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Abstract

Table-to-text generation aims to generate descriptions for structured data (i.e., tables) and has been applied
in many fields like question-answering systems and search engines. Current approaches mostly use neu-
ral language models to learn alignment between output and input based on the attention mechanisms,
which are still flawed by the gradual weakening of attention when processing long texts and the inabil-
ity to utilize the records’ structural information. To solve these problems, we propose a novel generative
model SAN-T2T, which consists of a field-content selective encoder and a descriptive decoder, connected
with a selective attention network. In the encoding phase, the table’s structure is integrated into its field
representation, and a content selector with self-aligned gates is applied to take advantage of the fact that
different records can determine each other’s importance. In the decoding phase, the content selector’s
semantic information enhances the alignment between description and records, and a featured copy mech-
anism is applied to solve the rare word problem. Experiments on WikiBio and WeatherGov datasets show
that SAN-T2T outperforms the baselines by a large margin, and the content selector indeed improves the
model’s performance.
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1. Introduction

Generating descriptions for structured table data is an essential task for natural language genera-
tion, aiming to take table data as input to generate text that adequately and coherently describes
these data (Parikh et al., 2020). It has been applied in many domains, typically including weather
forecasting, question-answering systems, sports event broadcasts, and biographical writings. For
example, a summary text needs to be generated in a sports event, based on real-time and detailed
game data, to present to the audiences quickly.

There are some differences between table-to-text generation and the broader task of text gen-
eration (e.g., machine translation; Zhang, Xiong, and Su 2020) and usually need to solve two levels
of problems (Wiseman, Shieber, and Rush, 2017):

1. Select the appropriate subset of data to describe. Unlike general text sequences, tables
often contain additional information such as fields, values (linguistic and structural), and
table titles. For example, when writing a biography for a person based on the data, we will
firstly determine which ones to be included from a large amount of confusing and trivial
information.
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2. How to present comprehensive and precise information based on refined semantic infor-
mation. In a table where only a few of the vast records are suitable for the final output,
generating coherent and relevant text is the ultimate goal of this task. The second prob-
lem lies in arranging the order of them correctly. Understanding these latent semantic
structures and then refining them is the foundation for the table-to-text generation.

The deep learning systems based on the neural network language models (NLM; LeCun et al.,
2015) blur the boundaries between these two processes and modularly handle both subtasks
through an end-to-end system (Zhang, Zhang, and Yan, 2019). However, Wiseman et al. (2017)
find that although the NLM-based approaches can generate descriptions fluently, they are still not
as accurate as the template-based systems in selecting the subset of records and yet have room for
improvement. Current neural language models proposed to solve table-to-text generation mainly
rely on the encoder-decoder structure (Sutskever, Vinyals, and Le, 2014) and attention mecha-
nism (Bahdanau, Cho, and Bengio, 2014). Mei et al. (2016) propose a selective-generation method
with an encoder-decoder-aligner structure to generate weather forecasts, using a pre-defined cor-
rector model to correct the dependencies between the records and the text. Lebret et al. (2016)
model the fields and local and global conditioning in the WikiBio dataset based on an n-gram
model and improve the effect. Liu et al. (2018) use dual attention and a flexible copy to solve
the dependencies between records and text, and finally improve the effect by about 10 points
than the baseline. Puduppully et al. (2019) improve the RotoWire dataset’s outcome by model-
ing the generation as content planning and surface realization. Bao et al. (2019) have made some
improvements on WikiBio using the encoder-decoder structure and conditional copy mechanism
for handling text alignment and rare word problems; they propose a new multi-line tabular dataset
WikiTableText. These works have inspired our work. However, there are still some problems to be
solved: tables often contain complex structural information, and the alignment from the attention
vector would gradually diminish in generating long text, so the content of the records cannot be
extracted well (Chen et al., 2020a, 2020d).

To this end, we propose a novel generative model based on the encoder-decoder framework
and attention mechanism, SAN-T2T, using long short-term memory network (LSTM; Hochreiter
and Schmidhuber, 1997) to process the complicated structure in the table. In the encoding phase,
we integrate the table’s structure into its representation and add a position gate to the cell state of
the LSTM unit. Then we apply the self-gated content selector to utilize its reciprocal inference (i.e.,
different records may determine each other’s importance in the table’s structure) and an LSTM
decoder to generate the description. In the decoding phase, the semantic vector from the content
selector will enhance the alignment between the output and input, and a featured copy mechanism
is applied to alleviate the rare word problem.

Our contributions are as follows:

1. We utilize the fields’ position to enhance the decoder’s ability to extract structural
information from the attention mechanism.

2. The gate mechanism is used to determine the importance of mutual decision-making
between different fields in advance. The modified attention vector determines the amount
of information that each timestep in the decoder obtains from the source sequence.

3. In the inference phase, the most relevant words are copied from the source sequence based
solely on the attention vector to alleviate the problem of rare words.

4. Finally, we also experimentally compare the effect of beam search on the model’s perfor-
mance.

We have performed experiments on SAN-T2T with the Bilingual Evaluation Understudy
(BLEU) and recall-oriented understudy for Gisting evaluation (ROUGE) metrics. Results and
attention visualizations show that SAN-T2T can precisely understand the table’s content and
structure and then generate comprehensive and correct descriptive text.
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2. Related work

Table-to-text generation can usually be divided into two independent modules (Wiseman et al,,
2017):

1. Content selection (CS). Select an appropriate subset of related records to be described from
the source table data. Each record has a wide range of complicated and aggregate statistics,
with only a small subset of this information having a positive influence on the description,
the CS component is to choose the subset which works properly.

2. Surface realization. Generate descriptions for these selected subsets. For the chosen records
from the CS component, semantic information along with other features should be
obtained precisely.

Many approaches have been proposed to solve these two problems. There are some typical
methods for CS, such as Barzilay and Lapata (2005) to build this by aligning the records and text.
They treat CS as a collective classification problem and build links between entities with similar
labels to consider all candidates simultaneously rather than select each item separately. Surface
realization is usually regarded as obtaining semantic information from the given feature repre-
sentation and then generating text. Reiter and Dale (2000) use various language feature models
and hand-built grammars to design text generators for surface realization. On top of this model,
Reiter (2007) then extended his architecture so that the input of the system was raw data rather
than artificial intelligence knowledge base, and the task was divided into four stages, which were
processed successively. These methods are mainly based on template rules or statistical language
models to solve the alignments between text and records, while most of the recent works combine
CS and surface realization in a unified end-to-end framework (Kondadadi, Howald, and Schilder,
2013; Konstas and Lapata, 2013a; Oya et al., 2014). But it can be considered as a neural extension
of the Probabilistic Context-Free Grammar (PCFG) system in Konstas and Lapata (2013b), with
a more powerful transition probability considering inter-segment dependence and a state-of-the-
art attention-based language model as the linguistic realizer. Wiseman et al. (2018) integrate the
end-to-end model and the rules-based template system, using a hidden semi-Markov model which
is suitable for fragment modeling to learn to extract and use templates, then parameterize these
probabilities with a neural language model, and finally use the Viterbi algorithm to infer the hid-
den states and use them as the template. Jiang et al. (2020) also integrate these two modules and
propose the pipeline-assisted neural networks to conduct table-to-text generation tasks in social
Internet of Things. They analyze records correlation and filter redundant records to make full use
of attention and gate mechanism and to improve CS.

The above-mentioned works all model the table-to-text task on the encoder—decoder frame-
work, which encodes a source sequence into a fixed-length vector from which a decoder generates
the target sequence. The encoder-decoder models aim to solve the problem that previous deep
neural networks cannot handle most sequential problems (e.g., machine translation) because they
can only be applied to solve problems which have fixed-dimensional inputs and targets. Sutskever
et al. (2014) propose the encoder-decoder model which now performs as the baseline for many
sequence-to-sequence problems. They use the LSTM network to encode the input sequence, one
timestep at a time, to obtain a fixed-dimensional vector representation and then use another LSTM
network to extract semantic information from this vector. LSTM network doing well at learning
dependencies from long-range sequences makes it the first choice for the sequence-to-sequence
problems because of the considerable time lags between the inputs and outputs. Though the great
advances in the encoder-decoder framework, there are several shortages either. It encodes the
source sequence into a fixed-length hidden semantic vector, which leads to two problems. First,
it cannot compress the full necessary information into the fixed-length hidden vector. Second,
the previously hidden information will be covered due to the gates in the LSTM unit, making it
harder to cope with sequential problems with long sentences, especially those much longer than
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the average length of the training corpus. To solve this problem, Bahdanau et al. propose the atten-
tion mechanism in 2014 which is now widely used for natural language processing (NLP) and
then explore the promising applications of the encoder—decoder architecture. The attention mod-
els can automatically (soft)-align parts of the source sequence that are relevant to predicting the
target sequence, without having to form these parts as a hard segment explicitly. This is done by
weighing the relevance (alignment) of any entities of the input text and taking such a weight into
account when predicting the result. The idea is built on the hypothesis that background features
could be irrelevant regarding some objects in the foreground, but relevant to others considering
the context. However, such attention approaches are not always reliable; when processing long
or information-complicated sequences, the attention context representation for alignment would
gradually be weakened.

Based on the previous works, the bottleneck of current models for table-to-text tasks lies in the
stage of content planning (i.e., select and order salient content from the input (Gong et al., 2020).
The SAN-T2T model borrows the idea of representing hidden features through the fields and
their corresponding content to describe the structured tables more accurately (Lebret et al., 2016).
However, the n-gram model proposed by Lebret et al. cannot effectively model the distant depen-
dencies in the sequence. Mei et al. propose a Seq2seq model in 2016 which aligns dependencies
between records and text through a pre-defined corrector and use one-hot vectors to represent
features of the records, but due to the limitations of one-hot encoding, their model could not rep-
resent tables with complex structures, such as infoboxes in the WikiBio dataset. Li et al. (2019)
present a transformer-based generation model, modify the latent representation of the record
embedding, and propose two data augmentation methods. To improve performance in CS and
coherent ordering, Puduppully and Lapata (2021) propose a neural model with a macro planning
stage followed by a generation stage reminiscent of traditional methods which embrace separate
modules for planning and surface realization.

To address the problem of out-of-vocabulary (OOV) words appearing in the records (including
some special entities, names, etc.), See et al. (2017) and Gu et al. (2016) design the copy mecha-
nisms. When generating certain special terms, the OOV words could be copied from the source
sequence to the target text. Sha et al. (2018) design a linking mechanism with link-based and
content-based attention to model the content order, a self-adaptive gate to balance these two lev-
els of attention, and then utilize a copy network to solve the OOV problem. Liu et al. (2018) extend
the work of Sha et al., by using dual attention to align dependencies between records and text, and
the word-level attention is focused on the alignment between the output text and input data, while
field level is more concerned with that between the text and the overall structure of the table. Qin
et al. (2018) establish the dependencies using the method of sequence labeling, regard labeling the
semantics of the vocabulary as a hidden variable, and design a hidden semi-Markov model for
learning and inference. Their model can learn more latent semantic information while retaining
interpretability. Wiseman et al. (2017) propose a new extractive evaluation metric and a brand new
dataset RotoWire, while using joint and conditional copy mechanisms to handle the OOV prob-
lem. Later, Puduppully et al. (2019) model the generation task as content planning and surface
realization, where content planning is used to find a subset of records that keep important roles
in the source data and plan a reasonable order to describe these records. Bao et al. (2019) design
a model based on the encoder-decoder framework, focusing on using copy network to deal with
the problem of rare words, but their models do not solve the problem that the attention mecha-
nism cannot make good utilization of the records’ structure. To alleviate the training difficulty and
consumption, Jean et al. (2015) make use of the attention vectors to track the origins of all target
words; Luong et al. (2015) use unsupervised alignments as the word dictionary to post-process
the translation and replace the unknown with the source words. Then Liu et al. (2020) use the
pointer-generator network to handle the problem of rare words; their model can also reference the
slot-value pairs data and then introduce the slot-attention mechanism and coverage mechanism to
calculate the attention score using the attribute sequence and value sequence simultaneously and
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to alleviate the problem of assigning values to the wrong fields. A common problem with table-to-
text models is that they produce text descriptions that do not conform to the tabular information,
commonly known as “illusions.” To solve the “illusion,” Rebuffel et al. (2022) proposed a multi-
branch-weighted decoder and a word-level labeling process. This word-level tagging process can
reduce the failure of word matching process through dependency analysis, based on co-occurrence
and sentence structure, while still producing correct labels in complex environments.

The current training of neural language models always requires extremely large-scale corpus,
while not all tasks have sufficient-scale and high-quality datasets. Ma et al. (2019) extract key facts
from the table through the sequence labeling model firstly and then combine these key facts as
input and use a Seq2Seq model to convert them into text, which alleviates the requirement of data
scale for table-to-text generation. Chen et al. (2020c) leverage pre-training and transfer learning to
address this issue, which consists of a general knowledge-grounded generation model to generate
knowledge-enriched text, and a pre-trained model which can be fine-tuned on various table-to-
text generation tasks. Although pre-trained models are widely used in other areas of NLP, there
are some problems with using pre-trained models in the table-to-text domain. First, there is a big
difference between the language input of the pre-trained model and the input of structured data.
Second, table information is not a linear input like natural language (Chen et al. 2020b). Table
has structured information, but the traditional pre-training model has no corresponding method
to understand the structured information of table. Moreover, pre-trained models do not solve the
“illusion” problem. To alleviate the above problems, Gong et al. (2020) proposed Table GPT, which
can train the table-to-text model with few samples. In order to deal with the gap between linear
sequences of natural languages and structured data tables, Gong et al. proposed a table conversion
module, which used templates to transform structured tables into natural languages. In order to
solve the problem of insufficient table structure information extraction, an auxiliary task of table
structure reconstruction is proposed in the framework of multi-task learning.

3. Table-to-text generator

We propose a novel generative model, SAN-T2T, based on the seq2seq (Sequence-to-Sequence)
learning and neural language model. In this section, we introduce the task of table-to-text gen-
eration and then reveal our major ideas on data preprocessing, field-content selective encoder,
descriptive decoder, and the featured copy mechanism.

3.1. Task definition

Different from the general seq2seq models to take a sequence as input, SAN-T2T takes a table
as input, which consists of an infobox of various records. We model the table-to-text generation
as a language model based on the seq2seq structure. The given table T consists of n field-value
pairs and their corresponding descriptions. In the training phase, the input and output of the
model are the records ry., in T and the corresponding reference text wy.;. In the inference phase,
only the input ry., is given, and the output would be determined by the model. Among them,
wy.¢ contains t words {wy, wp, ws, ..., w;}, and the purpose of inference is to generate wy. that
maximizes P(w1.t | r1.).

t
Wi = argmaxy,, | [ POws | wos—1, 1) (1)

s=1

We test the SAN-T2T model on three public datasets: WikiBio, RotoWire, and WeatherGov.
WikiBio contains 728,321 Wikipedia biographies. Each sample contains an infobox and the first
paragraph of the corresponding biographical text, and each text contains 26.1 words on average.
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Figure 1. Architecture of SAN-T2T.

RotoWire contains 4853 samples, which consist of human-written NBA basketball game sum-
maries aligned with their corresponding box- and line-scores, and each summary text contains

337.1 words on average.
WeatherGov contains 29,528 samples of weather forecast records, and each sample contains 36

records of fixed length, such as temperature and wind speed, and is paired with a description text,

which contains 28.7 words on average.

3.2. SAN-T2T
The neural language model SAN-T2T proposed in this paper is based on the selective attention

network, which combines gate, attention, and copy mechanism for table-to-text generation. The

architecture of SAN-T2T is shown in Figure 1.
SAN-T2T could be introduced through three aspects:

1. Position encoding. In the preprocessing phase, we model the fields’ value and loca-

https://doi.org/10.1017/S

tion jointly to learn semantic and structural information from the table, as shown in

Section 3.3.
Field-content selective encoder. We utilize the self-gate mechanism in the encoder to deter-

mine the importance of mutual decision-making between different fields. Its architecture

is shown in Figure 4. Then attention vector can obtain more information from the source
sequence and refine the alignment between the records and text.
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(a) (b)
Tw Pw
name Penny Ramsey
. ( name, Penny) (1,2)
birth_date 25 June 1947
. . . ( name, Ramsey) (2,1)
birth_place Adelaide, Australia . C
( birth_date, 25) (1,3)
death_date 11 February 2009

birth date, J 2.2
death_place St Andrews, Victoria, I::} ( Tr _date, June) 2.2)
(birth_date, 1947) 3. 1)

Australia
years_active 1968 -- 1986 .
. (occupation, Actress) | (1, 1)
occupation Actress
. ( partner, Rod) (1,2)
partner Rod Mullinar .
( partner, Mullinar) 2.1
The wiki infobox of Penny Ramsey The preprocessed representation

Figure 2. The wiki infobox of Penny Ramsey and the preprocessed representation.

3. In the inference phase, a formally simple but effective copy mechanism is applied in SAN-
T2T that uses attention vectors exclusively rather than training an additional layer of neural
networks. This can significantly alleviate the problem of rare words while reducing the
resource consumption of additional training.

3.3. Position encoding

Data records in structured tables usually contain vast field-value pairs, where values consist of
sequences of words of unfixed length that correspond to the content of this field. The field val-
ues are encoded with word embedding, taking the field embedding, which is determined by the
embedding vector of the field and its position in the table, as the key information to model the
value. Take the WikiBio dataset as an example, Lebret et al. (2016) represent field embedding in
triples: (f, pi, p;,), where f,, represents word embedding of the field and p}, p;, represent its
forward and backward positions, respectively. Inspired by this idea, we take the fields and their
appearing positions as auxiliary information for input. As shown in Figure 2, (a) represents the
content of Penny Ramsey’s Wikipedia infobox, involving her birth and death information and
occupation, and (b) is the corresponding preprocessed representation. r,, = concat{fy,, vy} rep-
resents the input, where v,, are the values corresponding to the field. p,, = concat{p}}, p;,} is the
auxiliary position information. r,, and p,, are taken as the joint input of a certain timestep of LSTM
unit.

3.4. Field-content selective encoder

The field-content selective encoder contains the field encoder and content selector. The field
encoder is designed to encode the records with LSTM network and to get the semantic and struc-
tural features of the records. Then the content selector controls the amount of information to be
flowed to the decoder, through the gated content-selection algorithm.

3.4.1. Field encoder
The purpose of the field encoder is to encode each input record r;. LSTM is suitable for processing
and predicting related events with long intervals and lags in time series. But unidirectional LSTM
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=

can only predict the next output from the previous states. Therefore, we use an improved bi-
directional LSTM to enable it to learn the complex structure and long dependencies of the field-
value pairs. Following the design in Graves et al. (2013), the structure used in SAN-T2T at each
timestep is shown in Figure 3 and defined as:

hy, ¢t =biLSTM (rs, he—1) )

where r; = concat{f;, v;} is the input at timestep ¢, and ¢; and h; are the cell state and hidden state at

t, respectively. LSTM can reserve essential information through the cell states and hidden states.
As we mentioned above, in order to learn more about the structure of the table, we take p; =

concat{p;, p; } as the joint input of LSTM. The new cell states and hidden states are calculated as:

N sigmoid
= (prt + bp) (3)
Wy tanh
G=fOc-1+it O+ ¢ O wy (4)

where W), € R2>2dp by € R2" are the weight matrix and bias. ¢; € (0, 1)" determines the amount
of structural information to be stored in ¢;, and w; € (—1, 1)" retains all the structural information
at the current timestep. f;, i;, and ¢; are obtained from the forget gate and input gate. We believe
that the improved LSTM can not only learn the hidden semantic information of the long
sequence but also preserve its structural information for the field-value pairs, while the structure
information keeps a very important role in the decision-making of the attention mechanism in
the decoder.

3.4.2. Content selector with gate mechanism

For the different records in the table, we believe that the context of each record is important
in determining the others. For example, if a person is a football player, then the other relevant
records, such as his playing position and the team he is playing for, etc., should also appear in the
description. Puduppully et al. take these into consideration and apply the CS gating mechanism
to obtain the new representation in the encoder. We borrow this idea to better capture the latent
dependency as Figure 1, replacing the output of the encoder with that of the content selector so
that more accurate semantic information can be obtained for a specific record in the decoder. The
details are as Algorithm 1, and Figure 4 illustrates the architecture of the content selector. We
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Algorithm 1. Gated Content-Selection Algorithm

Input: Infobox of each sample.

1:  for each field-value pair (f;, v;) and positions (p,-+, p; ) inthe Infobox do
2: Preprocess to x < {((f1, va), (07, p1)); - - -, ((Fa, Vi), (B, 7 )

3: Initialize the reciprocal-importance semantic vector list h= 1

4; h < LSTM(x)

5: for each hidden-state h; in h do

6: ajj < softmax(h;W;h;)

7: d; < sigmoid(Wyconcat{h;, > @i} + ba)

8: H,- <« a; O h;

9: end for

10:  end for

Output: The reciprocal-importance semantic vector list h

+

i

Bi-LSTM

Figure 4. Architecture of the gated content selector.

apply the output of the encoder’s LSTM layer to do a self-gate adaption and control the amount
of information that flowed to the following decoder component through the sigmoid function. So
the input to the decoder will be covered by the content selector’s result. Similar to the attention
mechanism, we first calculate the importance score of each record «; j, which will be used later to

get the dependency vector d; of this record, and then obtain the new encoder output hi through
the content-selection gate.

a;j = softmax(h; W, h)) (5)
d;= Z Oli,jhj (6)
J
di= sigmoid (W concat{h;, d;} + bg) (7)
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hi=d; Ok ()

where W, € R"™", W; € R"™2" and b, € R" are the learnable weight matrix and bias. The d; €
(0,1)" controls the amount of information that can be obtained from the field-content selective
encoder at each timestep in the decoder.

3.5. Descriptive decoder

We mainly use LSTM network in the decoder to learn the semantic information of the context.
In the training phase, the encoded word embedding x; at each timestep, the context vector z;
obtained from the selective encoder, and the previous hidden state s;_; are used as input and then
output the conditional probability distribution P; of the next word P(w; | wo.t—1, 71:n)-

A standard unidirectional and single-layer LSTM network is used in the decoder, and the con-
text vector z; of each timestep is calculated through the attention mechanism as Bahdanau et al.

(2014):
$t—1 O h
erj = % )
n
exp(et,j)
aj=—=—— (10)
Zj exp(er)
Zt:Zat:j};j (11)
j

where s, ¢; are the hidden state and cell state output by the LSTM network.
We integrate the embedding vector of the target sequence word and context vector as input to
the LSTM unit and then do the softmax function to calculate each word’s generating probability:

X; = concat{x;, z;} (12)

s, ¢¢ = LSTM (J'Ct, 5t—1) (13)

P(w¢ | Woi—1, T1:n) = softmax (Ws; + by) (14)
Wy = argmaxyy, P (We | Wo.t—1, T1:n) (15)

where W, € R%u*" and bs € R%u are the weight matrix and bias. #, is the word to be generated
at timestep f.

Since the records in some specific datasets (e.g., WeatherGov) are fixed-length rather than
variable-length key-value pairs, and there exists no reciprocal location between different records,
it does not make much sense to encode each record with the field encoder, respectively. To ensure
that the model can still learn the dependency between the output text and records through the
content selector without implementing the field encoding, we apply the method proposed by Mei
et al. (2016), using the regularization-term-added cross entropy as the loss function:

2
exp(y
Loss = Z g exp(y ]]) Z csj— + (1 — max(csj)) (16)

where csj € (0, 1) is the context vector obtained by content selector, which is calculated by the
sigmoid function, and represents the probability of each record being selected; the prunable
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parameter y can force the model to depend on the specific number of records. ( Z};l csi—y)?
enables the model to correct its weight based on the content selector and the context vector of the
selected record through gradient descent, while (1 — max(cs;)) can ensure that the content selector
has selected at least one record.

3.6. Inference model with copy mechanism

In the training phase, the records r;., and reference text wy.,; are both taken as inputs into the
encoder and decoder, respectively, been trained to maximize the likelihood of generating the real
text wy... However, in the inference phase, text is generated by finding the words with the largest
posterior probability predicted by the trained model. In other words, the subsequent words are
generated sequentially from the first word.

We also apply beam search to improve the model performance. The strategy is that the model
will find a string of generated words that approximately maximizes the conditional probability
given the previous states, so it will generate the text from begin-to-end and keep a fixed number
(i.e., beam width) of candidates with the highest log-probability at each timestep.

Meanwhile, to alleviate the problem of rare words, a flexible copy mechanism is used to
copy OOV words to the output text from the source sequence. This is done by replacing the
<unk > character in the output with the most relevant word in the table, which is the field pointed
to by the attention vector with argmax function. Experiments have proved that the copy mech-
anism we used can greatly improve the performance of the model without increasing additional
consumption. As shown in Fig. 1, the model actually outputs <unk> when generating “actress,”
but by pointing to the most relevant field “occupation” in the table via the attention vector «, the
<unk> is replaced with its value “actress” accordingly.

The specific algorithms of beam search and copy mechanism are as follows:

s—1

wf = kargmax,,, gP (ws | 7115 wf, R f_l) . l_[P (wfj | 7115 w‘f, R W?_l) 17)
i=1

Ws = argmax (zs) if wy =< unk > (18)

where w/ indicates the words in beam B at timestep s, and kargmax is the argmax function
extended to topk scale. When inferencing text, these k words with the highest probability are
inputs to the next timestep in turn, until the length of the text exceeds the pre-defined max_length.
zs is the context vector given above. Replace w; with w; when the model generates <unk>
characters at a certain timestep.

4. Experiments and analysis

We firstly introduce the prerequisite in this section (i.e., datasets, evaluation metrics, and experi-
ment setups) and then compare SAN-T2T with several baselines and SOTAs. At last, we assess the
case studies and attention visualization to reveal SAN-T2T’s performance.

4.1. Datasets and evaluation metrics
In this section, we introduce the datasets we used and the evaluation metrics of the experiment.

4.1.1. Datasets
We used WikiBio (Lebret et al., 2016) as the benchmark dataset, and RotoWire (Wiseman et al.,
2017) and WeatherGov (Liang, Jordan, and Klein, 2009) as supplementary datasets to verify the
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Table 1. The Wikipedia infobox of Frederick Parker-Rhodes

Frederick Parker-Rhodes

Born 21 November 1914 Newington, Yorkshire

Died 2 March 1987 (aged 72)

Nationality British

Known for Contributions to computational linguistics, combinatorial physics,

bit-string physics, plant pathology, and mycology

Fields Mycology, plant pathology, mathematics, linguistics, computer
science
Author abbrev. (botany) Park-Rhodes

The introduction of his biography reads: “Arthur Frederick Parker-Rhodes (21 November 1914-2 March 1987) was an
English linguist, plant pathologist, computer scientist, mathematician, mystic, and mycologist.”

generalization of SAN-T2T. WikiBio contains 728,321 samples from Wikipedia, using the first
paragraph of each article as the description of the corresponding infobox, as shown in Table 1.
RotoWire contains 4853 samples, which are NBA basketball game summaries aligned with their
corresponding box- and line-scores. WeatherGov contains 29,528 samples, each of which has
36 records of fixed length and is paired with a description text. We split WeatherGov dataset
according to the proportion of training (80%), development (10%), and test (10%).

4.1.2. Evaluation metrics

BLEU, an auxiliary tool for bilingual translation quality evaluation, is often used to evaluate
the quality of text generation models. The core idea is to determine the similarity between two
sentences and then evaluate precision and fluency of the candidate texts through different n-
grams. Since BLEU only calculates the precision of the candidate texts without considering recall,
ROUGE is proposed to solve this problem, and it evaluates the quality of the generated texts
through paying more attention to different n-grams’ recall.

We assessed the model on table-to-text generation with BLEU-4 (Papineni et al., 2002) and
ROUGE-4 (Lin, 2004), and the standard scripts provided by the NLTK-3.5 and ROUGE-1.5.5 are
used to calculate BLEU and ROUGE scores.

For RotoWire, we also assessed the model with the metrics from Wiseman et al. Lety represents
the reference summary and y the model output. Relation generation (RG) evaluates the precision
and count of relations extracted from y that also appear in records r. CS evaluates the precision
and recall of relations extracted from y that are also extracted fromy. Content ordering evaluates
the normalized Damerau-Levenshtein distance between the sequences of relations extracted from
yand7y.

4.2. Experiment setup

For WikiBio,* we select the most frequent 20,000 words in the training set to build the vocabulary,
and the others will be encoded with <unk>. In the encoder, the value embedding and its corre-
sponding field and position embedding are used as input. The largest position number is limited
to 30, that is, fields with lengths longer than 30 will be truncated. <sos> and <eos> are added at the
start and end of the target text, respectively. Records exceeding the pre-defined length 100 will be

3The codes are available at https://github.com/ding-haijie/SAN_D2T.
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Table 2. Results on WikiBio (test set)

Model BLEU ROUGE
KN 2.21 0.38
Template KN 19.8 10.7
NLM 417+ 0.54 1.48+0.23
Table NLM 34.74+0.36 25.8+0.36
Table2Seq-Single 40.26 /
Structure-aware Seq2Seq 44.89 41.21
Two-level model 45.77 41.28
Transformer 42.80 40.30
se..qzée..q.. e 3518 R 3048 .
+ position encoding 35.64 31.35
+contentselector (SAN-TZT) 3920 3477
+copymechanism 4408 3959
tbeamsearch(k=5) 442 410

The boldface values show the highest values in the corresponding column.

truncated and insufficient ones will be padded with <pad>. We also tried different beam widths
to verify the influence of beam search on the model.

Set the dimension of field embedding to 50, word embedding to 400, and position embedding
to 5. Hidden layer size is 500, and batch size is 32. We also restrict the generated sentence by the
max_length of 60 to avoid redundant or time-consuming generation. For the Transformer model,
the hidden units of the multi-head component and the feed-forward layer are both 512, with 8
heads and 6 encoder/decoder layers.

For RotoWire, we use similar settings as WikiBio without implementing position encoding.
Set the dimension of field embedding to 30, word embedding to 300. max_length is 700, and
max_field is 770.

For WeatherGov, in the encoder, we only need to set the embedding vector of words in the table
as input. The word embedding dimension is 300, and hidden layer size is 500. For cross entropy
loss, y =4 is used to set the regularization term, and we also have experimented on the influence
of different y on the model.

Adam optimizer is used to perform gradient descent, the initial learning rate is 0.0003, and the
gradient clipping value is 5.0.

4.3. Results and analysis

As shown in Table 2, SAN-T2T is compared with several previous works, including KN, Template
KN (Heafield et al., 2013), NLM, Table NLM (Lebret et al., 2016), Table2Seq-Single (Bao et al.,
2019), Structure-aware Seq2Seq (Liu et al., 2018), and Two-level model (Cao, Gong, and Zhang,
2019). Meanwhile, we provide a vanilla Seq2Seq model (without position encoding and content
selector compared to SAN-T2T) and a Transformer model (Vaswani ef al., 2017) to conduct an
ablation study.

According to Table 2, we observe that neural NLM always surpasses the statistical ones, even
the vanilla Seq2Seq model can achieve better results than Table NLM, and content selector
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Table 3. Effects of text length on WikiBio (test set)

Text length (tokens) BLEU ROUGE
<10 20.31 40.29
10-20 52.16 46.74
20-30 49.14 41.56
30-40 35.27 32.37
>40 21.17 24.22

The boldface values show the highest values in the corre-
sponding column.

Table 4. Effects of different beam width on WikiBio

Beam width BLEU ROUGE

without copy mechanism 1 39.20 34.77
2 38.05 35.36
3 37.43 35.58
4 37.11 35.89
5 36.32 35.92
with copy mechanism 1 44.08 39.59
4 41.91 41.07

The boldface values show the highest values in the corresponding column.

significantly improves the baselines. The Transformer model based solely on attention mech-
anisms achieves competitive performance, having the ability that generates buffered positional
encoding using sine or cosine functions according to the length of the fields (i.e., no need for
additional training). Then, according to the case studies on WikiBio, although SAN-T2T often
generates short texts accurately and fluently, there is still large room for improvement for long
text generation (e.g., occasionally missing information that counts), which causes the low perfor-
mance. Transformer performs better through replacing the chain-like forms in LSTM structure
in SAN-T2T, no need to worry about exploding gradient when generating longer texts. To learn
more information on this impact, we also did experiments on samples with different reference-
text-length (we split WikiBio’s test set into five subsets with different lengths, less than 10, between
10 and 20, between 20 and 30, between 30 and 40, and more than 40). As shown in Table 3, sam-
ples with text length between 10 and 30 fit the best, and samples with text length more than 40 the
worst (samples with less than 10 tokens fit badly on BLEU score, for BLEU metric only calculates
precision of the candidate texts without considering recall, and the high score on ROUGE verifies
this).

Table 4 shows the impact of beam search. The BLEU score degrades as the beam width
increases. The reason lies in the search strategy. Increasing the beam width makes the model gen-
erates texts that are disproportionately based on those early and non-greedy decisions, typically
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Table 5. Results on RotoWire (test set)

RG cs co

Model # P% P% R% DLD% BLEU
TEMPL 54.23 99.94 26.99 58.16 14.92 8.46

WS-2017 23.72 74.80 29.49 36.18 15.42 14.19
NCP +CC 34.28 87.47 34.18 51.22 18.58 16.50
Hierarchical-k 21.17 89.46 39.47 51.64 18.90 17.50
DATA-TRANS 24.12 79.17 36.48 42.74 22.40 20.16
SAN-T2T 19.21 62.54 27.93 42.24 11.31 12.20
+ copy mechanism 22.95 64.24 29.17 44.66 14.70 13.08

Columns indicate relation generation (RG) count (#) and precision (P%), content selection (CS), precision (P%) and recall
(R%), count ordering (CO) in normalized Damerau-Levenshtein distance (DLD%), and BLEU. These metrics are described
in Section 4.1. The boldface values show the highest values in the corresponding column.

including words with relatively low probability followed by words with quite high conditional
probability, leading to an overall higher probability sentence but lower precision. For example,
when the k words in a certain timestep contain the character <eos>, then its subsequent poste-
rior words would likely remain <eos> (i.e., the sentence length will be shortened, for <eos> will
be ignored), making the sentence holding a quite high probability but badly poor performance.
Increasing the beam width will also significantly reduce the inference speed (about three times
slower when setting beam width to 5 in our experiments).

Results also show that the application of copy mechanism can significantly improve the model
(the group with copy exceed those without copy about 5 points), and it does not need additional
training because there is no need for the redundant copy-network like Gu et al. (2016) to deter-
mine whether words need to be copied at current timestep, for the copied words only come from
the attention vector.

After finishing works on WikiBio, we also did experiments on RotoWire and WeatherGov to
verify SAN-T2T’s generalization. Table 5 compares SAN-T2T with TEMPL (template system),
WS-2017 (Wiseman et al., 2017), NCP + CC (Puduppully et al., 2019), Hierarchical-k (Rebuffel
et al., 2019), and DATA-TRANS (Li ef al., 2019) on RotoWire. The model DATA-TRANS is the
state of the art of RotoWire, which has a Transformer-based model that learns CS and sum-
mary generation jointly, and uses two data augmentation methods synthetic data generation and
training data selection. The template system has the highest RG precision, for it’s faithful to the
infoboxes by design. SAN-T2T is worse than the comparison models, and the reason lies in its
weak ability to generate long text and reserve information, which has already been discussed in
WikiBio’s results.

Table 6 compares SAN-T2T with KL (Konstas and Lapata, 2013a), MBW (Mei et al., 2016), and
Two-level model (Cao et al., 2019) on WeatherGov. There is no need to apply copy mechanism
because its vocabulary size is small and each sample has 36 records of fixed length, but it could
also be concluded that beam search has little improvements, which is consistent with Mei et al.
(2016).

For the experiments on WeatherGov, results in Table 7 show the effect of different y on the
model. BLEU score reaches the highest when y = 4. After analyzing the original dataset, it can be
seen that the most records number aligned by the reference text of all samples is 4, and the role of
y is to constrain the number of records that the model aligns. Therefore, the best result at y =4
is in line with expectations.
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Table 6. Results on WeatherGov (test set)

Model BLEU
KL 36.54
MBW 61.01
Two-level model 62.89
SAN-T2T 82.84
+ beam search (k=5) 82.90

The boldface values show the highest values in the
corresponding column.

Table 7. Effects of different y on WeatherGov

y 2 3 4 5 6 7 8

BLEU 82.18 82.65 82.84 82.13 82.22 81.39 80.84

80.78

The boldface values show the highest values in the corresponding column.

Table 8. The Wikipedia infobox of Alonzo H.

Cushing

Name Alonzo H. Cushing

birth_date 19 January 1841

birth_place Delafield, Wisconsin, US
death_date 3 July 1863

allegiance United States of America

branch Union Army

commands 4th U.S. Light Artillery, Battery A
battles American Civil War

awards Medal of Honor

4.4. Case study

Three randomly selected samples from WikiBio, WeatherGov, and RotoWire and their descrip-
tions are presented below. We will analyze the strengths as well as the remaining weaknesses of

SAN-T2T for these cases.

Analysis of the texts generated for Alonzo Cushing in Tables 8 and 9 shows that SAN-T2T
can learn more semantic information and even correct reasoning about that are not included
in the input: “w.s. military’s highest decoration” does not appear in the input, but the knowledge
learned from other samples (the medal of honor = u.s. military’s highest decoration) completes
this information. When applying copy mechanism for the model, the copied word “battery” not
only alleviates the problem of rare words but also makes up for some missing information: the
ignored field commands appear as “an artillery officer” in the reference text, while SAN-T2T

(without copying) outputs “actions at the battle of <unk>.”
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Table 9. The generated descriptions for Alonzo H. Cushing

Model Generated description

Reference Alonzo Hersford Cushing (January 19, 1841-July 3, 1863) was an artillery officer in the
union army during the American civil war

Transformer Alonzo H. Cushing (January 19, 1841-July 3, 1863) was a union army officer during the
American civil war and a recipient of the medal of honor, for his action in the American
civil war in the army

Seq2Seq Alonzo H. Cushing (January 19, 1841-July 3, 1863) was an American soldier who fought
in the American civil war and military decoration and the American civil war

+ position encoding Alonzo H. Cushing (January 19, 1841-July 3, 1863) was a union army officer in the
American civil war and a recipient of the medal of honor

+ content selector (SAN-T2T) Alonzo H. Cushing (January 19, 1841-July 3, 1863) was a union army officer in the
American civil war and a recipient of the U.S. military ’s highest decoration, the medal
of honor, for his actions at the battle of <unk> in the American civil war

+ copy mechanism Alonzo H. Cushing (January 19, 1841-July 3, 1863) was a union army officer in the
American civil war and a recipient of the U.S. military ’s highest decoration, the medal
of honor, for his actions at the battle of battery in the American civil war

+ beam search (k=5) Alonzo H. Cushing (January 19, 1841-July 3, 1863) was a union army officer during the
American civil war

Table 10. Human Evaluation on WikiBio (test set)

Sentence (% fluent+ (% faithful+ (k for (for
source % fluent % faithful mostly fluent) mostly faithful) fluent) faithful)
Reference 91% 86% 100% 93% / /
Transformer 71% 68% 88% 84% / /
Seq2Seq 67% 54% 76% 70% / /
SAN-T2T (w/ copy) 69% 64% 85% 78% 0.251 0.334
+ beam search (k=5) 2% 70% 90% 82% / /

The boldface values show the highest values in the corresponding column.

Human evaluation: For more intuitiveness, we perform human evaluation based on the sen-
tences’ fluency (natural and grammatical) and semantic faithfulness (supported by the records).
We defined three levels of fluency as: fluent, mostly fluent, and not fluent, and the same for seman-
tic faithfulness. Three annotators are asked to evaluate on 100 randomly selected samples from the
generated and reference sentences. Specifically, we asked participants questions about RG, syntax,
coherence, and brevity to estimate the output of the model. Inter-rater agreement follows Fleiss’
kappa (Fleiss, 1971). For fluency, kappa score k = 0.251 (annotators assign decisions on the same
20 samples with the three categories), for semantic faithfulness, k = 0.334. Results are shown
in Table 10. The reference texts achieve the highest fluency and faithfulness, and there is a con-
siderable gap between the SAN-T2T outputs and the human-written sentences, mainly because
SAN-T2T’s weakness to generate long texts, often outputting repetitive sentences, and sometimes
learning what should be wrong from other samples. Beam search has the ability to improve SAN-
T2T’s performance on all of the four measures; the top-k strategy alleviates the disadvantage that
greedy search cannot get the global optimum (although with the side effect of requiring much
more inference time). SAN-T2T performs almost as well as Transformer. It is also structurally
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Table 11. Weather data for Northfield, Minnesota on 2009-08-1

id-0 {“type”: “temperature”, “label”: “Monday”, “time”: “6-21”, “min”: “24”, “mean”: “35”, “max”: “42”,
“mode_bucket_0_20_2":"}

id-2 {“type”: “windSpeed”, “label”: “Monday”, “time”: “6-21”, “min”: “14”, “mean”: “20”, “max”: “24”, “mode”:
“10-20”, “mode_bucket_0_20_2": “10-20"}

id-3 {“type”: “windDir”, “label”: “Monday”, “time”: “6-21”, “mode”: “SE”, “mode_bucket_0_20_2": "}

id-4 {“type”: “gust”, “label”: “Monday”, “time”: “6-21”, “min”: “0”, “mean”: “24”, “max”: 327,
“mode_bucket_0_20_2":"}

id-10 {“type”: “precipPotential ”, “label”: “Monday”, “time”: “6-21”, “min”: “68”, “mean”: “76”, “max”: “90”,
“mode_bucket_0_20_2":"}

id-16 {“type”: “rainChance”, “label”: “Monday”, “time”: “6-21”, “mode”: “Lkly”, “mode_bucket_0_20_2": "}

id-20 {“type”: “rainChance”, “label”: “Monday”, “time”: “13-21", “mode”: “Def”, “mode_bucket_0_20_2": "}

id-26 {“type”: “freezingRainChance”, “label”: “Monday”, “time”: “6-21”, “mode”: “~”, “mode_bucket_0_20_2": "}

id-27 {“type”: “freezingRainChance”, “label”: “Monday”, “time”: “6-9”, “mode”: “Lkly”, “mode_bucket_0_20_2":"}

Table 12. The generated descriptions for Northfield, Minnesota on 2009-08-1

Model Generated description

Reference Freezing rain likely before 9 am, then rain or freezing rain likely between 9 am and noon, then rain
after noon. High near 42. Breezy, with a southeast wind between 14 and 24 mph, with gusts as high as
32 mph. Chance of precipitation is 90%. Little or no ice accumulation expected

SAN-T2T (k=1) Freezingrain likely before 9 am, then rain or freezing rain likely between 9 am and noon, then rain
after noon. High near 43. Breezy, with a southeast wind between 15 and 25 mph, with gusts as high as
34 mph. Chance of precipitation is 90%. Little or no ice accumulation expected

lighter than the previous best model, Transformer, with fewer parameters and faster computing
speed. SAN-T2T with Beam Search performs better than Transformer, and the use of Beam Search
increases the variety generated by SAN-T2T. Compared to greedy strategy sampling, Beam Search
prevents SAN-T2T from failing at one step and then failing at all, resulting in better performance
than Transformer.

Tables 11 and 12 are texts generated from the weather data of Northfield on 2009-02-08-1 in
WeatherGov.” It can be seen that the text output by SAN-T2T is already very consistent with the
reference, but there are still some factual errors (mainly numerical): the approximate range of tem-
perature and wind speed has been increased (but still very close). We believe that this is because
the semantic discrimination between different words encoded with one-hot is diminished, so the
model’s ability to recognize different numerical tokens weaken. However, due to the large num-
ber of numerical inputs in WeatherGoyv, it is necessary to encode with one-hot rather than word
embedding. We encode the numerical tokens to binary-array representation, which is proposed
by Mei et al.

Tables 13 and 14 are the source records and generated texts from the game between Clippers
and Bucks in RotoWire. SAN-T2T performs not well, missing some important information of
the source records compared with the reference text. Erroneous includes the city of Bucks (which

YFor short presentation, only necessary part of the records are shown in Table 11.
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Table 13. The box score and line score for Clippers - Bucks in 2014-21-20

NAME POS MIN PTS FGM FGA FG_PCT FG3M FG3A FG3_PCT FTM FTA FT_PCT OREB DREB REB AST TO STL BLK PF

Matt Barnes F 26 0 0 3 0 0 3 0 0 0 0 1 4 5 4 1 0 0 0
Blake Griffin F 34 24 10 17 59 0 0 0 4 5 80 4 2 6 8 4 1 0 3
DeAndre Jordan C 34 9 4 8 50 0 0 0 1 4 25 5 11 16 0 1 1 2 4

JJ Redick G 34 23 9 15 60 5 8 63 0 0 0 0 3 3 2 1 1 0 2

Chris Paul G 36 27 6 16 38 4 6 67 11 12 92 1 2 3 9 2 2 1 3
Glen Davis N/A 13 2 1 2 50 0 0 0 0 0 0 0 4 4 1 0 3 0 0
Jamal Crawford N/A 29 17 5 16 31 3 8 38 4 6 67 0 2 2 2 1 2 1 2

Hedo Turkoglu N/A 6 0 0 0 0 0 0 0 0 0 0 0 2 2 0 1 0 0 1

Reggie Bullock N/A 14 2 1 1 100 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Jordan Farmar N/A 12 2 1 3 33 0 1 0 0 0 0 0 0 0 2 1 0 0 3
Jared Cunningha N/A N/A N/A N/A N/A N/A N/A  N/A N/A N/A  N/A N/A N/A N/A  N/A N/A N/A N/A NA NA
ChrisDouglas-R ~ N/A  N/A N/A N/A N/A N/A N/A  N/A N/A N/A  N/A N/A N/A N/A  N/A N/A N/A N/A NA NA
Ekpe Udoh N/A- N/A N/A NA NA N/A N/A  N/A N/A N/A  N/A N/A N/A NA NA NA NA NA NA NA
Giannis Antetok F 38 18 8 12 67 0 1 0 2 3 67 1 8 9 6 3 2 0 3
Johnny O’Bryant F 6 4 2 3 67 0 0 0 0 0 0 0 0 0 0 0 0 0 2
Larry Sanders C 26 10 5 6 83 0 0 0 0 2 0 2 5 7 3 0 1 1 5
0.J. Mayo G 23 3 1 6 17 0 2 0 1 3 33 0 1 1 3 2 0 0 4
Brandon Knight G 27 8 3 10 30 2 6 33 0 0 0 1 4 5 5 4 0 0 3
Jared Dudley N/A 30 16 7 12 58 2 4 50 0 0 0 2 6 8 3 3 2 0 2

Zaza Pachulia N/A 20 5 1 3 33 0 0 0 3 4 75 2 5 7 2 2 0 0 1
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Table 13. Continued.

NAME POS MIN PTS FGM FGA FG_PCT FG3M FG3A FG3_PCT FTM FTA FT_PCT OREB DREB REB AST TO STL BLK PF
Jerryd Bayless N/A 28 16 7 13 54 2 3 67 0 0 0 1 3 4 2 1 0 0 4
Khris Middleton N/A 24 12 5 10 50 1 5 20 1 1 100 1 3 4 2 0 1 0 2
Kendall Marshal N/A 18 10 4 6 67 1 3 33 1 2 50 0 1 1 3 3 0 0 0
Damien Inglis N/A N/A N/A N/A NA  NA N/A N/A N/A N/A  N/A N/A N/A N/A~ N/A N/A N/A N/A NA N/A
Jabari Parker N/A N/A N/A N/A N/A  NA N/A N/A N/A N/A  N/A N/A N/A N/A N/A N/A N/A N/A NA N/
Nate Wolters N/A N/A N/A NA NA NA N/A N/A N/A N/A  N/A N/A N/A N/A~ N/A N/A N/A N/A NA N/A
TEAM-NAME CITYy P_QTR1  P_QTR2 P_QTR3 P_QTR4 PTS FG_PCT FG3_PCT FT_PCT REB AST TO WINS LOSSES
Clippers Los Angeles 22 32 24 106 46 46 74 41 29 12 19 8
BUCkS B M,lwaukee S . 28 O 31 e 19 e 102 . 53 e 33 e 53 . 46 - 29 . ..1.8,. I 14 e 14 .

The definition of table headers could be found at https://github.com/harvardnlp/boxscore-data.
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Table 14. The generated descriptions for Clippers - Bucks

Model Generated description

Reference The Los Angeles Clippers (19-8) defeated the Milwaukee Bucks (14-14) 106-102 on Saturday. Los
Angeles has won three of their last four games. Chris Paul paced the team with a game-high 27
points and nine assists. DeAndre Jordan continued his impressive work on the boards, pulling
down 16 rebounds, and Blake Griffin and J.J. Redick joined Paul in scoring over 20 points. The
Clippers have a tough stretch of their schedule coming up with the Spurs, Hawks, Warriors, and
Raptors all on this week’s docket. Even with the loss, Milwaukee finished their four-game Western
Conference road trip 2-2, a job well done by the developing squad. In the three games since
Jabari Parker went down with a season-ending ACL injury, coach Jason Kidd has cut the umbilical
cord they had on Giannis Antetokounmpo. He played over 37 min for the second straight game
Saturday, which is ten more minutes than his season average of 27 min per game. Larry Sanders
returned to the starting lineup after sitting out Thursday’s game on a league mandated one-game
suspension. Ersan Ilyasova (concussion) and John Henson (foot) remain out, and it seems
Ilyasova may be closer to returning than Henson

DATA-TRANS The Los Angeles Clippers (19-8) defeated the Milwaukee Bucks (14-14) 106-102 on Saturday. Los

Angeles stopped their two-game losing streak with the win. Jamal Crawford paced the team with
a game-high 17 points in 29 min off the bench. Crawford shot 9 -of-16 from the field and 3-of-8
from downtown. He had nine assists, two rebounds, and two steals in 29 min. Blake Griffin had 24
points, eight assists, six rebounds, and one steal in 34 min. The Clippers will go on the road to face
the Denver Nuggets on Monday. Milwaukee has lost two straight and is now 9-2 in their last 10
games. Jabari Parker (ankle) didn’t play Saturday as he recorded a double-double with 18 points
and nine rebounds. Giannis Antetokounmpo (8-12 FG, 2 -1 3Pt, 2-3 FT) and nine rebounds in

38 min off the bench. The Clippers will stay home and host the Brooklyn Nets on Monday

SAN-T2T (w/ copy) The host Los Angeles Clippers took down the visiting Los Angeles Bucks on Saturday, 106-102.
Clippers (19-8) is now on a three-game winning streak. The Bucks (14-14) saw tough play from its
stars, who had been a rocky part of the season, the team had a tough shooting from the field,
hitting 46% of their shots from beyond the arc. Crawford shot over 31% from the field and hit
3-of-8 from three-point range. The Clippers saw strong play from its bench, as the team shot over
46% from the field and hit 29 assistance. Chris Paul scored over 27 three points. The Bucks (14-14)
have now lost three straight games. Damien Inglis didn’t play, and they ’ll look to keep rolling on
Monday against the Clippers

should be Milwaukee), the percentage of the three-pointers made by Bucks (which should be 33),
and wrong inferences (the Bucks lost three straight games, and need to fight against Clippers on
Monday). As the text gets longer, the generation quality degrades, that is, generating repetitive
sentences, which further impairs the model’s performance.

4.5, Attention visualization

Figure 5 shows an example of a heat-map of the attention vector based on the text generated
for John Uzzell Edwards. The sub-figure above comes from the vanilla Seq2Seq model, while the
below from SAN-T2T. Both have applied the copy mechanism. The reference text of this sample is
“john uzzell edwards (10 October 1934-5 March 2014) was a welsh painter," which consists of the
SAN-T2T model. Decisive information is: {nationality: welsh}, {field: painting}, {movement: pure
painting}, {awards: granada arts fellowship}. It can be seen that Seq2Seq model generates some
duplicate contents (i.e., “pure and pure” aligns to the movement field) and has lost some critical
information (e.g., “welsh painter” has been missed, while generating the sentence “pure artist”).
However, SAN-T2T generates descriptions that are consistent with the reference text. The fields
name, birth_date, death_date, occupation and other information are all obtained from the correct
fields. For example, “john uzzell edwards” and “welsh Painter” are from the name field and “welsh
pure painting,” respectively. This suggests that the enhanced attention mechanism can model the
relationship between records through the content selector and can accurately map the alignment
between the generated text and the fields.
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Figure 5. An example of visualization for the attention. The image above is the attention from Seq2Seq model, while the
below one is from SAN-T2T. The vertical axis represents the text generated by the model, while the horizontal represents the

fields’ value. -Irb- and -rrb- indicate brackets (). Deeper colors depict a higher attention score.
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5. Conclusion and future work

We propose a novel Seq2Seq model that further enhances the attention mechanism and con-
duct experiments on table-to-text generation. The model SAN-T2T is mainly composed of a
field-content selective encoder and a decoder with the attention mechanism. To utilize structure
in the tables, an additional gate is added to the LSTM cell in the encoder to integrate posi-
tion information. Besides, the application of beam search and copy mechanism further improves
the performance of SAN-T2T. Attention visualization and comparison with baselines show that
SAN-T2T is far superior to these models.

Work of this research has some practical implications. First, the fact that neural language
models always have better performance than statistical methods implies that the automated table-
to-text generator can be designed by neural networks rather than hand-built feature engineering
with statistical approaches. Second, using multi-layered features rather than simplex fields gets
better results in table-to-text tasks. Third, it is possible to apply the selective attention network or
its variant to other NLP tasks such as information extraction and text generation. We will research
for this possibility in the future and focus on how to improve the ability of the neural language
models to correctly understand the records in the tables and learn the other latent information
(e.g., multi-level location. We only apply local addressing in SAN-T2T, which represents inner-
record information. However, inter-record relevance within the tables is also significant, and it
would be challenging to explore these information sources). SAN-T2T’s weakness to generate
long texts affects its performance; we will also explore the possibility of solving this length issue in
the future (adapting Transformer-based models to solve the gradient-exploding problem will be a
possible direction).
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