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LOCAL BIFURCATIONS OF CRITICAL PERIODS
IN THE REDUCED KUKLES SYSTEM

C. ROUSSEAU AND B. TONI

ABSTRACT. In this paper, we study the local bifurcations of critical periods in the
neighborhood of a nondegenerate centre of the reduced Kukles system. We find at the
same time the isochronous systems. We show that at most three local critical periods
bifurcate from the Christopher-Lloyd centres of finite order, at most two from the lin-
ear isochrone and at most one critical period from the nonlinear isochrone. Moreover,
in all cases, there exist perturbations which lead to the maximum number of critical
periods. We determine the isochrones, using the method of Darboux: the linearizing
transformation of an isochrone is derived from the expression of the first integral. Our
approach is a combination of computational algebraic techniques (Gröbner bases, the-
ory of the resultant, Sturm’s algorithm), the theory of ideals of noetherian rings and the
transversality theory of algebraic curves.

1. Introduction. The study of isochronous systems different from the linear isochrone
goes back to Huygens who studied the cycloidal pendulum. This pendulum has isochronous
oscillations in contrast with the monotonicity of the period of the usual pendulum. As soon
as one looks at quadratic systems one finds centres for which the period is not monotonous
but has some critical points [CD]. A global study of the number of critical points of the
period is a very difficult question. A simpler question is the local problem of the number
of critical periods which can appear by perturbation of a system in the neighborhood of a
centre. This question is attacked by calculating the Taylor series of the period function in the
neighborhood of the centre and by determining the order of its first non-constant term. This
calculation is purely algorithmic. When it is performed on a polynomial family of vector
fields the coefficients of the period function are polynomials in the coefficients of the system.
The vanishing of the period coefficients then leads to questions like determining the Gröbner
basis of an ideal of polynomials. Ultimately this local analysis allows us to determine the
isochronous centres in the family, which are the ones for which all coefficients of the Taylor
series vanish, except the first. More precisely this method yields necessary conditions for
isochronicity. Their sufficiency is given by ad hoc methods.

The method described above has been used to study the local critical periods and the
isochronous centres among quadratic systems [CJ], and among cubic systems symmetric
with respect to a centre [RT]. In the quadratic (resp. cubic symmetric) case the necessary and
sufficient conditions for isochronicity had been determined previously by Loud [L] (resp.
Pleshkan [P]).
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LOCAL BIFURCATIONS OF CRITICAL PERIODS 339

Similarities were found in the quadratic and cubic symmetric systems with an isochron-
ous centre at the origin. Indeed, in each case the system has a rational first integral and
the two complex separatrices of the origin belong to different irreducible algebraic curves.
Moreover the system is reversible in the sense of Żoła̧dek [Z]. Also, regarding bifurcations
of local periods, in each case we can attain a greater number of local critical periods starting
from a weak centre than from an isochronous centre.

Starting from these remarks it is interesting to investigate other families of vector fields
and to try to deduce general laws. One question which is of particular importance for us is
to understand the mechanisms by which a centre is isochronous. This mechanism is com-
pletely hidden when one applies the algebraic method described above. There is no hope
of characterizing geometrically, from the phase portraits alone, systems having isochronous
centres since the phase portrait does not determine the velocity along the trajectories. Our
hope is nevertheless to find necessary geometric conditions for isochronicity. When they are
not satisfied we find obstructions to isochronicity.

There are very few families for which the centre conditions are known. The reduced
Kukles system is one of these and this explains why we choose to study it.

Hence we consider, in this paper, the bifurcations of critical periods of periodic solutions
in the neighborhood of a nondegenerate centre of the reduced Kukles system:

(K0) ẋ ≥ �y

ẏ ≥ x + a1x2 + a2xy + a3y2 + a4x3 + a5x2y + a6xy2.

Necessary and sufficient conditions for the centre have been given by Christopher and Lloyd
[CL]. Using the Gröbner Basis packages [B], [DST] on Maple V, Rousseau, Schlomiuk and
Thibaudeau [RST] determined the basis of the ideal generated by the five first Lyapunov
constants and were able to verify the Christopher-Lloyd conditions. We address the prob-
lem of the maximum number of critical periods bifurcating from the origin in (K0) and solve
it completely. There are four strata of centres for the reduced Kukles system, one consisting
of quadratic systems and the remaining three consisting of truly cubic systems. For each
stratum of cubic systems we calculate the coefficients of the period function. Only one of
the strata contains nonlinear isochrones: these form a 1-parameter family. We show that at
most three critical periods can bifurcate from the centres of finite order or from the linear
isochrone and at most one from the nonlinear isochrones. We reduce the proof of the exis-
tence of perturbations leading to the maximum number of critical points to the proof that
some algebraic curves have transversal intersections. Moreover, using Darboux’s method
[D], [Sc], we give necessary and sufficient conditions for the origin of the reduced Kuk-
les system to be isochronous. We can also derive a linearizing transformation. As in the
quadratic case and in the cubic system symmetric with respect to a centre, we note that the
system with an isochronous centre has a rational first integral and that it is reversible in the
sense of Żoła̧dek [Z]. The complex separatrices of the origin again belong to two different
algebraic curves.

One originality of the paper comes from the computer assisted proofs.
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2. Preliminaries. Let X (x, y,ï) be a family of plane analytic vector fields parame-
trized by ï 2 Rn with a nondegenerate centre at the origin for every ï. Upon blowing
up, the nondegenerate centre is replaced by a regular closed trajectory. The period function
P(x,ï) is then an analytic function of the coordinate x parametrizing the x-axis: P(x,ï) ≥P1

k≥0 pk(ï)xk. Moreover, this function is even [MRT] and has the following Taylor series

(2-1) P(x,ï) ≥ 2ô +
1X

k≥1
p2k(ï)x2k,

for jxj and jï�ïŁj sufficiently small. The coefficientspk(ï) can be calculated by an algorithm
via a symbolic manipulator such as Maple V. It can be shown that they are polynomials in the
components of the bifurcation parameter ï [CJ]. By the Hilbert basis theorem there exists
N 2 N such that the ideal of all coefficients is finitely generated by the first N coefficients.
Calculating the coefficients p2k until we get hp2, . . . , p2Ni ≥ hp2, . . . , p2(N+1)i leads to the
conjecture that p2 ≥ Ð Ð Ð ≥ p2N ≥ 0 are sufficient conditions for isochronicity. One can then
try to prove the isochronicity of the systems using ad hoc methods. In this case we find a
linearizing transformation derived from the first integral.

DEFINITION 2.1. If p2 ≥ p4 ≥ Ð Ð Ð ≥ p2k ≥ 0 and p2k+2 Â≥ 0, then the origin is a weak
linear centre of finite order k.

If p2k ≥ 0 for each k ½ 1, then the origin is of infinite order; it is an isochronous centre.

DEFINITION 2.2. k local critical periods bifurcate from the weak centre corresponding
to the parameter ïŁ if:

(1) for every ã Ù 0, sufficiently small, there exists a neighborhood W of ïŁ such that
for any ï 2 W, P(x,ï) has at most k critical points in U ≥ (0,ã).

(2) Moreover, any neighborhood of ïŁ contains a point ï1 such that P(x,ï1) has exactly
k critical points in U ≥ (0,ã).

DEFINITION 2.3. Let fXïgï2Λ be a family of systems with a centre at the origin and
period coefficients p2k(ï). The family satisfies condition (P ) if for any ïŁ 2 Λ such that
p2(ïŁ) ≥ Ð Ð Ð ≥ p2k(ïŁ) ≥ 0, p2k+2(ïŁ) Â≥ 0 and any neighborhood W ² Λ of ïŁ in which
p2k+2(ï) Â≥ 0 there exists ï1 2 W such that

(2-2) p2k+2(ï1)p2k(ï1) Ú 0

p2(ï1) ≥ Ð Ð Ð ≥ p2k�2(ï1) ≥ 0.

The system XïŁ is said to satisfy condition (Pk).

PROPOSITION 2.4 [T]. Let fXïgï2Λ be a family of systems with a centre at the origin,
satisfying condition (P ) and XïŁ satisfy condition (Pk). Then, for any sufficiently small è Ù
0, for any neighborhood V of ïŁ and for any 0 � n � k there exists ïŁŁ 2 V such that
XïŁŁ has exactly n periodic orbits with critical periods passing through points (x, 0), with
x 2 (0, è).

PROOF. Critical periods correspond to zeros of the derivative Q(x,ï) ≥ ∂P
∂x (x,ï) of the

period function with respect to x.
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The proof goes by induction on k and n. It is obviously true for k ≥ 0 or for k Ù 0 and
n ≥ 0.

We start with è Ù 0, sufficiently small so that Q(x,ïŁ) ≥ (2k + 2)p2k+2x2k+1 + o(x2k+1)
does not vanish for 0 Ú x Ú è. For the sake of simplicity let us suppose p2k+2(ïŁ) Ù 0. By
continuity of Q we can choose x1 2 (0, è) such that Q(x,ïŁ) Ù 0 on (0, x1]. Condition (Pk)
allows us to choose ï1 sufficiently close to ïŁ so that Q(x1,ï1) Ù 0 and (2-2) is satisfied.
Then there exists 0 Ú x2 Ú x1 and such that Q(x2,ï1) Ú 0. Hence there exists xŁ1 such that
Q(xŁ1,ï1) ≥ 0. Moreover we can choose ï1 so that ∂Q

∂x (xŁ1,ï1) Ù 0. Indeed, x ∂Q
∂x (x,ï1) �

(2k � 1)Q(x,ï1) ≥ 2(2k + 2)p2k+2x2k+1 + o(x2k+1).
We use the induction hypothesis for k � 1, n � 1 and è ≥ xŁ1. By the implicit function

theorem it is possible to choose the neighborhood V1 ² V of ï1 sufficiently small so that
the (structurally stable) root xŁ1 persists under perturbation of the system.

The two theorems below summarize our preliminaries; the first one is straightforward
from the Weierstrass-Malgrange Preparation Theorem [Po], and the second one is based on
the now classic derivation-division method. Both have been recalled and described in [T].

FINITE ORDER BIFURCATION THEOREM [CJ]. No more than k local critical periods
can bifurcate from weak centres of finite order k at the parameter value ïŁ. Moreover, if
the family satisfies the condition (P ) and if XïŁ satisfies the condition (Pk) then, for any
0 � n � k, there are perturbations with exactly n local critical periods.

ISOCHRONE BIFURCATION THEOREM [CJ]. If the vector field X has an isochronous
centre at the origin for the parameter value ïŁ and if for each m ½ 1 the period coefficient
p2m is in the ideal hp2, . . . , p2k, p2k+2i over the ring Rfï1, . . . ,ïngïŁ

of convergent power
series at ïŁ, then at most k local critical periods bifurcate from the isochronous centre at
ïŁ. Moreover, there are perturbations with exactly n � k local critical periods, if the family
satisfies the condition (P ) and if XïŁ satisfies the condition (Pk).

3. The reduced Kukles system. Consider the Kukles system

(K ) ẋ ≥ �y

ẏ ≥ x + a1x2 + a2xy + a3y2 + a4x3 + a5x2y + a6xy2 + a7y3,

with a7 ≥ 0, which we call (K0). In this reduced form, necessary and sufficient conditions
for a centre are known since 1944 [Ku] [CL].

CONDITIONS OF CENTRE [CL]. System (K0) has a centre at the origin if and only if the
parameter value ï ≥ (a1, a2, a3, a4, a5, a6) is in one the following strata:

KI: a4 ≥ a5 ≥ a6 ≥ a1 + a3 ≥ 0

KII: a4 + a3(a1 + a3) ≥ a5 � a2(a1 + a3) ≥ a6(a1 + 2a3) � a2
3(a1 + a3) ≥ 0

KIII: a2 ≥ a5 ≥ 0

KIV: a1 ≥ a3 ≥ a5 ≥ 0.
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DEFINITION 3.1. We say that system (K0) has a centre of type I (respectively II, III, IV)
if the system is nonlinear and ï 2 KI (respectively KII, KIII , KIV).

DISCUSSION OF THE CENTRE CONDITIONS. (1) Systems corresponding to parameters in
KI are quadratic systems, which have been analysed in [CJ].

(2) Systems corresponding to parameters in KII have two invariant lines yielding an
integrating factor and an elementary first integral.

(3) Systems corresponding to parameters in KIII are symmetric with respect to the x-
axis, i.e. invariant under the transformation (x, y, t) 7! (x,�y,�t). They have a
Liouvillian first integral which is generically not elementary.

(4) Systems corresponding to parameters in KIV are symmetric with respect to the y-
axis, i.e. invariant under the transformation (x, y, t) 7! (�x, y,�t). Generically they
have no Liouvillian first integral.

(5) Systems corresponding to parameters in KIII \ KIV have no quadratic terms. They
are particular cases of the families studied in [RT].

Details can be found in [RST].

3.1. Period function of the reduced Kukles system. First, changing to polar coordinates
(x, y) ≥ (r cos í, r sin í) in system (K0) and eliminating time yields the following differential
equation

(3-1)
dr
dí ≥

r2f1(í,ï) + r3f2(í,ï)
1 + rg1(í,ï) + r2g2(í,ï)

,

where

(3-2)

f1(í,ï) ≥ a1 cos2 í sin í + a2 cos í sin2 í + a3 sin3 í,
f2(í,ï) ≥ a4 cos3 í sin í + a5 cos2 í sin2 í + a6 cos í sin3 í,

g1(í,ï) ≥ a1 cos3 í + a2 cos2 í sin í + a3 cos í sin2 í,
g2(í,ï) ≥ a4 cos4 í + a5 cos3 í sin í + a6 cos2 í sin2 í.

Let us denote by çò the closed trajectory through (ò, 0). The period function is then given
by

(3-3)

P(ò,ï) ≥ Z
çò

dt

≥ Z 2ô

0

dí
1 + r(í, ò,ï)g1(í,ï) + r2(í, ò,ï)g2(í,ï)

,

where í 7! r(í, ò,ï) is the solution of the differential equation (3-1) with initial condition
r(0,ï) ≥ ò. It is known that r(í, ò,ï) may be locally represented as a convergent power
series in ò:

(3-4) r(í, ò,ï) ≥ X
k½1

uk(í,ï)òk,
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Substituting (3-4) in (3-1) yields a sequence of linear differential equations satisfied by the
coefficients uk(í,ï) in (3-4):

(3-5)
u01(í,ï) ≥ 0,

u0k(í,ï) ≥
k�1X
i≥1

ui(f1uk�i + f2vk�i) � u0k�i(g1ui + g2vi),

with

(3-6) v1 ≥ 0, vk ≥
k�1X
i≥1

uiuk�i,

and initial conditions u1(0,ï) ≥ 1, ui(0,ï) ≥ 0 for i Ù 1. This yields in particular u1(í,ï) �
0. The integrand in (3-3) is analytic for í 2 [0, 2ô] and jòj sufficiently small. Thus we may
write locally:

(3-7) P(ò,ï) ≥ 2ô +
X
k½1

pk(ï)òk ≥ X
k½0

�Z 2ô

0
Ak(í,ï) dí

�
òk.

Therefore the period coefficients pk(ï) can be obtained by integrating the terms Ak(í,ï)
given by:

(3-8)
A0(í,ï) � 1

Ak(í,ï) ≥ �
�
g1uk +

k�1X
i≥1

�
g2uiuk�i + (g1ui + g2vi)Ak�i

�½
.

REMARK. Note that the coefficients pk(ï) can be calculated for a weak focus as well
as for a centre. In the former case they represent the coefficients of the time to go from an
initial condition (ò, 0) to the first return Q(ò, 0). We also call them the period coefficients.

3.2. The first period coefficients. From (3-1), (3-7) and (3-8) we derive the period coeffi-
cients pk(ï), and in particular the following lemma. We use a simple program on Maple V.

LEMMA 3.2. The period coefficient p2 for the system (K0) is given by

(3-9) p2(ïŁ) ≥ a2
2 + 10a2

1 + 10a1a3 + 4a2
3 � 9a4 � 3a6.

PROOF. From (3-8) we derive A1(í,ï) ≥ �g1u1 ≥ �g1. Since g1 is an odd homoge-
neous trigonometric polynomial we get that p1(ï) ≥ 0. To calculate p2(ï) we consider

(3-10)
A2(í,ï) ≥ �g1u2 � g2u2

1 � g1u1A1 � g2v1A1

≥ �g1u2 � g2 + g2
1.
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Equation (3-5) yields

(3-11) u02(í,ï) ≥ f1(í,ï),

yielding

(3-12) u2(í,ï) ≥ Z í

0
f1(ú,ï) dú.

Hence u2(í) can be written as a homogenous trigonometric polynomial of degree 3. Then

(3-13) p2(ï) ≥ Z 2ô

0
�g1(í,ï)u2(í,ï) � g2(í,ï) + g2

1(í,ï) dí.

3.3. Centre of type I. The corresponding system is quadratic; thus, using the results in
[CJ], this centre is of order at most two; but from the expression of p2 in this case, we can
conclude that no critical period can bifurcate from this centre; let us note that the stratum
KI is entirely included in KII.

3.4. Centre of type II. We prove the following result.

THEOREM 3.3. (1) A centre of type II may be at the intersection of strata KI and KII as
well as at the intersection of KII and KIV. In the first case, the centre is of order zero; in the
second case, the order is less than or equal to two.

(2) At most two critical periods can bifurcate from a weak centre of type II.
(3) Moreover, each centre of order two has perturbations with exactly two local critical

periods.

PROOF. We consider a nonzero parameter value ïŁ on the stratum KII. We then can split
the problem into two cases: a1 + 2a3 ≥ 0 and a1 + 2a3 Â≥ 0. In each case we analyze the
period coefficients reduced modulo the ideal of the previous coefficients.

CASE 1. Assuming a1 + 2a3 ≥ 0 with a3 ≥ 0 leads to a substratum of KIV :

a1 ≥ a3 ≥ a5 ≥ a4 ≥ 0.

The three first period coefficients are given by:

(3-14)
p2 ≥ a2

2 � 3a6

p4 ≥ 7(a2
2 � 3a6)(a2

2 � 9a6)

p6 ≥ 23088a6
2.

Hence p2 ≥ 0 if and only if a2
2 ≥ 3a6. For a6 Ú 0 the first period coefficient p2 is nonzero;

therefore the corresponding centre is of order zero and no local critical period can bifurcate
from it.
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For p2 ≥ 0 and a6 Ù 0, we get p4 ≥ 0 and p6 Ù 0, yielding a centre of order at most
k ≥ 2. A perturbation with two critical periods is shown in the case of centres of type KIV .

CASE 2. Assuming a1 + 2a3 Â≥ 0, we may take a1 + 2a3 ≥ 1 without loss of generality.
From Lemma 3.2 we get

(3-15) p2 ≥ 3a3
3 + 12a2

3 � 21a3 + 10 + a2
2,

Therefore

(3-16) p2 ≥ 0 if and only if a2
2 ≥ b(a3) ≥ �3a3

3 � 12a2
3 + 21a3 � 10 ½ 0

We compute the period coefficients p4 and p6 modulo p2 and obtain

(3-17) p4(ïŁ) ≥ 18(a3 � 1)2h4(a3)

p6(ïŁ) ≥ 6912(a3 � 1)4h6(a3)

with

(3-18) h4(a3) ≥ �9a4
3 � 87a3

3 + 121a2
3 � 209a3 + 160

h6(a3) ≥ a5
3 � 8a4

3 + 508a3
3 + 1130a2

3 � 7225a3 + 5450.

From our assumptions, we necessarily have a1 Â≥ 1. Also,

resultant
�
h4(a3), h6(a3)

�
≥ 3130572800 Â≥ 0.

Therefore, p4 and p6 modulo p2 have no common zero, i.e., p6 is nonzero on the variety
V(p2, p4). By the Finite Order BifurcationTheorem, at most two critical periods can bifurcate
from the corresponding weak centre.

A perturbation with exactly two local critical periods is easily constructed in the follow-
ing way. By the intermediate value theorem, h4 has a zero aŁ3 in the interval

(3-19) J ≥ i
a1

3, a2
3

h ≥
3
5�110820

10000
,
�110815

10000

2
4.

Moreover, b(aŁ3) Ù 0 on J; indeed, we have b(a1
3) Ù 0 and b(a2

3) Ù 0, and we prove, using
Sturm’s algorithm [K], that b(a3) is nonzero on the interval J. A similar argument leads to
h6 Ú 0 on J, and p6 as well.

We perturb in two steps in the standard way.
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3.5. Centre of type III.

THEOREM 3.4. A weak centre of type III is of order at most 3. Moreover, any such centre
of order 3 has a perturbation with exactly n local critical periods, for all n � 3.

PROOF. The proof goes into two parts.

PART 1. Let us assume a1 ≥ 0, and denote by ï1
Ł the corresponding value of the param-

eter. Then, we have:

(3-20)
p2(ï1

Ł) ≥ 4a2
3 � 9a4 � 3a6

p4(ï1
Ł) ≥ 27a2

4 + 21a2
3a4 � 32a4

3

p6(ï1
Ł) ≥ �7290a3

4 + 118746a2
3a2

4 � 68157a4
3a4 + 34016a6

3,

where p4 and p6 are reduced modulo p2. We note that p4 is a polynomial of degree 2 in a4,
with discriminant: D ≥ 3897a4

3.

(1) This discriminant vanishes at a3 ≥ 0, leading to p4 ≥ 27a2
4 Â≥ 0, for a4 is necessarily

nonzero. Therefore, the corresponding centre, i.e., a1 ≥ a3 ≥ 0, a4 Â≥ 0 is of order at
most one. A perturbation with exactly one local critical period is easily constructed.

Let us note that such a centre is at the intersection of the strata KIII and KIV .

(2) The above discriminant is strictly positive for a3 Â≥ 0; looking for the roots of p4, we
get

rš ≥ �7šp433
18

a2
3.

But, we have resultant (p4, p6, a4) ≥ a12
3 , modulo a nonzero constant. The periods coeffi-

cients p4 and p6 have thus no common roots in a3; in other words, for a4 ≥ rš(a3), we
obtain

p4(a3, a4) ≥ 0, p6(a3, a4) Â≥ 0.

Therefore, the corresponding centre is of order at most two and such a centre of order two
can be perturbed in the standard way to produce exactly two local critical periods.

PART 2. Next, we study the case a1 Â≥ 0; we may then, without loss of generality,assume
a1 ≥ 1. Let us denote by ï3

Ł the associated value of the parameter. Using the relations (3-7)
and (3-8) to compute the corresponding period coefficients modulo p2, we get:

(3-21)

p2(ï3
Ł) ≥ 4a2

3 + 10a3 + 10� 9a4 � 3a6

p4(ï3
Ł) ≥ 108a2

4 + c1
4(a3)a4 + c2

4(a3)

p6(ï3
Ł) ≥ �7290a3

4 + c1
6(a3)a2

4 + c2
6(a3)a4 + c3

6(a3)

p8(ï3
Ł) ≥ 75246796800a4

4 + c1
8(a3)a3

4 + c2
8(a3)a2

4 + c3
8(a3)a4 + c4

8(a3),
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with

c1
4(a3) ≥ 57a2

3 � 402a3 � 519

c2
4(a3) ≥ �114a4

3 � 457a3
3 � 645a2

3 � 195a3 + 115

c1
6(a3) ≥ 118746a2

3 + 217404a3 + 176094

c2
6(a3) ≥ �68157a4

3 � 232704a3
3 � 438210a2

3 � 404640a3 � 176265

c3
6(a3) ≥ 34016a6

3 + 215880a5
3 + 585210a4

3 + 852920a3
3

+ 723900a2
3 + 340800a3 + 73850;

and finally

c1
8(a3) ≥ 572961807360a2

3� 1284204533760a3� 1829799797760

c2
8(a3) ≥ �1285543180800a4

3� 4177321583616a3
3� 3345808011264a2

3

+ 3848748880896a3 + 3797890398720

c3
8(a3) ≥ 384439336620a6

3 + 3525901880472a5
3 + 12693308746644a4

3

+ 22123313129040a3
3 + 18546928501140a2

3 + 5004955583640a3

� 653908329300

c4
8(a3) ≥ �45591948115a8

3 � 485200347316a7
3 � 2196106467040a6

3

� 6007981449460a5
3� 10914080051470a4

3 � 12847208098300a3
3

� 8891765452600a2
3� 2876423451100a3� 223379079175.

We then analyse the following equations:

p4(a3, a4) ≥ 0; p6(a3, a4) ≥ 0; p8(a3, a4) ≥ 0.

Let (C4), (C6), (C8) be the algebraic curves defined respectively by the previous equations.
Using the theory of resultants, we show that the previous system has no solution; indeed,
denote

(3-22) R46 ≥ resultant(p4, p6, a4), R68 ≥ resultant(p6, p8, a4),

with p4, p6 and p8 in R[a3][a4]. Hence R46 and R68 are in R[a3]. We obtain resultant (R46,
R68, a3) Â≥ 0. From this, it follows that the polynomials p4, p6 and p8 have no common root;
the corresponding centre is of order at most three. We show that there exist centres of order
k ≥ 3. It suffices to prove that the system p4 ≥ p6 ≥ 0 has at least one real root at which the
curves (C4) and (C6) have a transversal intersection; therefore the corresponding parameter
value may be perturbed into a certain ï̃3

Ł satisfying

p2(ï̃3
Ł) ≥ 0

p4(ï̃3
Ł) ð p6(ï̃3

Ł) Ú 0

p6(ï̃3
Ł)ð p8(ï̃3

Ł) Ú 0,
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FIGURE 1: Transversal intersection of curves (C4) and (C6)

and leading to condition (P3). This is done as a computer assisted proof. First, using a com-
puter algebra system such as Mathematica, we represent the algebraic curves (C4) and (C6)
in Figure 1 below.

This representation suggests the existence of real roots in some rectangles, one of them
being

(3-23) R0
1 ≥

�
� 4

10
,� 3

10

½
ð
� 35

100
,

4
10

½
.

We will show (using Maple V) that the two curves (C4) and (C6) intersect transversally in
R0

1 and that p8 Ù 0 on R0
1. For this purpose we will do an extensive use of Sturm’s algorithm

and discriminants. Moreover the different polynomial functions will only be evaluated at
rational points.

The proof goes as follows: we define the following one variable polynomials:

f 1
m(a3) ≥ pm

�
a3,

35
100

�
, f 2

m(a3) ≥ pm

�
a3,

4
10

�
;

g1
m(a4) ≥ pm

�
� 4

10
, a4

�
, g2

m(a4) ≥ pm

�
� 3

10
, a4

�
,

for m ≥ 4, 6, 8. By Sturm’s algorithm, the polynomials f i
4, i ≥ 1, 2 in the variable a3 have

no real root in the interval (� 4
10 ,� 3

10 ]; but the polynomials f i
6, i ≥ 1, 2 have exactly one real

root in the same interval. On the other hand the polynomials gi
4, i ≥ 1, 2 have one unique

real root in ( 35
100 , 4

10 ], while the polynomials gi
6, i ≥ 1, 2 are nonzero.

Finally, there will exist at least one real intersection denoted by M0 ≥ (a0
3, a0

4) in R0
1, if

we show that the curves (C4) and (C6) are non singular, i.e. that the systems

(3-24) pj(a3, a4) ≥ 0;
∂pj

∂a3
(a3, a4) ≥ 0;

∂pj

∂a4
(a3, a4) ≥ 0,
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for j ≥ 4, 6, have no real solution. We only need to show that

(3-25)
Disc4(a4) ≥ discriminant (p4, a3) Â≥ 0 on

�
� 4

10
,� 3

10

½

Disc6(a3) ≥ discriminant (p6, a4) Â≥ 0 on
� 35

100
,

4
10

½
.

This is again checked by Sturm’s algorithm.
Moreover, the polynomial p8 has no root on the rectangle R0

1. Indeed, f i
8 and gi

8 do not
vanish on the sides of this rectangle and p8, for a3 then a4 fixed, has no multiple zero re-
spectively in the intervals ( 35

100 , 4
10 ] and (� 4

10 ,� 3
10 ]. From p8(� 35

100 , 38
100) Ù 0 it follows that

p8 Ù 0 on R0
1. So we have a parameter value ï̃3

Ł associated to the zero M0 such that

(3-26) p2(ï̃3
Ł) ≥ p4(ï̃3

Ł) ≥ p6(ï̃3
Ł) ≥ 0; p8(ï̃3

Ł) Ù 0.

We may conclude by showing that the curves p4(a3, a4) ≥ 0; p6(a3, a4) ≥ 0 intersect
transversally at the real root M0; in other words, the system

(3-27)
p4(a3, a4) ≥ 0; p6(a3, a4) ≥ 0

T(a3, a4) ≥ ∂p4

∂a3

∂p6

∂a4
� ∂p4

∂a4

∂p6

∂a3
≥ 0

has no real solution. In fact, one must only prove:
(1) T(a3, a4) does not vanish on the boundary of the previous rectangle R0

1; this amounts
to showing, using, once again, Sturm’s algorithm, that the polynomials T1(a3) ≥
T(a3, 35

100 ) and T2(a3) ≥ T(a3, 4
10 ) are nonzero on (� 4

10 ,� 3
10 ]; similarly, T3(a4) ≥

T(� 4
10 , a4) and T4(a4) ≥ T(� 3

10 , a4) are nonzero on ( 35
100 , 4

10 ].
(2) The curve T(a3, a4) ≥ 0 has no closed component in R0

1: Disc(a4) ≥
discriminant (T, a3), and Disc(a3) ≥ discriminant (T, a4) have no real zeros re-
spectively on ( 35

100 , 4
10 ] and on (� 4

10 ,� 3
10 ].

We prove in fact more than the transversality of the curves (C4) and (C6). We have shown
that

(3-28)
∂p4

∂a4
Â≥ 0;

∂p6

∂a3
Â≥ 0 and

∂p2

∂a4
Â≥ 0.

The combination of the previous results leads to the following successive perturbations:
first, perturb ï̃3

Ł into ï̂3
Ł to get

p2(ï̂3
Ł) ≥ p4(ï̂3

Ł) ≥ 0; p6(ï̂3
Ł) Ú 0; p8(ï̂3

Ł) Ù 0.

For that we choose é3 sufficiently small,

â3 ≥ a3 + é3; â4 ≥ a4 + é4(é3); â6 ≥ a6 + é6(é3, é4),
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to stay on the surfaces p4 ≥ 0 and p2 ≥ 0. We then take a perturbation ï3
Ł of ï̂3

Ł with
components

a4 ≥ â4 + è4; a6 ≥ â6 + è(è4),

with jè4j − jé3j such that

p2(ï3
Ł) ≥ 0; p4(ï3

Ł) Ù 0; p6(ï3
Ł) Ú 0; p8(ï3

Ł) Ù 0.

Finally, in the neighborhood of ï3
Ł we may choose ï̌3

Ł with

ǎ6 ≥ a6 + ë6, jë6j − min(ja6j, jè4j), ë6 Ù 0,

for a6 Ù 0 on the defined rectangle, allowing to realize condition (P3): three local critical
periods are then present at the weak centre associated to ï̌3

Ł.

3.6. Centre of type IV. This case leads to another interesting result: the appearance of a
nonlinear isochronous centre and the use of a linearizing transformation to establish the
isochronicity.

The corresponding system is written in the form:

(3-29) ẋ ≥ �y

ẏ ≥ x + a2xy + a4x3 + a6xy2.

The associated period coefficients are derived from formulas (3-7) and (3-8) via Maple V.
The results are given in the following lemma.

LEMMA 3.5. The first three periods coefficients associated to a weak centre of type IV
are:

(3-30)

p2(ïŁ) ≥ a2
2 � 9a4 � 3a6

p4(ïŁ) ≥ 7a4
2 � 324a2

2a4 + 2349a2
4 � 84a2

2a6 + 918a4a6 + 189a2
6

p6(ïŁ) ≥ �2579a6
2 � 29493a4

2a4 + 2192346a2
2a

2
4 � 1546090a3

4

+ 8841a4
2a6 + 764316a2

2a4a6 � 7899930a2
4a6

+ 79434a2
2a2

6 � 1888110a4a
2
6 � 225150a3

6.

With this lemma, we prove the following result.

THEOREM 3.6. The reduced Kukles system has an isochronous centre at the origin if
and only if

(3-31) a1 ≥ a3 ≥ a5 ≥ a6 ≥ 0 ≥ a2
2 � 9a4,
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in other words, if and only if the system is of the form

(3-32)
ẋ ≥ �y

ẏ ≥ x + a2xy +
a2

2

9
x3.

A first integral of (3-32) is given by

(3-33) F(x, y) ≥ (a2
2x2 + 3a2y + 9)2

a2
2x2 + 6a2y + 9

.

PROOF. We have seen already that there exist no nonlinear isochrones in the strata of
centres of type I, II or III. The proof is based on the reduction of coefficients p2n(ïŁ) for
centres of type IV. They have been calculated in Lemma 3.5. Modulo p2 given in (3-30), p4

is reduced to p4 ≥ a4a6, up to a multiplicative constant. We then reduce p6 in the Gröbner
basis of p2, p4. We obtain p6 ≥ �a3

6, up to a multiplicative constant. Analyzing the system

p2 ≥ p4 ≥ 0,

amounts to the study of only two cases:

CASE 1.

(3-34) a4 ≥ 0; a2
2 ≥ 3a6, a6 Ù 0.

Let us denote by ï2
Ł the induced parameter value. Then

(3-35) p2(ï2
Ł) ≥ p4(ï2

Ł) ≥ 0; p6(ï2
Ł) ≥ �a3

6 Â≥ 0.

Hence there are no nonlinear isochrones in this case.

CASE 2.

(3-36) a6 ≥ 0, a2
2 ≥ 9a4, a4 Ù 0.

Denoting by ï3
Ł the induced parameter value we obtain:

(3-37) p2(ï3
Ł) ≥ p4(ï3

Ł) ≥ p6(ï3
Ł) ≥ 0.

We show the isochronicity of the centre of the corresponding system (3-36). The method
described in [MRT] shows that the knowledge of a first integral of a system suggests lin-
earizing changes of coordinates.Hence, in this case, we first look for a first integral. This first
integral suggests a change of coordinates, which transforms our system into a well known
quadratic isochronous system.
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Before looking for a first integral we first simplify the system (3-32), using the trans-
formation (u, v) 7! (a2x, a2y), followed by (u2, v, t) 7! (x1, y1, ut). The system (3-32) is
transformed into

(3-38)
u̇ ≥ �v

v̇ ≥ u + uv +
u3

9
.

and

(3-39)
ẋ1 ≥ �2y1

ẏ1 ≥ 1 + y1 +
x1

9
.

The last one has two invariant lines, yielding a Darboux first integral of the form ([RS]):

(3-40) f (x1, y1) ≥ (x1 + 3y1 + 9)2(x1 + 6y1 + 9)�1.

Therefore, a first integral for system (3-38) is written:

(3-41) G(u, v) ≥ (u2 + 3v + 9)2(u2 + 6v + 9)�1.

This form suggests the following change of coordinates (X, Y) ≥ ( u
3 , u2+3v

9 ), under which
system (3-38) may be rewritten as:

(3-42) Ẋ ≥ �Y + X2

Ẏ ≥ X + XY.

which, in polar coordinates, is transformed to í̇ ≥ 1. The original system is then isochron-
ous.

THEOREM 3.7. A weak centre of type IV is, either of order at most two, or a nonlinear
isochrone. Moreover:

(1) A centre of order two may be perturbed to produce exactly two local critical periods.
(2) A centre of type IV may be at the intersection of different strata: on KII \ KIV, it is

of order at most two; on KIII \ KIV, the order is at most one and one local critical
period may bifurcate from it.

PROOF. The previous study has shown (Theorem 3.4) that the centre corresponding to
a1 ≥ a2 ≥ a3 ≥ a5 ≥ 0 is at the intersection of the strata III and IV. It is of order at most
one and can be perturbed to produce exactly one local critical period.

We have shown in Theorem 3.6 that weak centres of order greater or equal to two can
only be found in Case 1, i.e. a4 ≥ 0 ≥ a2

2 � 3a6, a6 Ù 0, in which case we have (3-35).
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It is easily checked that the weak centre is of order exactly two and we can construct a
perturbation with exactly two local critical periods.

We start the study of the bifurcations of critical periods from the isochrones with a few
comments.

REMARKS. (1) KI, KII, KIII , KIV are closed sets and intersect at the origin of R6.
(2) KI is included in KII. Strata KII and KIV intersect at a1 ≥ a3 ≥ a5 ≥ a4 ≥ 0; and the

intersection of KIII and KIV give a1 ≥ a2 ≥ a3 ≥ a5 ≥ 0, a4 Â≥ 0, a6 Â≥ 0. But
respectively KI and KIV , KII and KIII have no nonzero intersection.

(3) Any perturbation ï̃Ł of ïŁ 2 Ki \ Kj, stays either in Ki or in Kj. We must then
consider perturbations of the linear isochrone into each of the strata Kj, j ≥ I, II, III,
IV, keeping in mind that the nonlinear isochronous point lies uniquely in the stratum
KIV .

We then prove the following results.

THEOREM 3.8. Any perturbation of the linear isochrone may produce at most three
local critical periods.

The proof uses Propositions 3.9 and 3.10 below.

PROPOSITION 3.9. (1) Any perturbation of the linear isochrone into centres of type I
produces no critical period.

(2) At most two (respectively three) local critical periods can bifurcate from a pertur-
bation of the linear isochrone into centres of types II (respectively of type III), but
outside of the stratum KIV.

PROOF. These results come from the bifurcation of a linear isochrone into a stratum
with no other isochrones and from the study of centres of type I, II, III exclusively.

The above remarks stated the possible perturbations in the stratum KIV , which is the only
stratum to contain nonlinear isochrones. We prove the following.

PROPOSITION 3.10. (1) The ideal M of the period coefficient p2k, k ½ 1 is finitely gen-
erated by the first three coefficients: M ≥ (p2, p4, p6) over the noetherian ring R[a2, a4, a6]
of polynomials in the variables a2, a4, a6.

(2) At most two critical periods can bifurcate from the origin in a perturbation of the
linear system into the family KIV; moreover, there exist perturbations leading to the
maximum number of critical periods.

The proof uses the lemma below.

LEMMA 3.11. For every k ½ 1, the exponents of a2 in the coefficients p2k are even.

The proof is straightforward using the transformation (x, y) 7! (a2x, ya2y), a2 Â≥ 0.

PROOF OF PROPOSITION 3.10. Denote I ≥ hp2, p4, p6i the ideal generated by p2, p4, p6.
Every period coefficient p2k, k ½ 1 is a polynomial in the variables b2 ≥ a2

2, a4, a6 of
degree k; it then may be written:

(3-43) p2k ≥ R1(b2, a4, a6) + R2(a4, a6),
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where R1 is the sum of all terms containing b2 and R2 is the sum of the remaining terms.
From p2 ≥ a2

2 � 9a4 � 3a6, i.e., a2
2 ≥ b2 ≥ p2 + 9a4 + 3a6, we may rewrite p2k as

(3-44)
p2k ≥ p2S2(b2, a4, a6) + T4(a4, a6) + R2(a4, a6)

≥ p2S2(b2, a4, a6) + R4(a4, a6).

We can write R4(a4, a6) as

R4(a4, a6) ≥ a4a6S4(a4, a6) + R8(a4, a6),

where R8 is the sum of all terms in only ai
4, ai

6, 1 � i � k, with no term containing a4a6.
Therefore, we obtain

(3-45) p2k ≥ p2S2(a2, a4, a6) + a4a6S4(a4, a6) + R8(a4, a6).

We know that the system is isochronous, i.e., p2k ≥ 0, k ½ 1, for a6 ≥ p2 ≥ 0. Thus a6

divides R8(a4, a6) yielding that R8 is a polynomial in a6 only.
It is only interesting to prove that p2k is in the ideal hp2, p4, p6i for k ½ 4. In that case R8

is of degree greater or equal to 4 and may then be written:

(3-46)
R8(a4, a6) ≥ R8(a6) ≥ a3

6S6(a6)

≥ �p6S6(a6).

Finally, we get:

(3-47) p2k ≥ p2S2(a2, a4, a6) + p4S4(a4, a6) � p6S6(a6).

In other words, for every k ½ 1, p2k is in the ideal I over the ring R[a2, a4, a6].
We have p2k 2 I ≥ hp2, p4, p6i; by the Isochrone Bifurcation Theorem, we may conclude

that at most two critical periods can bifurcate from a perturbation of a linear isochrone into
the family KIV . As in the previous case, one may construct a perturbation giving birth to
exactly two critical periods.

We next move to the case of a perturbation of a nonlinear isochrone and prove the fol-
lowing theorem.

THEOREM 3.12. Any perturbation of a nonlinear isochrone into the family KIV can pro-
duce at most one critical period; in addition, there exist perturbations with exactly one
critical period.

PROOF. Denote ï̃4
Ł ≥ ï4

Ł + é the perturbation into KIV , where ï4
Ł corresponds to a non-

linear isochronous centre, i.e., meets the conditions

a1 ≥ a3 ≥ a5 ≥ a6 ≥ 0 with a2
2 ≥ 9a4 Ù 0.

ï̃4
Ł has components ã6 ≥ é6; ã4 ≥ a4 + é4; ã2 ≥ a2 + é2.

Let us call p̃2k(ï̃4
Ł) the perturbed period coefficients. The result will be straightforward

from the Isochrone Bifurcation Theorem if we show that p̃6(ï̃4
Ł) is in the ideal Ĩ ≥ hp̃2, p̃4i
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over the noetherian ring Rfa2, a4, a6gï4
Ł

of convergent power series at ï4
Ł; for, then, the ideal

M will be finitely generated by Ĩ , from the part (1) of Proposition 3.10.
Using the expressions of the period coefficients related to KIV , we get:

(3-48)

p̃2(ï̃4
Ł) ≥ ã2

2 � 9ã4 � 3ã6

≥ (a2 + é2)2 � 9(a4 + é4) � 3(a6 + é6)

≥ é2
2 + 2a2é2 � 9é4 � 3é6.

Modulo p̃2, i.e., ã2
2 ≥ 9ã4 + 3ã6, we obtain:

(3-49)

p̃4(ï̃4
Ł) ≥ �432ã4ã6

≥ �432(a4 + é4)é6

≥ �432a4

�
1 +

é4

a4

�
é6,

since a4 Â≥ 0. Therefore, we have é6 ≥ � p̃4
432

1
a4
ð 1

(1+
é4
a4

)
. Modulo p̃2, and p̃4, we write

(3-50) p6(ï̃4
Ł) ≥ �6912é3

6.

Finally, by (3-50) and for é4 Ú ja4j, we obtain:

(3-51)

p̃6(ï̃4
Ł) ≥

6912
4323

1
a3

4

1

(1 + é4
a4

)3
p̃3

4

≥ 6912
4323a3

4

�X
n½0

(�1)n
� é4

a4

�n½3
p̃3

4.

Consequently, p̃6(ï̃4
Ł) is in the ideal Ĩ over the ring Rfa2, a4, a6gï4

Ł
; hence p̃2k(ï̃4

Ł) 2 Ĩ , for
every k ½ 1.

A perturbation with one critical period may be constructed by perturbing the linear iso-
chrone to a weak centre of order 1.

4. The study of the isochrone and concluding remarks. We study the isochrone in
its reduced form, namely

(4-1)
ẋ ≥ �y

ẏ ≥ x + xy +
x3

9
.

PROPOSITION 4.1. The phase portrait of (4-1) appears in Figure 2.

PROOF. The system (4-1) has a unique finite singular point at the origin. The two in-
variant lines used in the construction of the Darboux first integral (3-40) yield two invariant
parabolas x2 + 3y + 9 ≥ 0 and x2 + 6y + 9 ≥ 0. To derive the complete phase portrait we
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FIGURE 2: Phase portrait of (4-1).

study the points at infinity. There is a unique singular point at infinity in the direction of
the y-axis, which is analysed through the change of coordinates (V, Z) ≥ (xÛy, 1Ûy). After
multiplication by z2 the system (4-1) becomes

(4-2)
V̇ ≥ �Z2 � V2Z � 1

9
V4 � V2Z2

Ż ≥ �VZ(Z + Z2 +
1
9

V2),

with a unique singular point at V ≥ Z ≥ 0. Its nature is determined by blow-up. In this
case we use a weighted blow-up (V, Z) ≥ (è, è2Z1) [BM]. The system (4-2) becomes, after
division by è3

(4-3)
è̇ ≥ �è

�1
9

+ Z1 + Z2
1 + è2Z2

1

�

Ż1 ≥ Z1

�1
9

+ Z1 + 2Z2
1 + è2Z2

1

�
.

On è ≥ 0 the system (4-3) has three singular points. The points (è, Z1) ≥ (0, 0) and (è, Z1) ≥
(0,� 1

6 ) are saddles, while the point (è, Z1) ≥ (0,� 1
3 ) is a repelling node. The two points

è ≥ 0, Z1 ≥ � 1
6 ,� 1

3 correspond precisely to the two invariant parabolas. This yields the
phase portrait of Figure 2.

PROPOSITION 4.2. The trajectories of the system (4-1) are quartic curves. The quartic
passing through the origin factors as two conics.

PROOF. The system has the first integral

(4-4) H(x, y) ≥ (x2 + 3y + 9)2

x2 + 6y + 9
.

The trajectory H(x, y) ≥ 9 passes through the origin. It is equivalent to

(4-5) 9x2 + 9y2 + 6x2y + x4 ≥ (3x + 3iy + ix2)(3x� 3iy � ix2) ≥ 0.

The two conics 3xš 3iyš ix2 ≥ 0 are the two separatrices of the origin.
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PROPOSITION 4.3. A linearizing change of coordinates of (4-1) is given by

(4-6)
u ≥ 3x

x2 + 3y + 9

v ≥ 3y + x2

x2 + 3y + 9
.

PROOF. The linearizing change of coordinates (4-6) comes from the linearizing change
of coordinates (u, v) ≥ ( X

1+Y , Y
1+Y ) for the system (3-42).

The reduced Kukles family is not sufficiently rich to draw deep conclusions or con-
jectures about isochronous systems. Several interesting small conclusions can however be
drawn. Indeed:

(1) In opposition to the quadratic and cubic cases, not all systems with centers in the
reduced Kukles system have Darboux first integrals. It has been shown in [RST] that
generically centres of type IV have no elementary, nor Liouvillian first integrals.
However, it is precisely in that stratum that the nonlinear isochrones lie. Moreover
they have a rational first integral and a rational linearizing change of coordinates.

(2) Here again the two separatrices of the origin are different algebraic curves. In [MRT]
are found other examples of isochronous systems which do not necessarily have a
rational first integral, nor are reversible. However, all these examples have at least
two invariant algebraic curves which are the two separatrices of the origin. This
leads us to formulate the following conjecture which should probably be attacked
by looking at the geometry of the complex underlying system:

CONJECTURE 4.4. For a system with a centre at the origin and a rational first inte-
gral, the irreducibility of the algebraic curve passing through the origin is an obstruction
to isochronicity.

COMMENTS. After we finished this work we learned that the full Kukles system has
been examined in [ChD] via a Lyapunov-type method to obtain necessary and sufficient
conditions for an isochronous centre. They obtained no other isochrones than the ones we
have found.
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6. [B] B. Buchberger, Gröbner bases: An algorithmic method in polynomial ideal theory. In: Multidimensional
Systems Theory, (ed. E. K. Bose), Reidel, Boston, Mass., 1985.

7. [C] C. Chicone, The monotonicity of the period function for planar Hamiltonian vector fields, J. Differential
Equations 69(1987), 310–321.

8. [CD] C. Chicone and F. Dumortier, A quadratic system with a non monotonic period function, Proc. Amer.
Math. Soc. 102(1988), 706–710.

9. [CJ] C. Chicone and M. Jacobs, Bifurcation of critical periods, Trans. Amer. Math. Soc. 312(1989), 433–
486.

10. [ChD] C. J. Christopher and J. Devlin, Isochronous Centres in Planar Polynomial Systems, University
College of Wales, 1994, preprint.

11. [CL] C. Christopher and N. G. Lloyd, On the paper of Jin and Wang concerning the conditions for a centre
in certain cubic systems, Bull. London Math. Soc. 22(1990), 5–12.

12. [CS] S. N. Chow and J. A. Sanders, On the number of critical points of the period, J. Differential Equations
64(1986), 51–66.
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22. [Po] V. Poénaru, Analyse différentielle, Springer Lectures Notes in Math. 371(1974).
23. [RS] C. Rousseau and D. Schlomiuk, Cubic systems symmetric with respect to a center, J. Differential

Equations 123(1995), 388–436.
24. [RST] C. Rousseau, D. Schlomiuk and P. Thibaudeau, The centers in the reduced Kukles system, Nonlin-

earity 8(1995), 541–569.
25. [RT] C. Rousseau and B. Toni, Local bifurcation of critical periods in vector fields with homogeneous

nonlinearities of the third degree, Canad. Math. Bull. (4)36(1993), 473–484.
26. [Sc] D. Schlomiuk, Elementary first integrals and algebraic invariant curves of differential equations,

Expositiones Mathematicae 11 (1993), 433–454.
27. [Si] K. S. Sibirskii, On the number of limit cycles in the neighborhood of a singular point, Differential

Equations 1(1965), 36–47.
28. [T] B. Toni, Bifurcations de périodes critiques locales, Ph. D Thesis, Université de Montréal, 1994.
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