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EIGENVALUES OF THE KLEIN-GORDON EQUATION

by BRANKO NAJMANf

(Received 25th August 1981)

Consider the Klein-Gordon equation

(1)

where q, Aj are real valued functions on R", m and e positive constants. Equation
(1) describes the motion of a relativistic particle of mass m and charge e in an
external field described by the electrostatic potential q and the electromagnetic
potential A = (Aj); units are chosen so that the speed of light is one.

Assume
qeL°(R"), AjeL&LR") (2)

Denote by K the operator of multiplication by eq in ^ — L2(Rn); K is a bounded
selfadjoint operator. H is the natural selfadjoint realisation of

The equation (1) can be written as

d2u(t) „.

i n = H-K2

dt2 -2iK
dt

(3)

or, using the notation

u(t)

. du(t)
— i •

dt

we have

(4)

fThis research was done while the author was visiting the Department of Mathematics, University of
California, Berkeley, with the support of a Fulbright grant and SIZ VI SRH.
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182 BRANKO NAJMAN

It is easy to see that (3) has an elementary solution of the form u(t) = eiX'u, we?, if
and only if (4) has a solution of the form

U(t) = eiX

This is the case if and only if X is an eigenvalue of si; equivalently if and only if

{X2-2XK-H)u = 0. (5)

We say that X is an eigenvalue, u an eigenfunction of the Klein-Gordon equation if
(5) holds. It is an eigenvalue of geometric (algebraic) multiplicity k if it is an
eigenvalue of si of geometric (algebraic) multiplicity k; here the geometric
(algebraic) multiplicity of an eigenvalue of a linear operator is the dimension of the
eigenspace (of the space spanned by eigenvectors and the associated vectors). The
eigenvalue is simple if it is of algebraic multiplicity one and it is semisimple if its
algebraic and geometric multiplicities are equal. If X is a nonsemisimple eigenvalue,
then there is an eigenfunction u and a function v such that (X2 — 2XK — H)v =
2{X-K)u.

If H is positive definite all the eigenvalues are real and semisimple (this follows from
the fact that si is selfadjoint in the Hilbert space to be defined below). In general, there
might be nonreal and nonsemisimple eigenvalues; this is the so-called Klein paradox. It
cannot happen as long as ||x||<m (i.e. as long as q L»<m/e; in the usual units m/e
should be replaced by mc2/e). It is known [6] that if q L» < m/e^/2 then si is a spectral
operator.

We shall show that, as should be expected, ||<?||L» is not so important; what
matters is diam q = ess sup q — ess infq. If diamq<2m/e then all the eigenvalues are
real and semisimple; there are no eigenvalues in certain intervals; si is a selfadjoint
operator in an appropriate scalar product. A real nonsemisimple eigenvalue can
occur if diamq = 2m/e; however an eigenfunction must satisfy some additional, very
restrictive stipulations, so this case is exceptional. For example if 4̂ = 0 then all the
eigenvalues are semisimple even if diamq = 2m/e. If A=0 then si'1 is a real operator
which is positivity preserving if q is of constant sign (more generally if diam q is small
enough). In this case some interesting phenomena occur. Assume q is negative and H-
compact so the essential spectrum of si is [ — oo, — m]u[m, oo). Then all the discrete
eigenvalues originate at m and move to the left as q decreases. The smallest eigenvalue is
simple—it is a "ground state". When diam q = m/e, there can be eigenvalues appearing at
— m and moving to the right as ||g||jr.» increases further. The largest of such eigenvalues
is simple: it is another ground state. Thus we have (at most) two ground states.

The Klein paradox occurs when two ground states meet or when the right
ground state hits — m or the left ground state hits m. A precise statement
concerning the multiplicity of such eigenvalues can be made.f

|There is some overlapping of our results with those of K. Veselic in [11].
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EIGENVALUES OF THE KLEIN-GORDON EQUATION 183

Define 3^ = 3)(Hlt2)x'S; / is a Hilbert space in the norm ||u|| = (||^S-/2M1 ||
2

+ ||U2||2)1/2 where u = [ul u2]; we denote the norms in #e and <$ by the same
symbol, since it will always be clear to what space a vector belongs.

Define si on 2>{si) = 2>(H) x 3i(H112) by

LJ
If H is positive definite, the norm in Jf can be defined using H instead of H;
is selfadjoint in the corresponding scalar product.

If X =£0 define

-P, KX = K-X, y , = on

Then six = Sfisi£/'lx-XI. Thus /i is an eigenvalue of si if and only if \i — X is
an eigenvalue of six. This can be seen equivalently by setting u(t) = eatv(t) in (3).
Then v(t) satisfies (3) with K,H replaced by KX,HX. This translation of spectral
parameter represents the arbitrariness of choosing the zero potential.

Our results are contained in the next two theorems.

Theorem A. Let min a(K) = \je ess inf q = k2, max a{K) = l/e ess sup q = k1.

(a) The set of all XeR such that Hx is positive semidefinite is either empty or a
closed interval [A_,A+]. / / the latter is the case, then Hx and Hx+ are semidefinite,
Hx is positive definite if X_<X<X+ and indefinite if X<X_ or X>X + .

(b) There are no eigenvalues in (X_,X+) if X_ <X + .

(c) / / kl—k2^2m then X-<kl—m^k2 + m<X+ and all the eigenvalues are real
and semisimple.

(d) If X-<X+ then k2>X_ implies X+}tm, kY<X+ implies X-^—m.

(e) All the honreal and nonsemisimple eigenvalues are contained in

Theorem B. Assume additionally A = 0.
If X_<X+ then A_,A+ can be only simple eigenvalues. If X_=X+=X then

k2^XSBkl, |2|^m. / / X is an eigenvalue, then k2<X<kl and it is an eigenvalue of
geometric multiplicity one and algebraic multiplicity one or two. If

q2 is A2-compact (5)

and X_>—m (X+<m) then A_ (respectively X+) is an eigenvalue. If X_=X+=X then
X is an eigenvalue (even if\X~\ = m). / / |X |<m the algebraic multiplicity of X is two.

https://doi.org/10.1017/S0013091500016898 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500016898


184 BRANKO NAJMAN

Proof of Theorem A. For ue'S with ||w|| = l denote pu(X) = — {Hxu\u) = X1

— 2?.(Ku\u)—(Hu\u). If pu{X) has real zeros denote the smaller by A_(u), the larger
by X+(u). If Xo is an eigenvalue and u0 an eigenfunction then pUo(Xo) = 0.

Now define

X+ = i n f X+(u), A _ = s u p X_(u).
ll»ll = i ll«ll = i

Since H is unbounded, pu must have real zeros for some u, so A+ and k_ are well
defined. Assume l_ ^X+ and let A_ g l ^ / l + . For any « g f with ||«|| = 1 we find

This means (H / 1 M|M)^ (A + — X){X — A_)||w||2 for every M E ^ . We conclude that Hx is
positive definite if Xe(X_,X+). If X>X+ or A<A_ then there exists u such that
pu(A)>0 (this is the case as soon as X>X+(u) or J.<A_(u)), hence (Hxu\u)<0 so HA

is indefinite. Now Hx is analytic in X and therefore HA_ and Hx+ are semidefinite.
This proves (a); part (b) follows from (a).

Now let A be a nonsemisimple eigenvalue. Then we can find u, ve'S with ||u||
= 1, Hxu = 0, Hxv = 2(K-X)u, hence pu(X) = O and ((K-X)u\u)=$(Hxv\u) = O. Since
p'u(X) = 2((X-K)u\u), it follows that p'u(X) = 0. This implies X-(u) = X+(u) so the
discriminant of pu is zero. If u is an eigenfunction of a nonreal eigenvalue then
evidently pu has no real zeros, hence its discriminant is negative.

From this it follows that an eigenvalue X is real and semisimple if and only if
the discriminant of pu is positive for every eigenfunction u with ||w|| = l. The
discriminant is

(Hu\u) + (Ku\u)2=(Hu\u)2-qK(u) where qK(u) = \\Ku\\2~(Ku\u)2.

Evidently gK(u)^||K|| ; if ky = —k2 the equality holds if and only if
(Ku\u) = 0. This is possible if and only if

K M 1 = | | K | | U 1 , KU2= — | |K | |M 2 .

Kut

Because of qK+x = qK we conclude that for arbitrary K \\Ku\\2—(KU
for all u with ||M|| = 1; the equality holds if and only if M = M1 + U2, |
= /C,M,-, i = l , 2 . Therefore the discriminant is strictly positive if k1-k2<2m; it is
nonnegative if kl — k2 = 2m; if there is an eigenfunction u such that pu has double
zero then this zero is necessarily equal to (Ku\u) = (k1+k2)/2. In this case

fiu = (K — ko)
2u = m2u, « = u1+u2, ||«i|| = ||"2||. Xu,-=/c.u,-, i =1,2 (6a)

holds for some M ^ O and ko = (kl + k2)/2.
If ||/C —A||<m then HX = H—(K — X)2 is positive definite; this is the case if kl

— m<X<k2 + m. This is possible only if k1—k2<2m; if this is the case and kt— m
is an eigenvalue, then obviously X-=kl—m and Hu = m2u = {K — kl+m)2u for any
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EIGENVALUES OF THE KLEIN-GORDON EQUATION 185

eigenfunction u. Since 2m — k1 + K}±2m —
there is u =/= 0 such that

we conclude that in this case

= m2u, = klu.

In the same way, if k2 + m is an eigenvalue, then there is w=£0 such that

Hu = m2u, Ku = k2u.

Now by Kato's inequality ([7, II]) (ft — m2)u = 0 implies

(6b)

(6c)

— ieAj)u
Bxj

hence |u| is a constant, so u = 0. Thus (6a), (6b) and (6c) are impossible and the
sharp inequalities in (c) are proved.

Part (e) is proved in [6], and one part of (d) follows from the next lemma; the
other part is proved in the same way.

Lemma. Let Ae(A_,A+) and K^.X. Then X+^.m. Moreover all the eigenvalues in
( — m,m) are nondecr easing functions ofK as long as X ^ 1 > A _ (A_ depends on K).

Proof. Without loss of generality (translating the spectral parameter) we can
assume k = 0. Define

2
on

Then

and
l u\u)tt Re(ul\u2)-fx{Ku1\ul)

2(M|U),

We shall prove that /„ is monotone decreasing for all ueJt? in [O,m/||-K||]. By the
min-max theorem this means that A+(/i)^m for all fj. in this interval (where l+(n)
is A+ associated with stf(n)). Assume K'^K>0, H — K'2>0 (implying A'_<0). Define
J*', ( | )' using K' and let fu(K') = (si ~l u \ u)/2{u \ u), fu(K') = (st1 ~1 u \ u)'/2(u \ u)'. Since
ap(A')r\( — m,m)c(—m,0) it suffices to show /u(K)<0 implies fu(K')<0 (by the min-
max theorem, it follows that the spectrum of si'~v is to the left of the spectrum of

https://doi.org/10.1017/S0013091500016898 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500016898


186 BRANKO NAJMAN

stf~x). This is evident since /u(/C)<0 implies

and the denumerator is increasing while the denominator is decreasing with K.
To prove that /„(//) is monotone denote Re(u1\u2) = a, (Kui\u1) = b, (Hu^u^

+ ||"2||
2 = c, \\KUl\\

2 = d. Then fJM = (a-bn)/(c-dn2), f'M=-h(tt)/(c-dfi2)2 with
h{n) = bdn2 — 2ady, + bc. If u is such that a<0 then h(n)>0 for all n and /„ is
decreasing on [0, oo). If a>0 then /„ is decreasing on [0,/I^M)] where (̂1*) =
ad-J{a2d2-b2ic)lbd is the smaller root of % ) = 0. Now

be be

hence

Remarks

1. If

^m/||K||, so fu is decreasing in [0, m/||/C||] for all u.

q2 is ft1 compact (7)

then K and K2 are i?2-compact, so ae{Hx) = ae(H -12) ([10]), therefore ae{Hx) = \m2

— I2, oo). It follows that (— m, m) n a {si) consists only of eigenvalues which are
increasing (respectively decreasing) functions of q as long as q is positive
(respectively negative) and small enough; if A+<m (or 2_>— m) then X+

(respectively 1_) is an eigenvalue.

2. If ,4 = 0, the conclusion that (6) has no solutions follows also from the unique
continuation theorem except in the trivial case when q is a constant or a step
function attaining only two values.

3. The estimates in (c) can easily be strengthened. Note that HA

-XfXx)H
1'2 where Xx = KkH~112. Hence if | | ^ | | < 1 then Ae(A_,A+). Now Kato's

inequality implies that a sufficient condition for ||^fA||<l is | | ^ A / | | 2 < | | V | / | | | 2

+ m2| | / | | 2 for every feHl(Rn). Now ||V|/| | |^||//2r||, so a sufficient condition is (K
2 2 + l/4r2,i.e.

X- m2
4I
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EIGENVALUES OF THE KLEIN-GORDON EQUATION 187

In other words, if q1{x) = q(x)-y/(m
2 + l/4\x\2), q2(x) = q(x) + ̂ /{m2 + l/4\x\2) then

ess sup ^ ^ A - , essinfg2!gA+.

4. I f l _ = A + = 3 and if X is an eigenvalue, it cannot have a Jordan chain of
length more than two. To prove this, we can again assume 1 = 0. Suppose j / e , = 0,
ssfei = ei-1, i = 2,3 where e, = [x; y,]7*, i= 1,2,3. We immediately find yi=0, yi=xi-1,
i = 2,3 and / / x x = 0 , Hx2 + 2Kxl=0, Hx3 + 2Kx2=xl. Multiply the second equation
by x2, the third by x t . We find

2(KXi\x2)=-(Hx2\x2), 2(Kx2\xl) = \\xi\\
2,

i.e. | |x1 | | 2= — {Hx2 \x2). Since H is semidefinite we have x 1 = 0 , so e 1 = 0 and this is
a contradiction.

Proof of Theorem B. If X_ is an eigenvalue, the corresponding eigenfunction of
Hx is a ground state of a Schrodinger operator (note that (H + 21K + a)~1 is
positivity improving for appropriate a; cf. [7, IV]); therefore it is positive and the
eigenvalue is simple.

Note that.(5) coincides with (7) if A = 0 so we can use Remark 1 above to prove
that if 1_>— m then it is a simple eigenvalue. All that is left to prove are the two
last statements (the rest follows from Theorem A(e) and Remark 4 above). Assume
X= — m (X= m is treated in the same way). Pick Xo > — m such that HXQ is an
indefinite operator with 0ep(HXo) and with one dimensional negative part; define
H(n) = H — H2(K — l0)

2 so that H(l) = HXo. Since H(fi) is analytic in /z, there is no<l
such that 0ep(H(fi)) and H{[i) has one dimensional negative part for all

io, 1]. Define

Then Jtfin) is a Pontrjagin space of index 1 ([1]), s/(n) is selfadjoint in
Therefore <tf(n) has a one dimensional invariant subspace ^C(p-) such that [ | ]M is
nonpositive on JS?(/z). It is easy to see that this subspace is just the eigenspace
associated with the simple eigenvalue X+{n). Since K((i)^K{l) we have A+(/x)>A_(/z)
= — m — Ao. Now /C(/i) and H(fi)'1 converge in norm to K(l) and H(l)~l, [u|i;]M

converges to CM | yJ 1 (f°r a a u> veJtf) as ^-»1. The results of [2] imply that
\imli^1A+(ix) = X is an eigenvalue of stf(l) = s/Xg. This eigenvalue cannot have a
Jordan chain of length larger than three. Now X+(p) is less than zero so X_0; in
fact X<0 since Oep(HXo). If [u Xu]T is the eigenvector associated to X then it is
nonpositive in Jt{l), i.e. ((HXg + 22)u\u)<0. This immediately implies X=A+(1)= — m - / 0 .
It follows that — m is an eigenvalue of jrf.
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188 BRANKO NAJMAN

Similarly, if \X\<m set H(n) = H-n2{K-X)2

? \ , d r\ on

Then l i m ^ ! A±(//) = 0. Since A±(^) are simple eigenvalues of stf(n) by the above
argument, it follows from the analytic perturbation theory ([4]) that zero is an
eigenvalue of ^(l) of algebraic multiplicity at least two. Now stf{\) is similar to
stf — X~, so the algebraic multiplicity of Xis exactly two.

Remarks

1. The simplicity of eigenvalues X± follows also by another argument. Let
Ae(A_,A+). Then H^1 is positivity improving (Theorem XIII.45 in [7, IV]). Define
@x as the extension of si x to (S1: 3>{@lx) = 9){$$ x\ !%xu = s& xu, @)xu is regarded as a
vector in 'S1. Then 8&x is closable and its closure is boundedly invertible. The
inverse is

. Y-IH-^K, H~xn

L / o J-

°. T]
Now

is positivity improving, so there is a real number v such that v + ^ A
 1 is positivity

improving. This implies that if s p r ^ 1 is equal to the largest eigenvalue, then this
eigenvalue is simple. It is easy to see that the eigenvalues of stfx and 8ftx coincide.
Therefore we conclude: if X+ is an eigenvalue of stf, then 1/(A+ —A) is the largest
eigenvalue of $Jl, hence it is simple. Since

the same is true for the smallest eigenvalue of &x
l-

2. If \\q\\Lco is small enough and q tends to zero at infinity, then there are no
eigenvalues ([5]).

3. Sufficient conditions for (5) can be found in [7, II] and [8].

4. If /l=/=0 and X+ is a discrete eigenvalue, then X+>X°+ where X\ is X+ for the
case A = 0. In fact, assume Hx+u = 0, i.e.

/ d V
D2u=(K-X+)2u-m2u where D2 = £ U ieAA

j \OXj
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By Kato's inequality (generalised to forms: [9]),

in the distribution sense. It follows that ||grad|u||2 — ||K|w| ||2 + 2/l+(K|u| | |M|) +
(m2 — k2

+)\\ \u\ | | 2 ^ 0 , so Hio is not positive definite; hence k%<k+. Analogously k-<l1.
In other words, the magnetic potentials postpone the occurrence of the Klein
paradox.

5. If |X|=m, then jaf is a spectral operator (the same conclusion trivially holds if
|Xj<m): s$ = y-\-Jf where Sf is a spectral operator of scalar type and jV = 0 (if
the algebraic multiplicity of 1 is one) or Jf is an operator of rank one (if the
algebraic multiplicity is two).

To prove this pick k0 such that Oep(HXo) and Hlo has one dimensional negative
part. Define

Then X~ = (jf, [ | ]) is a Pontrjagin space of index 1. It is sufficient to prove that
the principal subspace (i.e. the generalised eigenspace) X associated to X is
nondegenerate in Jf"; the construction and the facts we use can be found in [6]
and its references). If dim X = 1 this is evident; then stfx = Xx implies [x x] < 0. If
d imZ = 2 let s/e = Xe, s?f = Xf + e. We find

Now [e | e] = 0 (this is a general fact);

so X is nondegenerate.

6. From Theorems A and B we have the following picture: assume A = 0, q is
positive and zero at infinity. Consider fiq and increase \x from zero to infinity. As
long as \i is sufficiently small, there are no eigenvalues. For some fi0 a negative
eigenvalue appears at — m and moves to the right as n increases. After some time
it is (possibly) followed by another eigenvalue appearing in the same manner, etc.
The largest eigenvalue X-{n) remains simple. All the eigenvalues move to the right
until l-{n) becomes zero (this cannot happen as long as ^<||q||L»/e). As \i
increases further the eigenvalues are not monotone in \i any more; it is possible
that eigenvalues emerge at m. If this is the case, the smallest of them, A+(/*), is
simple. As /i increases, two cases are possible. In the first case l+{n) and A-(p)
meet at k, X is between — m and m, to produce an eigenvalue of geometric
multiplicity one and algebraic multiplicity two. If n is increased further this
eigenvalue splits into a nonreal pair, symmetric with respect to the real axis (this
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190 BRANKO NAJMAN

follows from the analytic perturbation theory ([4]); the author is indebted to Prof.
K. Veselic for this remark).

In the second case A_(//) hits m (l+(n) cannot hit —m by (d) of Theorem A). In
that case an eigenvalue of geometric multiplicity one and algebraic multiplicity one
or two is produced.

The last statement is particularly interesting since it concerns an eigenvalue
embedded in a continuous spectrum; such eigenvalues are usually difficult to handle.
Thus the Klein paradox occurs for the first time either by a collision of simple
eigenvalues A.+(n) and A_(/i) between — m and m or by the "negative" eigenvalue
A_(/i) entering the positive essential spectrum at m.
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