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LOCAL BIFURCATIONS OF CRITICAL PERIODS
IN THE REDUCED KUKLES SYSTEM

C. ROUSSEAU AND B. TONI

ABsTRACT.  In this paper, we study the local bifurcations of critical periods in the
neighborhood of a nondegenerate centre of the reduced Kukles system. We find at the
same time the isochronous systems. We show that at most three local critical periods
bifurcate from the Christopher-LIoyd centres of finite order, at most two from the lin-
ear isochrone and at most one critical period from the nonlinear isochrone. Moreover,
in al cases, there exist perturbations which lead to the maximum number of critical
periods. We determine the isochrones, using the method of Darboux: the linearizing
transformation of an isochrone is derived from the expression of the first integral. Our
approach is a combination of computational algebraic techniques (Grobner bases, the-
ory of the resultant, Sturm’s algorithm), the theory of ideals of noetherian rings and the
transversality theory of algebraic curves.

1. Introduction. Thestudy of isochronoussystemsdifferent fromthelinear isochrone
goesback to Huygenswho studied the cycloidal pendulum. This pendulum hasisochronous
oscillationsin contrast with the monotonicity of the period of the usua pendulum. As soon
asonelooks at quadratic systems one finds centres for which the period is not monotonous
but has some critical points [CD]. A global study of the number of critical points of the
period is a very difficult question. A simpler question is the local problem of the number
of critical periods which can appear by perturbation of a system in the neighborhood of a
centre. Thisquestionisattacked by cal cul ating the Taylor seriesof the period functioninthe
neighborhood of the centre and by determining the order of itsfirst non-constant term. This
calculation is purely algorithmic. When it is performed on a polynomial family of vector
fieldsthe coefficientsof the period function are polynomial sin the coefficientsof the system.
Thevanishing of the period coefficientsthen leadsto questionslike determining the Grobner
basis of an idea of polynomials. Ultimately this local analysis allows us to determine the
isochronouscentresin thefamily, which are the onesfor which all coefficients of the Taylor
series vanish, except the first. More precisely this method yields necessary conditions for
isochronicity. Their sufficiency is given by ad hoc methods.

The method described above has been used to study the local critical periods and the
isochronous centres among quadratic systems [CJ], and among cubic systems symmetric
with respect to acentre[RT]. Inthe quadratic (resp. cubic symmetric) case the necessary and
sufficient conditions for isochronicity had been determined previously by Loud [L] (resp.
Pleshkan [P]).
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Similaritieswere found in the quadratic and cubic symmetric systemswith an isochron-
ous centre at the origin. Indeed, in each case the system has a rational first integral and
the two complex separatrices of the origin belong to different irreducible algebraic curves.
Moreover the system is reversiblein the sense of Zotadek [Z]. Also, regarding bifurcations
of local periods, in each case we can attain agreater number of local critical periods starting
from aweak centre than from an isochronous centre.

Starting from these remarksit isinteresting to investigate other families of vector fields
and to try to deduce general laws. One question which is of particular importancefor usis
to understand the mechanisms by which a centre is isochronous. This mechanism is com-
pletely hidden when one applies the algebraic method described above. There is no hope
of characterizing geometrically, from the phase portraits alone, systems having isochronous
centres since the phase portrait does not determine the velocity along the trajectories. Our
hopeis neverthelessto find necessary geometric conditionsfor isochronicity. When they are
not satisfied we find obstructionsto isochronicity.

There are very few families for which the centre conditions are known. The reduced
Kukles systemis one of these and this explainswhy we choose to study it.

Hencewe consider, in this paper, the bifurcations of critical periods of periodic solutions
in the neighborhood of a nondegenerate centre of the reduced K ukles system:

(Ko) X=-y
Y = X+agxX® +apXy + agy” + aux° + asX°y + Xy’

Necessary and sufficient conditionsfor the centre have been given by Christopher and LIoyd
[CL]. Using the Grobner Basis packages[B], [DST] on Maple V, Rousseau, Schlomiuk and
Thibaudeau [RST] determined the basis of the ideal generated by the five first Lyapunov
constants and were able to verify the Christopher-Lloyd conditions. We address the prob-
lem of the maximum number of critical periodsbifurcatingfromtheoriginin (Kq) and solve
it completely. Thereare four strata of centresfor the reduced Kukles system, one consisting
of quadratic systems and the remaining three consisting of truly cubic systems. For each
stratum of cubic systems we calcul ate the coefficients of the period function. Only one of
the strata contains nonlinear isochrones: these form a 1-parameter family. We show that at
most three critical periods can bifurcate from the centres of finite order or from the linear
isochrone and at most one from the nonlinear isochrones. We reduce the proof of the exis-
tence of perturbations leading to the maximum number of critical points to the proof that
some algebraic curves have transversal intersections. Moreover, using Darboux’s method
[D], [Sc], we give necessary and sufficient conditions for the origin of the reduced Kuk-
les system to be isochronous. We can also derive a linearizing transformation. As in the
guadratic case and in the cubic system symmetric with respect to a centre, we note that the
system with an isochronous centre has arational first integral and that it isreversiblein the
sense of Zotadek [Z]. The complex separatrices of the origin again belong to two different
algebraic curves.
One originality of the paper comes from the computer assisted proofs.
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2. Preliminaries. Let X(x,y, ) be a family of plane analytic vector fields parame-
trized by A € R" with a nondegenerate centre at the origin for every A. Upon blowing
up, the nondegenerate centreis replaced by aregular closed trajectory. The period function
P(x, A) is then an analytic function of the coordinate x parametrizing the x-axis: P(x, \) =
2 o Pr(A\)XX. Moreover, this function is even [MRT] and has the following Taylor series

2-1) P(X,\) = 27+ 3 pad A
k=1

for |x| and |\ —\, | sufficiently small. Thecoefficientspy () can becal culated by an algorithm
viaasymbolic manipulator suchasMapleV. It can be shownthat they are polynomialsinthe
components of the bifurcation parameter A [CJ]. By the Hilbert basis theorem there exists
N € N such that the ideal of all coefficientsisfinitely generated by thefirst N coefficients.
Calculating the coefficients py until we get (p2,...,Pan) = (P2,..., Pan+1)) l€adsto the
conjecturethat p, = - - - = pay = 0 are sufficient conditionsfor isochronicity. One can then
try to prove the isochronicity of the systems using ad hoc methods. In this case we find a
linearizing transformation derived from the first integral.

DEFINITION 2.1. If pp = pg = -+ = px = 0and pa+2 # O, then the origin is aweak
linear centre of finite order k.
If pox = Ofor each k > 1, then the originis of infinite order; it is an isochronous centre.

DEFINITION 2.2. K local critical periods bifurcate from the weak centre corresponding
to the parameter )\, if:

(1) for every a > 0, sufficiently small, there exists a neighborhood W of A, such that

forany A € W, P(x, \) has at most k critical pointsin U = (0, «).

(2) Moreover, any neighborhood of ), containsapoint A such that P(x, A1) hasexactly

k critical pointsinU = (0, o).

DEFINITION 2.3. Let {X, },ca be afamily of systems with a centre at the origin and
period coefficients py (). The family satisfies condition (P) if for any A* € A such that
p2(A*) = -+ = px(N*) = 0, pa+2(A*) # 0 and any neighborhood W C A of A* in which
Paks2()) # O thereexists A1 € W such that

(2-2) Pacs2(A)P(A) <O
p2(A) = -+ = paco(A) = 0.

The system X,- is said to satisfy condition (Py).

PROPOSITION 2.4 [T]. Let {X,},ca be a family of systemswith a centre at the origin,
satisfying condition (P) and X, satisfy condition (P\). Then, for any sufficiently small € >
0, for any neighborhood V of A* and for any 0 < n < k there exists \** € V such that
X, has exactly n periodic orbits with critical periods passing through points (x, 0), with
x € (0,¢€).

PrRoOOF.  Critical periods correspond to zeros of the derivative Q(x, \) = ‘[’3—';’ (X, A) of the
period function with respect to x.
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The proof goes by induction on k and n. It is obviously true for k = 0 or for k > 0 and
n=0.

We start with ¢ > 0, sufficiently small so that Q(x, A*) = (2K + 2)paes2x2<*L + o(x%¢*1)
does not vanish for 0 < x < e. For the sake of simplicity let us suppose pa:+2(A*) > 0. By
continuity of Q we can choosex; € (0, €) such that Q(x, A*) > 0 on (0, x;]. Condition (P,)
allows us to choose A! sufficiently closeto A* so that Q(xg, A') > 0 and (2-2) is satisfied.
Then there exists 0 < xp < X; and such that Q(xp, A1) < 0. Hence there exists X} such that
Q(x;, A\Y) = 0. Moreover we can choose A! so that 32(x;, A1) > 0. Indeed, x2(x, \!) —
(2k — 1)Q(X, A1) = 2(2K + 2)poys XL + o(x2<*1).

We use the induction hypothesisfor k — 1, n — 1 and e = x;j. By the implicit function
theorem it is possible to choose the neighborhood V1 C V of Ay sufficiently small so that
the (structurally stable) root x; persists under perturbation of the system. m

The two theorems below summarize our preliminaries; the first one is straightforward
from the Weierstrass-Malgrange Preparation Theorem [Po], and the second oneis based on
the now classic derivation-division method. Both have been recalled and described in [T].

FINITE ORDER BIFURCATION THEOREM [CJ]. No more than k local critical periods
can bifurcate from weak centres of finite order k at the parameter value \.. Moreover, if
the family satisfies the condition (P) and if X,. satisfies the condition (P,) then, for any
0 < n <k, there are perturbationswith exactly n local critical periods.

ISOCHRONE BIFURCATION THEOREM [CJ]. If the vector field X has an isochronous
centre at the origin for the parameter value A\, and if for each m > 1 the period coefficient
Pom isin theideal (P, ..., Pk, Pax+2) Over thering R{\1,..., An},, Of convergent power
seriesat A, then at most k local critical periods bifurcate from the isochronous centre at
A« Moreover, there are perturbationswith exactly n < k local critical periods, if the family
satisfies the condition (P) and if X,- satisfiesthe condition (Py).

3. Thereduced Kuklessystem. Consider the Kukles system

(K) =
Y =X+ apd +apXy + agy” + X + asX’y + agxy’ + ary’,

with a; = 0, which we call (Ko). In this reduced form, necessary and sufficient conditions
for acentre are known since 1944 [Ku] [CL].

CONDITIONS OF CENTRE [CL].  System (Kg) has a centre at the origin if and only if the
parameter value A = (ay, ay, as, a4, as, a) isin one the following strata:
Kiag=as=a=a,+taz=0
Kitay +ag(ay + ag) = a5 — ap(ay +ag) = ag(ay + 2ag) — aj(ay +ag) = 0
Kin:ap=a5=0
Kyv:iag =az=a=0.
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DEFINITION 3.1.  We say that system (Ko) hasa centre of typel (respectively 1, 111, 1V)
if the systemisnonlinear and A € K, (respectively K;;, Ky, Kiv).

DISCUSSION OF THE CENTRE CONDITIONS. (1) Systemscorrespondingto parametersin
K| are quadratic systems, which have been analysedin [C]].

(2) Systems corresponding to parameters in K;; have two invariant lines yielding an
integrating factor and an elementary first integral.

(3) Systems corresponding to parametersin K;;; are symmetric with respect to the x-
axis, i.e. invariant under the transformation (x,y,t) +— (x,—y, —t). They have a
Liouvillian first integral whichis generically not elementary.

(4) Systems corresponding to parametersin Ky are symmetric with respect to the y-
axis, i.e. invariant under the transformation (x, y, t) — (—X,y, —t). Generically they
have no Liouvillian first integral.

(5) Systems corresponding to parametersin Ky, N K,y have no quadratic terms. They
are particular cases of the families studied in [RT].

Details can be foundin [RST].

3.1. Period function of the reduced Kukles system. First, changing to polar coordinates
(X, y) = (r cosé, r sind) in system (Ko) and eliminatingtimeyieldsthefollowing differential

equation
31 o (0.0 +rRh0.0)
do  1+rgu(6,N) +r2ge(6, ))
where
f1(0,\) = a; cos® 0sinf + a, cosfsin® 0 + agsin® 6,
3-2) fo(6, \) = a4 cos’ fsinf + as cos?  sin? 0 + ag cos sin° ),

01(6, \) = a; cos® 0 + a, cos? # sinf + ag cosf sin? 6,
g2(0, \) = a4 cos* 0 + as cos® fsind + ag cos? O sin 6.

Let us denote by 7, the closed trgjectory through (€, 0). The period function is then given
by

P, \) = / dt

(33 do

27
- /0 1+1(0,€ N)ga(0,A) +12(0, &, \)g2(0, N)
where 6 — r(0, &, \) isthe solution of the differential equation (3-1) with initial condition
r(0,)\) = &. Itisknown that r(6, &, \) may be locally represented as a convergent power
seriesin &:

(3'4) I’(H, g! )‘) = Z uk(e! )\)gk,

k>1
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Substituting (3-4) in (3-1) yields a sequence of linear differential equations satisfied by the
coefficientsu(6, A) in (3-4):

uy(6,)) =0,
(3-5) k—1
U0, 2) = > ui(fiii + favie i) — Ui (Qali + Govi),
=1

with
k1
(3-6) vi=0, V= Ul

i=1

andinitia conditionsuy (0, ) = 1,u;(0, ) = Ofori > 1. Thisyieldsin particular uy (6, \) =
0. Theintegrandin (3-3) isanalytic for € [0, 2x] and |¢| sufficiently small. Thus we may

writelocally:

k 2r k
(37) P(&,2) = 21+ 3 pE = ([ A6, ) db)

k>1 k>0
Therefore the period coefficients p()\) can be obtained by integrating the terms Ac(6, \)
given by:
Ao(B,)) =1

(3-8)

k1
A, )) = *[gluk + ;(gzui Ui + (Qali + gZVi)Akfi)]-

REMARK. Note that the coefficients px(\) can be calculated for a weak focus as well
as for acentre. In the former case they represent the coefficients of the time to go from an
initial condition (¢, 0) to thefirst return Q(&, 0). We also call them the period coefficients.

3.2. Thefirst period coefficients. From (3-1), (3-7) and (3-8) we derive the period coeffi-
cients px(A), and in particular the following lemma. We use a simple program on Maple V.

LEMMA 3.2. The period coefficient p, for the system (Ko) is given by

(3-9) p2()\.) = a3 + 10a3 + 10aag + 4a3 — 92, — 3as.

PrOOF. From (3-8) we derive A1(A, \) = —g1u; = —@;. Since g; is an odd homoge-
neous trigonometric polynomial we get that p;(2\) = 0. To calculate po(\) we consider

A6, ) = —Q1Up — GoU2 — Q11 Ay — QoViAg

(3-10) ,
= —01U2 — Q2+ 03.
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Equation (3-5) yields

(3-11) W(0, \) = f1(6, \),
yielding

0
(3-12) W(6, ) = /0 f1(r, \) dr.

Hence u,(6) can be written as a homogenoustrigonometric polynomial of degree 3. Then

(313 P = [} —0u(6 N(6,3) — 626, 2) + (6. )

3.3. Centre of type |. The corresponding system is quadratic; thus, using the results in
[CJ], thiscentreis of order at most two; but from the expression of p; in this case, we can
conclude that no critical period can bifurcate from this centre; let us note that the stratum
K isentirely includedin K;;.

3.4. Centreof typell. We provethe following result.

THEOREM 3.3. (1) Acentreof typell may be at theintersection of strata K, and K, as
well as at the intersection of K;; and Ky. In thefirst case, the centreis of order zero; in the
second case, the order islessthan or equal to two.

(2) At most two critical periods can bifurcate from a weak centre of typell.
(3) Moreover, each centre of order two has perturbationswith exactly two local critical
periods.

PROOF. We consider anonzero parameter value A, on the stratum K,,. Wethen can split
the problem into two cases: a; + 2a3 = 0 and a; + 2a3 # 0. In each case we analyze the
period coefficientsreduced modulo the ideal of the previous coefficients.

Case1l. Assuminga; + 2az = Owith ag = 0 leadsto a substratum of Ky:
ag=a=ag=a =0

Thethree first period coefficientsare given by:

p = a5 — 3as
(3-14) ps = 7(a3 — 3ag)(a — %)
Ps = 23088a5.

Hence p, = 0if and only if a3 = 3as. For as < 0 the first period coefficient p; is nonzero;
therefore the corresponding centreis of order zero and no local critical period can bifurcate
fromit.
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Forp, = Oand ag > 0, weget p;, = 0 and ps > 0, yielding a centre of order at most
k = 2. A perturbation with two critical periodsis shown in the case of centres of type K)y.

CASE2. Assuminga; +2a3 # 0, we may take a; + 2a3 = 1 without loss of generality.
From Lemma 3.2 we get

(3-15) p, = 3a3 + 12a3 — 2lag + 10 + a3,
Therefore
(3-16) p, = 0if and only if a5 = b(ag) = —3a3 — 12a3+21az — 10 > 0

We compute the period coefficients ps and ps modulo p, and obtain

(3-17) Pa(\.) = 18(ag — 1)°hu(as)
ps(\.) = 6912(az — 1)*hg(az)

with

(3-18) hy(ag) = —9a§ — 87a3 + 121a2 — 209a; + 160
hs(az) = ag — 8a§ + 508a§ + 1130a% — 722585 + 5450,

From our assumptions, we necessarily havea; # 1. Also,
resultant(hs(as), he(as)) = 3130572800 # .

Therefore, p; and ps modulo p, have no common zero, i.e., ps is nonzero on the variety
V(p2, p4). By theFinite Order Bifurcation Theorem, at most two critical periodscan bifurcate
from the corresponding weak centre.

A perturbation with exactly two local critical periodsis easily constructedin the foll ow-
ing way. By the intermediate value theorem, h, has a zero a3 in the interval

—110820 —110815
(3-19) 3= |22 = | ~5500- 0000 {

Moreover, b(a;) > 0 on J; indeed, we have b(al) > 0 and b(a3) > 0, and we prove, using
Sturm’s algorithm [K], that b(ag) is nonzero on the interval J. A similar argument leads to
hs < 0onJ, and ps aswell.

We perturb in two stepsin the standard way. m
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3.5. Centreof typelll.

THEOREM 3.4. Aweak centreof typelll isof order at most 3. Moreover, any such centre
of order 3 has a perturbationwith exactly n local critical periods, for all n < 3.

PrOOF. The proof goesinto two parts.

PART 1. Letusassumea; = 0, and denote by ! the corresponding value of the param-
eter. Then, we have:

P2(\;) = 4a3 — 9as — 36
(3-20) pa(\}) = 2743 + 21a3a, — 32a}
ps(\}) = —7290a3 + 118746a3a; — 68157a3a, + 3401645,

where p4 and pe are reduced modulo p,. We note that p, is a polynomial of degree2in ay,
with discriminant: D = 3897a3.

(1) Thisdiscriminantvanishesat ag = 0, leadingto p, = 27a3 # 0, for a4 isnecessarily
nonzero. Therefore, the corresponding centre, i.e, &y = a3 = 0, a4 # Oisof order at
most one. A perturbation with exactly onelocal critical period is easily constructed.

L et us note that such a centreis at the intersection of the strataK;;; and K,y.

(2) Theabovediscriminantisstrictly positivefor ag # 0; looking for the roots of p,, we
get
744433

2
as.
18 8

Iy

But, we have resultant (ps, ps, as) = a3?, modulo a nonzero constant. The periods coeffi-
cients ps and pg have thus no common roots in ag; in other words, for a4, = r(ag), we
obtain

Pa(az, as) =0, pe(as,as) # 0.

Therefore, the corresponding centre is of order at most two and such a centre of order two
can be perturbed in the standard way to produce exactly two local critical periods.

ParRT2. Next,westudy thecasea; # 0; wemay then, without lossof generality, assume
a; = 1. Let usdenote by \2 the associated val ue of the parameter. Using the relations (3-7)
and (3-8) to compute the corresponding period coefficients modulo p,, we get:

p2(\3) = 4a3 + 10ag + 10 — 9ay — 3a¢
(3-21) pa(\?) = 108a] + cj(as)as + c5(as)
Ps(AY) = —7290a] + cj(as)as + ci(as)as + c3(as)
pe(\2) = 75246796800a] + cg(ag)aj + c(ag)al + ca(as)ay + Cg(as),
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with
ci(ag) = 57a3 — 402a3 — 519
ci(ag) = —114a3 — 457a3 — 645a3 — 195a3 + 115
Ce(ag) = 118746a3 + 217404a3 + 176094

c3(as) = —68157a3 — 232704a3 — 438210a3 — 404640a; — 176265
c3(ag) = 34016a5 + 215880a3 + 585210a3 + 852920a3

+723900a3 + 340800a3 + 73850;
and finally
ca(ag) = 572961807360a3 — 1284204533760a; — 1829799797760
c3(as) = —1285543180800a3 — 4177321583616a5 — 3345808011264a3

+ 3848748880896a5 + 3797890398720
c3(as) = 3844393366208 + 3525901880472a5 + 126933087466442%

+22123313129040a5 + 18546928501140a3 + 5004955583640a3
— 653908329300
Ca(as) = —45591948115a8 — 485200347316a} — 2196106467040a5
— 6007981449460a3 — 10914080051470a4 — 12847208098300a5
— 8891765452600a3 — 2876423451100a3 — 223379079175.

We then analyse the following equations:

pa(as,as) =0; ps(as,as) =0; ps(as,as) =0.

Let (C4), (Cs), (Cg) be the algebraic curves defined respectively by the previous equations.
Using the theory of resultants, we show that the previous system has no solution; indeed,
denote

(3-22 R4e = resultant(ps, ps, a4), Reg = resultant(pe, ps, ay),

with ps, ps and pg in R[ag][a4]. Hence R4 and Reg arein R[az]. We obtain resultant (R4s,
Res, ag) # 0. Fromthis, it follows that the polynomialsps, ps and ps have no common root;
the corresponding centreis of order at most three. We show that there exist centres of order
k = 3. It sufficesto provethat the systemp, = ps = 0 hasat |east onereal root at which the
curves (C4) and (Cg) have atransversal intersection; therefore the corresponding parameter
value may be perturbed into a certain Xf satisfying

pz(s\f) =0
pa(\3) x ps(A3) < 0
pe(\3) x pg(A%) < 0,
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\ '
\ \‘CB) / (Ca)

FIGURE 1: Transversal intersection of curves (C4) and (Cg)

and leading to condition (P3). Thisis done as a computer assisted proof. First, using acom-
puter algebra system such as Mathematica, we represent the algebraic curves (C4) and (Ce)
in Figure 1 below.

This representation suggests the existence of real roots in some rectangles, one of them
being

4 3 3B 4

(323 8= -1 16 * |15 18]
We will show (using Maple V) that the two curves (C,) and (Ce) intersect transversally in
R} and that ps > 0on R. For this purposewewill do an extensive useof Sturm’salgorithm
and discriminants. Moreover the different polynomial functions will only be evaluated at
rational points.

The proof goes as follows: we define the following one variable polynomials:

35 4
1 _ o9 2 _ .
f(ag) = pm<3-3' 100)1 fm(aa) pm(a& 10>,
4 3
1 _ _a 2 — _>
0n(@0) = P —15.),  Ghas) = pm(— 75, 2),
for m = 4,6,8. By Sturm’s algorithm, the polynomialsfi, i = 1,2 in the variable a; have
no real rootintheinterval (— 5, —=]; but the polynomialsfi, i = 1,2 haveexactly onereal
root in the same interval. On the other hand the polynomials g}, i = 1,2 have one unique

real root in (35, 1, while the polynomialsgj, i = 1, 2 are nonzero.

Finally, there will exist at least one real intersection denoted by Mg = (a3, a2) in RS, if
we show that the curves (C4) and (Cg) are non singular, i.e. that the systems

) . o 9 _o 9m _
(3-24) pi(az, as) = 0; aaa(as,az;)fO, aa4(a3.a4)—0,
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for j = 4,6, have no real solution. We only need to show that

Discy(as) = discriminant (ps, as) # 0on ( 140 %]
529 3% 4
Discg(as) = discriminant (pg, a4) 7 0 on (100 10]

Thisis again checked by Sturm’sagorithm.

Moreover, the polynomial pg has no root on the rectangle RS. Indeed, f} and g do not
vanish on the sides of this rectangle and pg, for ag then a4 fixed has no multiple zero re-
spectively intheintervals (3, +£1 and (— 15, —10] From pg(— 3, &) > 0it followsthat
pg > 0.on RY. So we have a parameter value \3 associated to the zero My such that

(3-26) P03 = pa(A3) = ps(33) = 0; ps(A%) > 0.

We may conclude by showing that the curves ps(as,as) = 0; ps(ag,as) = O intersect
transversally at the real root My; in other words, the system

pa(as,as) =0, ps(az,as) =0

_ 9P40ps  0paOps _
T(@s, ) = daz 0ay 0Oas0ag

(3-27)

has no real solution. In fact, one must only prove:
(1) T(as,as) doesnot vanish on the boundary of the previousrectangleRY; thisamounts
to showing, using, once again, Sturm’s algorithm, that the polynomials T1(ag) =
T(as, 2) and To(ag) = T(as, 15) are nonzero on (—15, —31; similarly, Ta(as) =
T(—15,a4) and Ta(as) = T(—3, as) are nonzeroon (2, 15].
(2) ThecurveT(as,a4) = 0 hasno closed component in RY: Disc(as) =
discriminant (T, a3), and Disc(ag) = discriminant (T, a4) have no real zeros re-
spectively on (2, ] and on (— 75, — 3]
We provein fact morethan the transversality of the curves(C,4) and (Ce). We have shown
that

ops ape op2

FEN 0; 7é0 d

The combination of the previous results leads to the following successive perturbations:
first, perturb A2 into A2 to get

(3-28) o 70

P2(A%) = pa(A2) = 0, pe(A%) <0;  ps(A%) > 0.
For that we choose 63 sufficiently small,

3 =az+03; &4 =ay+04(03); & = as+6(03,04),
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to stay on the surfaces p, = 0 and p, = 0. We then take a perturbation A3 of :\f with
components

L= +es TFb=a+e(ea),
with |es| < |63] such that
p(A3) =0, pa(03) >0; ps(A3) <0; ps(\3) >0.
Finally, in the neighborhood of /\_f we may choose /\vf with

éﬁ =3as+ 16, ‘776| < mln(l%‘, |€4|)1 6 > Ov

for ag > 0 on the defined rectangle, allowing to realize condition (P3): threelocal critical
periods are then present at the weak centre associated to A3, m

3.6. Centre of type IV. This case leads to another interesting result: the appearance of a
nonlinear isochronous centre and the use of a linearizing transformation to establish the
isochronicity.

The corresponding system is written in the form:

(3-29) X=-y
Y = X+ apXy + asx + agxy>.

The associated period coefficients are derived from formulas (3-7) and (3-8) viaMaple V.
Theresults are given in the following lemma.

LEMMA 3.5. Thefirst three periods coefficients associated to a weak centre of type IV

are:
P2(\.) = 85 — 92, — 336
pa(\.) = 7a3 — 324a3a, + 2349a3 — 84a3as + 918a4a, + 18983
(3-30) Pe(\.) = —2579a5 — 29493a3a, + 2192346a%a; — 1546090a;

+8841a3as + 76431683248 — 78999302536
+ 79434a%aZ — 1888110a,a3 — 22515043,

With this lemma, we prove the following result.

THEOREM 3.6. The reduced Kukles system has an isochronous centre at the origin if
and only if

(3-31) a =ag=as=as=0=a3—9ay,
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in other words, if and only if the systemis of the form

X=-y
(3-32) 22
V= X+apxy + §2x3
Afirstintegral of (3-32) isgiven by

(a3x2 + 3apy + 9)2

(3-33) Fooy) = asx? +6agy+9

PrROOF. We have seen aready that there exist no nonlinear isochronesin the strata of
centres of typel, |1 or I11. The proof is based on the reduction of coefficients pan(\.) for
centres of type IV. They have been calculated in Lemma3.5. Modulo p, givenin (3-30), ps
isreduced to p; = asas, Up to a multiplicative constant. We then reduce pg in the Grobner
basis of p,, ps. We obtain ps = —aZ, up to amultiplicative constant. Analyzing the system

p2=ps=0,

amountsto the study of only two cases:

Case 1.
(3-34) a;=0; a=23as ag>0.
Let usdenote by A2 the induced parameter value. Then
(3-39) P2(N2) = pa(A)) = 0;  ps(A2) = —ad # 0.
Hence there are no nonlinear isochronesin this case.

CAsE 2.
(3-36) as =0, a5=09a, a4>0.
Denoting by A2 theinduced parameter value we obtain:
(3-37) P2(A%) = Pa(A3) = pe(A3) = 0.

We show the isochronicity of the centre of the corresponding system (3-36). The method
described in [MRT] shows that the knowledge of afirst integral of a system suggestslin-
earizing changesof coordinates. Hence, inthis case, wefirst look for afirstintegral. Thisfirst
integral suggests a change of coordinates, which transforms our system into awell known
quadratic isochronous system.
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Before looking for a first integral we first simplify the system (3-32), using the trans-
formation (u,v) — (ax, axy), followed by (U?,v,t) — (Xy,Y1, ut). The system (3-32) is
transformed into

U= —v
(3-38) s
V=ut+tuw+ —.
and
(3-39) X1 =—-2y1

. X
y1:1+y1+§l.

Thelast one has two invariant lines, yielding a Darboux first integral of the form ([RS]):
(3-40) f(xe,y1) = (X +3y1 + 9)%(x + 6y +9) L.
Therefore, afirst integral for system (3-38) is written:

(3-41) G(u,v) = (U?+3v+9)%(U? +6v+9) L.

This form suggests the following change of coordinates (X,Y) = (3, “233"), under which
system (3-38) may be rewritten as:

(3-42) X=—Y+X2

Y = X +XY.

which, in polar coordinates, istransformedto § = 1. The original system is then isochron-
ous. ]

THEOREM 3.7. A weak centre of type IV is, either of order at most two, or a nonlinear
isochrone. Moreover:
(1) Acentreof order two may be perturbed to produceexactlytwo local critical periods.
(2) A centreof type IV may be at the intersection of different strata: on K, N Kyy, it is
of order at most two; on K;;; N K}y, the order is at most one and one local critical
period may bifurcate fromit.

PrOOF. The previous study has shown (Theorem 3.4) that the centre corresponding to
a1 — a» = ag = a5 = Oisat theintersection of the stratalll and IV. It is of order at most
one and can be perturbed to produce exactly one local critical period.

We have shown in Theorem 3.6 that weak centres of order greater or equal to two can
only befound in Case 1, i.e. ay = 0 = a3 — 3ag, ag > 0, in which case we have (3-35).

https://doi.org/10.4153/CJM-1997-017-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-017-4

LOCAL BIFURCATIONSOF CRITICAL PERIODS 353

It is easily checked that the weak centre is of order exactly two and we can construct a

perturbation with exactly two local critical periods. m
We start the study of the bifurcations of critical periods from the isochrones with a few
comments.

REMARKS. (1) Ki, Ky, Ky, Ky are closed sets and intersect at the origin of R®.

(2) K,isincludedinK,. StrataK;; and K,y intersect at &y = az = as = a4 = 0; and the
intersectionof K;; and K,y giveay =a; =az=as =0, a1 #0, as# 0.But
respectively K, and K}y, K;; and K;;; have no nonzero intersection.

(3) Any perturbation A of A, € KiN K;, stays either in K; or in K;. We must then
consider perturbationsof thelinear isochroneinto each of the strataKj, j = I, I1, 111,
1V, keeping in mind that the nonlinear isochronous point liesuniquely in the stratum
K|V.

We then prove the following results.

THEOREM 3.8. Any perturbation of the linear isochrone may produce at most three
local critical periods.

The proof uses Propositions 3.9 and 3.10 below.

PrOPOSITION 3.9. (1) Any perturbation of the linear isochrone into centres of type |
produces no critical period.
(2) At most two (respectively three) local critical periods can bifurcate from a pertur-
bation of the linear isochrone into centres of types 11 (respectively of type I11), but
outside of the stratumKy.

ProoF. These results come from the bifurcation of a linear isochrone into a stratum
with no other isochrones and from the study of centres of typel, I1, 111 exclusively. m

The above remarksstated the possible perturbationsin the stratum Ky, whichistheonly
stratum to contain nonlinear isochrones. We prove the following.

ProPOSITION 3.10. (1) Theideal M of the period coefficient py, k > 1 isfinitely gen-
erated by thefirst three coefficients: M = (py, pa, ps) over the noetherianring R[ay, as, ag]
of polynomialsin the variablesa,, ay, as.

(2) At most two critical periods can bifurcate from the origin in a perturbation of the

linear systeminto the family Ky; moreover, there exist perturbationsleading to the
maxi mum number of critical periods.

The proof uses the lemma below.
LEMMA 3.11. For every k > 1, the exponents of a, in the coefficients py are even.
The proof is straightforward using the transformation (x, y) — (agX, yazy), a, # 0.

PROOF OF PROPOSITION 3.10.  Denotel = (p,, p4, ps) theideal generated by p,, pa, Pe.
Every period coefficient p, k > 1 isapolynomial in the variablesb, = a3, a4, ag of
degreek; it then may be written:

(3-43) Pok = Ru(b2, &y, @6) + Ro(ay, as),
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where R; is the sum of al terms containing b, and R is the sum of the remaining terms.
Fromp, = a5 — 9ay — 3ag, i.€,, 8 = by = pp + a4 + 385, We may rewrite py as

P2k = P2S2(b2, a4, @) + Ta(au, @) + Ro(ay, as)

(3-44)
= P2Sp(b2, a4, a) + Ru(au, as).

We can write Ry(a4, ag) as

Ra(ay, 35) = asasu(ay, as) + Re(au, ag),

where Rg is the sum of all termsin only a‘4, ag 1 <i <k, with no term containing a,as.
Therefore, we obtain

(3-45) Pok = P2S2(a2, 84, 8s) + au8sSu(a, a) + Re(au, ag).

We know that the system is isochronous, i.e., pox = 0, k > 1, forag = p, = 0. Thus ag
divides Rg(ay, as) yielding that Rg is apolynomial in ag only.

Itisonly interesting to provethat py isintheidea (p,, ps, ps) for k > 4. Inthat case Rg
is of degree greater or equal to 4 and may then be written:

Re(au, as) = Re(as) = a3Ss(26)

3-46
(349 = —PsSs(as).
Finally, we get:

(3-47) P2k = P2S(a2, a4, 36) + PaSy(a4, as) — PsSe(@6)-

In other words, for every k > 1, px isintheidea | over thering R[ay, a4, ag).
Wehavepy € | = (p2, pa, Ps); by thelsochroneBifurcation Theorem, we may conclude
that at most two critical periods can bifurcate from a perturbation of alinear isochroneinto
the family K,y. As in the previous case, one may construct a perturbation giving birth to
exactly two critical periods. m
We next move to the case of a perturbation of a nonlinear isochrone and prove the fol-
lowing theorem.

THEOREM 3.12.  Any perturbation of a nonlinear isochroneinto the family K can pro-
duce at most one critical period; in addition, there exist perturbations with exactly one
critical period.

PROOF. Denote \* = A4 +§ the perturbation into Ky, where A\* correspondsto anon-
linear isochronous centre, i.e., meets the conditions

ay = az = as = ag = OwithaZ = 9a; > 0.

A4 has componentsds = 6, 34 = as+04, 3o = ap +55.
Let us call pa(2?) the perturbed period coefficients. The result will be straightforward
from the Isochrone Bifurcation Theorem if we show that ps(\?) isin theideal T = (P2, Pa)
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over the noetherianring R{ay, a4, as} v of convergent power seriesat \4; for, then, theideal
M will be finitely generated by T, from the part (1) of Proposition 3.10.
Using the expressions of the period coefficientsrelated to Ky, we get:

Po(NY) = & — 98, — 33
(3-48) = (@2 +62)* — 9(aa +b4) — 3(as + b6)
= 62 + a6, — 954 — 3.

Modulo Py, i.e., 83 = 984 + 33, we obtain:

Pa(\f) = —4328436
(3-49) = —432(a4 + 64)b6

- —432a4(1+ %)56,

sincea, # 0. Therefore, we have §g = —%i x (1+154).
-

Modulo ,, and 4, we write

(3-50) ps(\) = —691253.

Finally, by (3-50) and for 64 < |a4|, we obtain:

9121 1,

438 3 (1+ )2

6912 5a\M3.

- " 71 nf -« 3.
432%a3 LZZO( ) (a4> | e

Consequently, ps(\?) isin theideal T over thering R{ag, as, a6} ,:; hence px(A?) € T, for

Pe(\d) =
(3-51)

every k > 1.
A perturbation with one critical period may be constructed by perturbing the linear iso-
chrone to aweak centre of order 1. m

4. The study of theisochrone and concluding remarks. We study the isochronein
its reduced form, namely

X=-y
(4-1) _ 3

Y= xrxy+
9

PROPOSITION 4.1.  The phase portrait of (4-1) appearsin Figure 2.
PrOOF. The system (4-1) has a unique finite singular point at the origin. The two in-

variant lines used in the construction of the Darboux first integral (3-40) yield two invariant
parabolasx? + 3y + 9 = 0 and x* + 6y + 9 = 0. To derive the complete phase portrait we
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G)

N N

Q)

FIGURE 2: Phase portrait of (4-1).

study the points at infinity. There is a unique singular point at infinity in the direction of
the y-axis, which is analysed through the change of coordinates (V, Z) = (x/y, 1/y). After
multiplication by z> the system (4-1) becomes

V=-72-V32z-— lv“ —Vv2z2
(42) >
Z=-VZ(Z+Z%+ §V2),

with a unique singular point at V = Z = 0. Its nature is determined by blow-up. In this
case we use aweighted blow-up (V, Z) = (e, €2Z;) [BM]. The system (4-2) becomes, after

division by €3
€= _6(5_19 +Zl+Z§+ezz§)
(4-3) . 1
7= zl(§ +2,+272 +ezz§).

On e = 0the system (4-3) hasthree singular points. The points (e, Z;) = (0, 0) and (¢, Z3) =
(0,—32) are saddles, while the point (¢, Zy) = (0, —3) is arepelling node. The two points
e = 0,Z; = —3,—1 correspond precisely to the two invariant parabolas. This yields the
phase portrait of Figure 2. m

PrOPOSITION 4.2. Thetrajectories of the system (4-1) are quartic curves. The quartic
passing through the origin factors as two conics.

PrROOF. The system hasthe first integral

(X% + 3y +9)?

X2 +6y+9

Thetragjectory H(X,y) = 9 passesthrough the origin. It is equivalent to

(4-5) 9% + 9y? + 6x%y + X* = (3x + 3iy +ix?)(3x — 3iy — ix?) = 0.

The two conics 3x 4 3iy + ix? = 0 are the two separatrices of the origin. L]

(4-4) H(x,y) =
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PrROPOSITION 4.3. A linearizing change of coordinates of (4-1) is given by

B 3x
u= X2+3y+9
Ve 3y+X2

X2+3y+9°

(4-6)

ProoF. Thelinearizing change of coordinates (4-6) comesfrom the linearizing change
of coordinates (u,v) = (£, 1) for the system (3-42). .

The reduced Kukles family is not sufficiently rich to draw deep conclusions or con-
jectures about isochronous systems. Several interesting small conclusions can however be
drawn. Indeed:

(1) In opposition to the quadratic and cubic cases, not al systems with centersin the
reduced K ukles system have Darboux first integrals. It hasbeen shownin [RST] that
generically centres of type IV have no elementary, nor Liouvillian first integrals.
However, it is precisely in that stratum that the nonlinear isochroneslie. Moreover
they have arational first integral and arational linearizing change of coordinates.

(2) Hereagainthetwo separatricesof theoriginaredifferentalgebraiccurves. In[MRT]
are found other examples of isochronous systems which do not necessarily have a
rational first integral, nor are reversible. However, all these examples have at |east
two invariant algebraic curves which are the two separatrices of the origin. This
leads us to formulate the following conjecture which should probably be attacked
by looking at the geometry of the complex underlying system:

CONJECTURE 4.4. For a system with a centre at the origin and a rational first inte-
gral, the irreducibility of the algebraic curve passing through the origin is an obstruction
to isochronicity.

CoMMENTS.  After we finished this work we learned that the full Kukles system has
been examined in [ChD] via a Lyapunov-type method to obtain necessary and sufficient
conditions for an isochronous centre. They obtained no other isochrones than the ones we
have found.
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