in the
last right hand side of (4.2).

(A) Calculation of lim (F*)*n (T*V) .

=0 Jaf~1(Uelgp)

For simplicity set ¢ = ¢q,, and take a sufficiently small ¢, such that
[ (U (@) — U,(9) is a fibre bundle. Let ¢, be fixed. Here we put
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Vo = f—l(Uco(q)) and Wo = U(a(Q) ’

and so f|y,: V, — W, is the fibre bundle. Recall that T'(f): f4(T*W) - T*V
is the bundle map defined by

TN, v) = fFv for (p,v) e fH(T*W) .

Then we clearly obtain the following exact sequence of holomorphic
vector bundles over V,;

0 —> 7(T*W) 2B 5V, — 5 T*V, T FHT*W)) —> 0 .
Put
QVy Wy = T*V,|T(NHSHT*Wy)) .

Since T*V, has naturally the norm N, we can apply the above exact
sequence to Main lemma in §3, so that on (f#(T*W,)),,

4.3) T *9(T*Vy) = qu(FH(T*W Nt Crn(Q(Vo, W) + aF(§) + dy

where 7; is the natural projection of (f#(T*W,)), onto V,. Let f*(w) be
the cross-section of f¥(T*W) defined by

SHo)®) = (p,0s,) for peV.
Hence noting that T(f)f%w) = f*w, we find from (4.3),

([*0)* 9 (T*Vo) = (F'o)*nu(fHT*WoafCo(Q(Ve, Wo)

4.4
“.49 + 7#©) + d(fH@)*y .

Now put

I=Ilim (f*0)*n(T*V) .

=0 Jaf~UUe(q))

First we remark that for any ¢ <e,.

4.5) [ ) 7T*V) = | (F*0) . (T*V)
Af~1(Ue(q)) Af~1(Ue(q))
because of (f*w)(f~Y(U.(q)) < T*V,. Then it follows from (4.4) and (4.5)
that
“4.6) I=Ilim , () * 9 (FHT*W )i C o (Q(Vo, W) + nfé} .

=0 Jaf~1(Uelq

https://doi.org/10.1017/5S0027763000021784 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000021784

HOLOMORPHIC MAPPINGS 71

First of all we shall show
4.7 lim (FHw)*nre=0.
e=0 Jof~1(Ue(q))
In fact as f~'(U,q) is diffeomorphic to U.,(g¢) X f~(@) and f~'(q) is
compact, we see

of (U@) =oU(9) X [ (diffeo.) .

Here noting that f~'(¢) is the compact manifold of real dimension 2(n — k)
(k> 1) and that & is the (2n — 1)-form on V,, we can prove (4.7) by
virtue of (f*(w))*- =¥ = identity.

Next for the purpose of computations of

lim (F*)* 0 (fH(T* W) N\ Crn(Q(Vo, Wo))

=0 Jaf~1Ue(a))

let Ny be a hermitian norm on T*W and let f*(Ny) be the induced
norm on f¥T*W) by f and Ny. We denote by »,(f(T*W), f#(Ny)) the
boundary form of f#(T*W) associated with the norm f*(N,). Then the
naturality of boundary forms [6] shows that

4.8 n(FHT*W), fH(Nw) = [*u(T*W, Nw)) ,
where f: fY(T*W) — T*W is the map defined by
J,v)=v  for (p,v)e fH(T*W) .

Furthermore let N* be any hermitian norm on f*(T*W). Then we have
the following homotopy lemma of boundary forms.

LEMMA 4.1. With the above notations,

2 (SHT*W), N¥) — 9u(S(T*W), fH(Nw))

4.9
.9 = 7#E) + dye,  on (SAT*W)), .

Proof. It is easy to see from (2.8) and the homotopy lemma of
Chern forms [1] that for some &, e A%*~Y(V),
(4.10) dni(SHT*W), N¥) = dp(fH(T*W), f*(Nw)) = 7F (€ .

But since the fibre integral of any boundary form of a holomorphic
vector bundle is equal to —1, we can prove (4.9), combining (4.10) with
Lemma 3.2. Q.E.D.
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Applying here 7, (f*(T*W)) to (4.9), we obtain from (4.9) and fo f¥(w)

=wof,
4.9y (FH @) *n (FSHT*W))

' = [F*o*n(T*W, Ny) + (f{w)*nte, + df(w)*y; .
Let us put

I, = lim (P o) *n(FH(T*Wo) N Co_i(Q(Vo, Wy)) .

=0 Jaf~H(Ue(Q))

Then using dC,_,(Q(V,, W) = 0, we have from (4.9)

I, = lim I*o*n(T*Wo, Ny) N\ Cro(Vo, Wo))

=0 Jaf~1(Usd()

so that from /(U () = U.(9) X f~%(q),

@11 L =lim (j Co s (Q(V, WO)))-(w*»yk(T*Wo, Ny -
aU+(Q)9q’ F-uaq")

e—=0
Here we have the following

LEMMA 4.2. For any ¢ €aU,(q), we get
4.12) [ Cos@o W) = (—1"5®) ,
e

where F is a general fibre of f:V — W.

Proof. Let i, be the inclusion of f-'(¢’) into V. Then as f is fibre
map on f(U,(@) € <e) and Q(V,, Wy) = T*V,/T(NSHT*W,), it is
clear that £.Q(V,, W,) is isomorphic to T*(f~'(¢")). Therefore we find

Coct 2 QVo, W) = Co o T*(f D)) »
where " represents the cohomology class. And also by [2] it follows that
Cock QW W) = ¢5C,_(Q(Vo, W) ,
so that we have
“.13) jf , Cnesl @V W) = (=157 -
1
On the other hand recall that 5 is the singular set of f. Then

Slves: (V= 3) = (W — f(2)) is the fibre bundle and f(2) is the analytic
set of W with dim, f(2) <k — 1. Thus (W — f(2)) being connected, it
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follows that f-!(q) is diffeomorphic to f-(g,) for any q,e W — f(3),
t=1,2. Hence (4.12) is trivial from (4.13). Q.E.D.
Moreover we know in virtue of [1] that

4.14) lim 0¥ (T*Wy, Ny) = —1 () ,
e=0 JaU(Q)
where I,(0) is the degree of zeros of w at ¢. From (4.11), (4.12) and (4.14)
it follows
I = (=D "IN (w) .

Thus

3, lim (f*0) 9o (T*V)

J=1 =0 Jaf~1(Uelgy)
(4.15)

— (___1)n—k+1x(F){:Z:1 Iqj(a))}
= (=D 'y (F)y (W) ,
here we used y(W) = (—1)¥ IW Cu(T*W) = (_1)k{_§:1 Iq,(w)}.

(B) Calculation of lim ([*w)*p,(T*V) .

=0 J aUc(pj)

Let us put p = p; and f(p) = ¢q. Remember that p is a generic point
in the singular set 2 of f. As rank, f =k — 1, we are able to choose
a holomorphic chart ({#/}:_,,U,) at ¢ with 2/(¢) =0, G =1, ---,k) such
that (dz’c f),, ---, and (dz*7'o f), are linearly independent, and so take
a holomorphic chart ({w’};_,, U,) at p such that w' =2/0 f A <j<k—1)
and w/(p) =0 (1 <j<mn. Suppose that f(U, C U, and that o never
vanishes on U, because of o, = 0. Now let

_

(4.16) o= a,dz on U, .
1

J

I

Then from the choice of holomorphic coordinates {z}s., and {w'}:_, it is
clear that on U,

@1 fro=3 {acs + @e N2 aw + 3% @o 2 qwe,

= ow’ ‘ ow

where f* = zkof.

Here let

, = lim j (F*0)*n(T*V) .
AU (D)

&0
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Then we know already that
(4.18) L=—-I,(*).

To compute I,(f*w) let us first examine local properties of the singular
set X about p. From w/==zlof 1<j<k—1) and rank f =k — 1,
we observe

s ark }
4.19 U 02={ =0, =0} .
.19 r owk ow™

Set 3, =U,N2. Since p is generic, we can assume that X, is a com-
plex manifold of dimension n. Therefore there exists an (n — k)-dimen-
sional complex submanifold of V such that ¥, N X} = {p} (transversal at
p) and a3} = S**7, called a complemental submanifold of X, at p.

At first we see that if U, is a sufficiently small neighborhood of p,

(4.20) @z ) # 0 for any p’eU, .
Indeed from fjo = 0 and (4.17) it follows that

@ N® + aof@ P =0, (=1--,k=1),
ow

(@0 N@ (P =0 @="F,--,n).
w

However as o, # 0, it is easy to see that

(@0 D) = ax(®) # 0.
This means (4.20).

— as* asr* .
Now let v = (a0 f) , + -+, ——) be the holomorphic map of U,
ow* ow™
into C*~**!, related with (4.17). Then we have by (4.19) and (4.20).
4.21) zeros of v=23,,
and so
4.21)y zeros of v|X} = {p}.

LEMMA 4.3. Let v be as above and let u,(p) be the obstruction
number of f at the generic point p (Def. 13). Then we have

4.22) L®lzL) = 1) -
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Proof. First we shall recall the definition of ux(p). Let 3f/ow be
the Jacobian matrix of f with respect to the above coorinates {w}?_, and
{#"}t.;. Then

L |0
af — k k k k
O = \ar arr |are . af

ow ow'’ owt| sw*  own

And here

) = j (22) ae

ow

where 7, is the generator of the (2n — k) + 1-th cohomology group
H*=8+*Y(V(n,k; C); Z) of the Stiefel manifold as in §1.
Now let @ be the holomorphic map on U, defined by

0

v

1

0
Then @lfi‘“’} is the map of X} — {p} into V(n,k; C). Moreover we find,

D =

using a0 f # 0 on U,, that Z_f
w

is homotopic to @|;1(,. Therefore
shoip ?
»

we get
4.23) wD = O
32p
But in terms of Lemma 3.7 in [6] we have
J‘uilf dj*’?n,k = f”i‘f 'v*77n.1 = Ip(”lzi‘)-) .
These facts show (4.22). Q.E.D.
k k
Next let u = (aof + @ N2 o f + (@ N
ow' ow*
map of U, into C*°' similar with v. It follows from (zeros of f*w) N U,
= {p} and (4.21) that

) be the

-1

4.24) zeros of ul;, = {p}.

In order to compare I,(u|;,) with the restricted index I o) of w at p
(Definition 1.6) let ~ be the projection of f¥(T*W)|, onto Q(2) = fH(T*W)/
Ker T(f) as denoted in §1. Then by (4.16) it is trivial that
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(4.25) TR, = 23 e NF@OLs, -
LEMMA 4.4. Notations being as above, it follows that
4.26) F@ls, =5 (a0 7 + o N2 @,

. and that {f*dz))|s,}izi is @ base of Q)2)|:,.

Proof. Clearly {f%(dz9}i., is the base of f#T*W)|U,. Here let
6 = X b, f%(dz") be any section of fT*W) on U,. Then

1O = 53 (b + ool Jaws + b2 awt 4 o+ g

But since —357 =0on 3, (a=k, - --,n), T(f)@ = 0 means that b, = —b,

af ont,forj=1,...,k—1. Thus we see thatlf—glk?f"(dzi) — f¥(dz")
=1 w

is the base of Ker T(f)|2,. Here the second statement in Lemma 4.4
is proved. Moreover as

fa =5 2L @) on g,

we can prove directly (4.26). Q.E.D.
From the above lemma we obtain the following

COROLLARY 4.5.
4.27) I(@) = I(uls,) .
Finally let us put
= (v, u) .
Then it is trivial from (4.17) and (4.18) that
(4.28) I,(f*w) = 1,(D) .
Under the above preparations we are able to prove the following
PROPOSITION 4.6.

(4.29) I(f*0) = p,(0) (o) .
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Proof. From (4.22),(4.27) and (4.28) it is enough to prove

(4.30) L, w) = L,@ls)-1,ls1) .
However as we can assume U, = X, X Y}, we observe from (4.21)’ and
(4.24) that
(v,u) is homotopic to (v]zp,ulxé) .
And from elementary facts of Topology we have (4.30). Q.E.D.

The above proposition shows in terms of (4.18)
(4.31) lim (f*0)* 9 (T*V) = — p,(0)] () .
=0 JaUe(p)

Now we shall complete the proof of Theorem 1.9. First of all it
holds from (4.2), (4.15) and (4.29) that

¢ ~
JV Co(T*V) = (=" () (W) + Zl 11, (0) ,
7=
and so from (4.1) we can prove (1.4) in Theorem 1.9.

§5. Appendix

In this section we shall prove Proposition 1.8 in §1. Before prov-
ing this fact we review definition in [5]. Let N be a smooth manifold
and 72N be the real tangent bundle of N.

DEFINITION 5.1. Let S = {S;}ie; be a partition of N, that is,
N=1icsS:(S;NS;=¢ if ¢+ 7). Then the partition S is called a
stratification of N when the following conditions are satisfied;

a) I is countable,

b) each S; which is called a strata is a regular submanifold of N,

¢) if for any non-negative integer p we put

I(p) ={iel;dim S, < p},

then union ez S; is closed in N.
One notices that by conditions a) and ¢) S is locally finite.
Let S = {S;}ic; be a stratification and let J<I. Put S; = {S;;7¢eJ}.
Then we set

]SJ] = USj .
JjEJ
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Now let S be a stratification of N. Then for any zeN, T,(S) is
defined by

T.S = the tangent space T.S; of a strata S; containing 2. With
this notation we state the following

DEFINITION 5.2. Let E be a C~-vector bundle over N, and let I'..(F)
be the set of all smooth sections of E. Suppose that a stratification
S = {S;}ic; of E is given. Then a section we I' (F) is called transversal
to S if and only if

(5.1) (O*(TxN) + Tm(ac)S = Tw(x)E .

We denote by #(S) the set of all transversal cross-section of E.

Now let us return to the proof of Proposition 1.8. Let V and W
be compact complex manifolds of dimeV = n and dim;,W =k, and let
f be an (IF)-holomorphic mapping of V into W with rank f >k —1 as
in §1. When s is the linear map of f*T*W) onto T*W defined by
f@,v) =v for any (x,v)e fY(T*W), we observe that f is proper, be-
cause V is compact. Here let 2 be the singular set of f. Since 2 is
the analytic set in V of dim;¥ =k — 1 and f is of rankk — 1 on 2%,
the closed subset Ker T(f)|; of f*(T*W) becomes the k-dimensional ana-
lytic set, where T(f): fY(T*W)— T*V is defined as follows; for any
(p,v) € fHT*W), T(N(p,v) = fFv. For simplicity set

(5.2) L(Z) = f(Ker T(N);) .

Then as f is proper, we find from the proper mapping theorem ([6])
that L(2) is the analytic set of T*W such that

(5.3) dim;, L) < k.
The next proposition is due to Whitny [8].

PROPOSITION 5.3. Let M be a complex manifold and X' be an ana-
lytic set of M. Then M has a stratification S = {S;}icr such that M — 3’
is a strata of S and S; — S; C Ujern S; 0 < dimy S;) for each tel.
We call stratification in this proposition 3’-stratification of N.

At first we get the following

LEMMA 5.4. All notations are as before. Let X, be the singular
set of 3 and let L(Z,) = f(Ker T(f)|s,). Further let S(L(Z,) be a L(Z)-
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stratification of T*W. Then for any o< F(S(L(Z,)) we obtain

(5.4) o '(L(Zy) =¢ .
Proof. Assume qc o '(I(2;). Then it follows from (5.1) that
(5.5) w0 (TEW) + TE S, = TE (T*W) ,

where S,(2 w(q)) is a strata of S(L(Z))).

However S; is contained in L(X;) with dim, L(Z,) < 2(k — 1), and so
dim T2, S; < 2(k —1). This is contrary to (5.5), because W is of real
2k-dimension. Q.E.D.

Secondly it follows the following

LEMMA 5.5. Let S(L(2)) = {Si}ier be an L(2)-stratification of T*W
and let us denote by SI(L(2)) the set of stratum S; such that dimy S; > 7.
Then we find that for any we F(S(L(2))),

(5.6) o }(|S*(L(2))) s a finite point set.

(As dimy L(Y) < 2k and S is L(2)-stratification, |S*(L(2))| coincides with
L(>).)

Proof. Take an arbitrary strata S; of real dimension 2k. Then
o (S;) is discrete and without accumulating points. Indeed discreteness
is trivial, since o is transversal to S;. On the other hand suppose
{¢.} € ©™X(S,) converges to a point ¢, Then w(g,)eS; and so w(g,) e S;
—S;. And from the definition of L(J)-stratification, w(q,) € |S*~(L(2))|.
But we can prove similarly as Lemma 5.4 that

o H(S* L)) = ¢ .

This show »~'(S;) has not accumlating points. Next recall S is locally
finite. Noticing W is compact, we see that {i; 0 (S, # ¢} is finite.
Therefore Lemma 5.5 is proved. Q.E.D.

Now, f(2) being the analytic set of W with dim; f(3) < 2k — 2,
the zero-section of T*(W)|;;, is also analytic set. We write for f(2)
this section without confusion. Then with respect to f(2)-stratification
S(f(2)) we can also prove that

B.7D o|sz, is non-zero for all we F(S(f(2))) .

On the other hand we know transversality theorem in [5] that
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D) = SN N fSUIEN) N #(SEL(Z))

is empty.
Here let us take w e D(X). Then from the above results it follows that

(5.8) o 1S non-zero on f(2),
(5.9 o(f(2)) & L),
and

(5.10) o~ (L(2)) is finite, say {q,, - -+, ¢n}, note (g;€ f(2)) .

Now Proposition 1.8 is trivial. Indeed let ¢; e 0 '(L(2)). This means
that T(f)(f*(w)(p)) = 0 for any pe 3 N f~'(q;). Sincefrom (5.9), q; ¢ f(Z,),
we observe that 3 N f~(q,) is in the regular points set of X and finite,
because f has only isolated singularities. Moreover it is clear from (5.8)
that o(q;) 0@ =1,...,m). Here v satisfy condition i) and ii) of f-
forms (cf. Definition 1.7). This completes the proof of Proposition 1.8.
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