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GRADIENT ESTIMATES FOR HARMONIC FUNCTIONS
ON MANIFOLDS WITH LIPSCHITZ METRICS

JINGYI CHEN AND ELTON P. HSU

ABSTRACT. We introduce a distributional Ricci curvature on complete smooth man-
ifolds with Lipschitz continuous metrics. Under an assumption on the volume growth
of geodesics balls, we obtain a gradient estimate for weakly harmonic functions if the
distributional Ricci curvature is bounded below.

1. Introduction. The study of harmonic functions has a long history. On Rieman-
nian manifolds, Yau [12] proved a fundamental gradient estimate for harmonic functions
in terms of the lower bound of Ricci curvature. As one of the many applications of Yau’s
gradient estimate, we have a generalization of Liouville’s theorem to the effect that a
positive harmonic function on a complete Riemannian manifold of nonnegative Ricci
curvature is constant.

Recently there is an increasing interest in the study of harmonic functions (and
harmonic mappings) on nonsmooth spaces. In this paper, we study the behavior of
weakly harmonic functions on smooth manifolds with Lipschitz Riemannian metrics.
We introduce the concept of distributional Ricci curvature and, under a mild volume
growth condition, we derive a gradient estimate for positive (weakly) harmonic functions
in terms of the lower bound of distributional Ricci curvature. Liouville’s theorem also
follows from our gradient estimate. The main result of our work can be stated as follows.

THEOREM 1.1. Let M be a complete differentiable manifold with a Lipschitz Rie-
mannian metric such that volumes of geodesic balls satisfies sub-quadratic exponential
growth condition, i.e.,

Vol
�
B(R)

� � eo(R2)
Assume that the distributional Ricci curvature is bounded from below by �(n � 1)K for
some nonnegative constant K. If u is positive weakly harmonic function on M, then

þþþþru
u

þþþþ � p
2n(n� 1)K

In particular, if the distributional Ricci curvature is nonnegative, then any positive weakly
harmonic function is constant.
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Our argument is based on an early observation attributed to R. Schoen in Yau [13].
One feature of this argument is that it avoids using the maximum principle, thus allowing
us to handle weakly harmonic functions on manifolds with Lipschitz metrics.

Let us make a few remarks on the Ricci curvature on a smooth manifold with a
Lipschitz metric. For Riemannian metrics which are not C2, it is natural from analytical
point of view to understand the Ricci curvature in the sense of distribution. Our basic
assumption is that the Ricci curvature is bounded from below by a constant in the sense of
distribution. From a well-known result in distribution theory this assumption implies that
the distributional Ricci curvature is in fact a measure. Such a definition of distributional
Ricci curvature is enough for us to carry out the analytical part of our argument. However,
we do not know whether a constant lower bound on the distributional Ricci curvature is
sufficient for obtaining an exponential volume growth for geodesic balls. In the case of
smooth metrics, such an implication is well known. Unlike Alexandrov’s interpretation
of sectional curvature through triangle comparison inequalities, to our knowledge so far
there is no adequate interpretation for Ricci curvature in nonsmooth cases. In this respect,
Lin [9] has recently studied the Liouville type theorems for L-harmonic functions, i.e.
solutions of the elliptic equation

Lu =
]

] xi

�
Aij(x)

]

] x j

�
u = 0Ò

where Aij(x) are bounded measurable functions and

ï1I � �
Aij(x)

� � ï2I

for positive constants ï1 Ú ï2, under some assumptions on the asymptotic behavior of
L and on the growth of volume of geodesic balls. We also point out that recent works
of Colding [3] [4] provide an interesting integral version of the Toponogov comparison
theorem for Ricci curvature.

The rest of the paper is arranged as follows. In Section 2 we define weakly harmonic
functions and distributional Ricci curvatures. In Section 3 we follow R. Schoen’s sugges-
tion presented in Yau [13] and prove an integrated gradient estimate for positive harmonic
functions on smooth Riemannian manifold with Ricci curvature bounded from below. In
Section 4 we show how to prove the pointwise gradient estimate for weakly harmonic
functions using the integrated gradient estimate and distributional Ricci curvature. Liou-
ville’s theorem for manifolds with nonnegative Ricci curvature follows immediately. We
also prove a variation of Liouville’s theorem for weakly harmonic functions satisfying
certain growth conditions. Finally in Section 5 we give two examples where our theory
can be applied.

2. Weakly harmonic functions and Ricci curvature. Let M be an n-dimensional
smooth differentiable manifold and g a Riemannian metric on M. Throughout this paper
we assume that the metric g is locally Lipschitz on M.
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Recall that in local coordinates x = fxig the Riemannian volume vg =
p

det g dx and
the Laplace Beltrami operator

∆ =
1p

det g
]i(
q

det g gij]j)Ò

where g = fgijg in local coordinates, g�1 = fgijg. By definition, a function u 2 W1Ò2
loc (M)

is (weakly) harmonic on M if it satisfies the equation ∆h = 0 in the weak sense, i.e., for
any test function û 2 C1

c (M) with support in a local coordinate neighborhood,

Z
M

gij]iû]ju dvg = 0

According to standard theory of elliptic equations, for uniformly elliptic operators in
divergence form with bounded measurable coefficients, generalized solutions are in fact
Hölder continuous (Gilbarg and Trudinger [6], p. 205); if the coefficients are continuous,
then the solutions are in the Sobolev space W2Òp

loc (M) for p Ù 1 (Gilbarg and Trudinger
[6], p. 241). Furthermore, if the coefficients are Hölder continuous with exponentã, then
solutions are C1Òã

loc (M) (Gilbarg and Trudinger [6], p. 211). Hence, under our assumption
on the metric g, a weakly harmonic function u 2 C1Òã

loc (M) \W2Òp
loc (M), for p Ù 1.

We now explain the meaning of the Ricci curvature of (MÒ g) for a locally Lipschitz
metric. Recall the local expression for the Riemannian curvature tensor:

Rl
ijk = ]iΓl

jk � ]jΓl
ik + Γm

jkΓl
im � Γm

ikΓl
kmÒ(1)

where

Γk
ij =

1
2

gklf]jgli + ]iglj � ]lgijg(2)

are Christoffel symbols. First of all since we assume that the metric is Lipschitz, the
Christoffel symbols Γl

ij are locally bounded measurable functions. It follows that each
component Rl

ijk is a distribution of order 1 (for the definition of the order of a distribution,
see Hörmander [8], 33–34.) In fact Ri

ijk can be written as a linear combination of bounded
measurable functions and partial derivatives of bounded measurable functions. The Ricci
curvature components are given by Rij = glkRl

ikj. Because glk are locally Lipschitz, we
see that the Ricci curvature components are again distributions of order 1. Now if
X = ai]i is a smooth vector field with compact support, then Ric(XÒX) = aiajRij is a
distribution of order 1 independent of the choice of local coordinates. We call Ric(XÒX)
the distributional Ricci curvature along the vector field X. Of course when the metric g
is smooth the distributional Ricci curvature agrees with the usual Ricci curvature.

For a smooth function û, we use Ric(XÒX)(û) or
R

M Ric(XÒX)û to denote the value of
the distribution (as a linear functional) on the test function û.

DEFINITION 2.1. Let M be a differentiable manifold with a locally Lipschitz Rieman-
nian metric g. We say that the Ricci curvature of (MÒ g) is bounded from below by a
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constant �(n � 1)K if for any smooth vector field X with compact support, the (distri-
butional) Ricci curvature Ric(XÒX) ½ �(n � 1)KjXj2 on M in the sense of distribution,
i.e., for any nonnegative smooth function û with compact support,

Ric(XÒX)(û) ½ �(n� 1)K
Z

M
ûjXj2 dvg

As a matter of fact, since Ric(XÒX) is a linear combination of bounded measurable
functions and derivatives of such functions, we can allow the test function û 2 W1Ò1

loc (M)
in the above inequality.

Now suppose that the (distributional) Ricci curvature of (MÒ g) is bounded from below
by K. Then the distribution Ric(XÒX) � KjXj2vg ½ 0. Every positive distribution is a
positive measure (see Hörmander [8], p. 38). It follows that Ric(XÒX) is a measure on
M. Now in local coordinates,

Rij = Ric(]iÒ ]j) =
1
4
fRic(]i + ]jÒ ]i + ]j)� Ric(]i � ]jÒ ]i � ]j)g

therefore each component Rij is (locally) a measure.

3. An inequality on integrated gradient. We will prove gradient estimates for
positive weakly harmonic functions through approximating the Lipschitz metric by a
sequence of smooth metrics and approximating harmonic functions by a sequence of
smooth (not necessarily harmonic) functions. For this purpose we need an integral form
of gradient estimates. The advantage of this integral version is that one does not need
the maximum principle nor need to worry about the cut locus. An argument with these
features is especially useful in a nonsmooth setting. We would like to point out that
the main inequality of this section (Theorem 3.1 below) holds for any smooth functions
which are bounded from below by positive constants. In the next section we show how
this inequality can be used together with an assumption of exponential volume growth
to obtain a gradient estimate for positive weakly harmonic functions.

THEOREM 3.1. Let (MÒ g) be a smooth Riemannian manifold whose Ricci curvature
is bounded from below by �(n � 1)K and u a positive smooth function on M. Then for
any smooth positive function û with compact support and sufficiently large p we have

�Z
M
û2pjr log ujp

�1Ûp � 2n(n� 1)K
²Z

M
û2p

¦1Ûp

+ 8
p

np
²Z û2p

þþþþ4u
u

þþþþp
¦1Ûp

+ 4np
²Z

M
jrûj2p

¦1Ûp

PROOF. Let F = u�2jruj2. Using Weitzenböck’s formula and the inequality
jHess f j2 ½ n�1(4f )2 we have (see also Yau [12])
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4F = 4jr log uj2
= 2jHess(log u)j2 + 2 Ric(r log uÒr log u) + 2r log ur4 log u

½ 2
n

(4 log u)2 + 2 Ric(r log uÒr log u) + 2r log ur4 log u

=
2
n

(u�14u� F)2 + 2 Ric(r log uÒr log u) + 2u�1rur(u�14u� F)

=
2
n

F2 � 2u�1rurF +
2
n

(u�14u)2 + 2u�2rur4u

�
�4

n
+ 2

�
Fu�14u + 2 Ric(r log uÒr log u)

We multiply the above inequality by û2pF p�2 and integrate with respect to the Rieman-
nian volume. This gives the inequality

2
n

Z
M
û2pFp � Z

M
û2pF p�24F + 2

Z
M
û2pF p�2u�1

è rurF(3)

� 2
Z

M
û2pF p�2u�2nur4u� 2

n

Z
M
û2pF p�2u�2(4u)2

+
�

2 +
4
n

� Z
M
û2pF p�1u�24u

� 2
Z

M
û2pF p�2u�2 Ric(ruÒru)

:= I1 + I2 + I3 + I4 + I5 + I6
We will leave I4, I5, and I6 alone and estimate integrals I1, I2, and I3. We use integration
by parts in I1 and obtain

I1 =
Z

M
û2pF p�24F

= �2p
Z

M
û2p�1F p�2rûrF� (p� 2)

Z
M
û2pF p�3jrFj2

Applying the inequality 2ab � ï�1a2 +ïb2 with ï = 2 to the first term on the right-hand
side, we obtain

2
Z

M
û2p�1F p�2rûrF = 2

Z
M
fûpjrFjF p�3

2 gfûp�1jrûjF p�1
2 g

� 1
2

Z
M
û2pF p�3jrFj2 + 2

Z
M
û2p�2F p�1jrûj2

Hence we have

I1 � �
�p

2
� 2

� Z
M
û2pF p�3jrFj2 + 2p

Z
M
û2p�2F p�1jrûj2(4)

For I2, we have

I2 = 2
Z

M
û2pF p�2u�1rurF(5)
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� 2
Z

M
û2pF p�2+ 1

2 jrFj
= 2

Z
M
fûpF

p�3
2 jrFjgfûpF

p
2 g

� n
Z

M
û2pF p�3jrFj2 +

1
n

Z
M
û2pF p

Note that the last term is half of the left-hand side of (3). We now estimate I3. Using
integration by parts we have

I3 = �2
Z

M
û2pF p�2u�2rur4u(6)

= 2
Z

M
û2pF p�2u�2(4u)2 � 4

Z
M
û2pF p�1u�14u

+ 4p
Z

M
û2p�1F p�2u�2rûru4u

+ 2(p� 2)
Z

M
û2pF p�3u�2rFru4u

The third term on the right-hand side of (6) can be estimated as follows:

2
Z

M
û2p�1F p�2u�2rûru4u � 2

Z
M
û2p�1F p�2+ 1

2 jrûju�14u

� Z
M
û2p�2F p�1jrûj2 +

Z
M
û2pF p�2u�2(4u)2

The fourth term on the right-hand side of (6) can be estimated as follows:

2
Z

M
û2pF p�3u�2rurF4u � 2

Z
M
û2pF p�3+ 1

2 u�1jrFj j4uj(7)

� 1
4

Z
M
û2pF p�3jrFj2 + 4

Z
M
û2pF p�2u�2(4u)2

Hence we have

I3 � 6(p� 1)
Z

M
û2pF p�2u�2(4u)2 + 4

Z
M
û2pF p�1u�1j4uj(8)

+
p� 2

4

Z
M
û2pF p�3jrFj2 + 2p

Z
M
û2p�2F p�1jrûj2

Now from (3), (4), (5), and (8) we have

1
n

Z û2pF p � �
�p

4
� 3

2
� n

� Z
M
û2pF p�3jrFj2(9)

+ 4p
Z

M
û2p�2F p�1jrûj2

+
�

6 +
4
n

� Z
M
û2pF p�1u�1j4uj

+
�

6p� 6� 2
n

� Z
M
û2pF p�2u�2(4u)2

� 2
Z

M
û2pF p�2u�2 Ric(ruÒru)
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If we assume that p ½ 4n + 6, the first term on the right-hand side can be dropped. We
will use Hölder’s inequality on the remaining four terms. Let

G =
�Z

M
û2pF p

�1Ûp

for the sake of simplicity. Using the lower bound for the Ricci curvature,

� Z
M
û2pF p�2u�2 Ric(ruÒru) � (n � 1)K

Z
M
û2pF p�1(10)

� (n � 1)KGp�1
²Z

M
û2p

¦1Ûp
We also have

Z
M
û2p�2F p�1jrûj2 � Gp�1

²Z
M
jrûj2p

¦1ÛpÒ
Z

M
û2pF p�1u�1j4uj � Gp�1

²Z
M
û2p

þþþþ4u
u

þþþþp
¦1ÛpÒ

Z
M
û2pF p�2u�2(4u)2 � Gp�2

²Z
M
û2p

þþþþ4u
u

þþþþp
¦2Ûp

Using these estimates in (9) we have a quadratic inequality for G:

1
n

G2 � 4p
²Z

M
jrûj2p

¦1Ûp
G + 10

²Z
M
û2p

þþþþ4u
u

þþþþp
¦1Ûp

G

+ 2(n� 1)K
²Z

M
û2p

¦1Ûp
G + 6p

²Z
M
û2p

þþþþ4u
u

þþþþp
¦2Ûp

This inequality has the form n�1G2 � aG + b, from which we have G � p
nb + na. It

follows that

G � 2n(n� 1)K
²Z

M
û2p

¦1Ûp
+ 8

p
np
²Z û2p

þþþþ4u
u

þþþþp
¦1Ûp

+ 4np
²Z

M
jrûj2p

¦1Ûp
This completes the proof of Theorem 4.1.

4. Gradient estimate for positive weakly harmonic functions. In this section
we study positive weakly harmonic functions on a complete differentiable manifold
with a Lipschitz continuous Riemannian metric. We prove a gradient estimate for such
functions under the conditions that the distributional Ricci curvature is bounded from
below by a constant and that the volume of geodesic balls grow at most exponentially.
As a consequence we obtain Liouville’s theorem for such harmonic functions when the
Ricci curvature is nonnegative.

PROPOSITION 4.1. Let M be a complete differentiable manifold with a Lipschitz con-
tinuous Riemannian metric g. Suppose that the distributional Ricci curvature is bounded
from below by �(n � 1)K. If u is a positive weakly harmonic function on M and û a
smooth positive function with compact support, then

�Z
M
û2pjr log ujp

�1Ûp � 2n(n� 1)K
²Z

M
û2p

¦1Ûp
+ 4np

²Z
M
jrûj2p

¦1Ûp(11)
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PROOF. The inequality basically follows from Theorem 3.1, because we have ∆u = 0.
But since the metric is assumed Lipschitz, we need an approximation argument. Let
(UiÒ ûi) be a paracompact atlas of M, where ûi: Ui ! Rn are diffeomorphisms onto their
images ûi(Ui). Let ö be a mollifier, i.e., a nonnegative function in C1(Rn) vanishing
outside the unit ball B1(0) and satisfying

Z
Rn
ö(y) dy = 1

Let f†ig be a partition of unity subordinate to the covering fUig. Define the mollified
function

uè(x) =
X

i

1
èn

Z
Rn
ö
 ûi(x) � y

è
!

(†iu)
�û�1

i (y)
�

dy

The metric can also be mollified. More precisely, let fxãi g be the Cartesian coordinate
functions on ûi(Ui) and denote the metric matrix on Ui by giÒãå. Suppose that XÒY are
two vector fields at x 2 M, then the mollified metric gè is defined by

gè(XÒY) =
X

iÒjÒaÒbÒcÒd
X(ûa

j )(x)Y(ûb
j )(x)]a(ûc

i Ž û�1
j )]b(ûd

i Ž û�1
j )

ð 1
èn

Z
Rn
ö
 ûi(x) � y

è
!

g(]cÒ ]d)
�û�1

i (y)
�

dy

We set
F = jr log uj2gÒ Fè = jrè log uèj2gè 

Since mollified functions and metrics are smooth, the part of the proof of Theorem 3.1
holds up to (9). Thus (9) holds with g and u replaced by gè and uè. Let us call the resulting
inequality (9)è. As we pointed out in Section 1, we have u 2 W2Òp

loc (M), since u is weakly
harmonic. By basic properties of mollifiers (Gilbarg and Trudinger [6], 147–155), we
have

uè ! u in W2Òp
loc (M)Ò

rèuè ! ru in W1Òp
loc (M)Ò

and
∆èuè ! ∆u in Lp

loc(M)
Thus in the term on the left-hand side and the first four terms on the right-hand side
of (9)è we can pass to the limit as è ! 0. Of course the third and fourth terms on the
right-hand side converge to zero because u is weakly harmonic. We need to study the
limit of the last term as è ! 0. We will show that

lim inf
è!0

(�2)
Z

M
û2pFp�2

è u�2
è Ricè(rèuèÒrèuè) � 2(n� 1)K

Z
M
û2pF p�1

In a smooth local coordinate system x = fxig, the expression under the limit can be
written as Z

M
HèÒij Ricè(]iÒ ]j) dxÒ(12)
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where
HèÒij = �2û2pFp�2

è u�2
è
p

gèrèÒiuèrèÒjuè
Again from basic properties of mollifiers and the fact that u 2 W2Òp

loc (M), we have

HèÒij ! Hij in W1Òp
loc (M)(13)

where obviously
Hij = �2û2pF p�2u�2pgriu Ð rju

On the other hand, for the mollified Riemannian metric we have

gèÒij ! gij in C1Ò0
loc(M)(14)

From the formula for the Ricci curvature Ricè(]iÒ ]j) in terms of the metric matrix fgèÒijg
(see (1) and (2)) we know that it involves at most second derivatives of the metric matrix
gèÒij. Therefore for the terms in (12) involving second derivatives of the metric matrix we
can shift one derivative from RicèÒij to HèÒij by integration by parts. Having done this, we
can pass to the limit as è ! 0 by virtue of (13) and (14). The resulting limit is just the
definition of the action of Ric(]iÒ ]j) on Hij. Note that Hij 2 W1Òp

loc (M) and that Ric(]iÒ ]j)
is a distribution of order 1. Therefore the action of Ric(]iÒ ]j) on Hij makes sense. Now
we can write Z

M
HèÒij Ricè(]iÒ ]j) dx ! Z

M
Hij Ric(]iÒ ]j) dxÒ

where the right-hand side is understood in the sense of distribution. By the assumption that
the distributional Ricci curvature is bounded from below by�(n�1)K (see Definition 2.1)
and the definition of Hij we have

Z
M

Hij Ric(]iÒ ]j) dx � 2(n� 1)K
Z

M
û2pF p�2u�2jruj2(15)

� 2(n� 1)K
Z

M
û2pF p�1

Up to this point we have shown that (9) in the proof of Theorem 3.1 holds with the last
term there replaced by the last term of (15). We can now follow the proof of Theorem 3.1
to complete the proof of the present proposition.

Now we are ready to prove our main result.

THEOREM 4.2. Let M be a complete differentiable manifold with a Lipschitz Rie-
mannian metric such that volumes of geodesic balls satisfies sub-quadratic exponential
growth condition, i.e.,

Vol
�
B(R)

� � eo(R2)
Assume that the distributional Ricci curvature is bounded from below by �(n � 1)K for
some nonnegative constant K. If u is positive weakly harmonic function on M, then

þþþþru
u

þþþþ � p
2n(n� 1)K(16)

In particular, if the distributional Ricci curvature is nonnegative, then any positive weakly
harmonic function is constant.
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PROOF. Let û be a smooth nonnegative cut-off function on M such that

û(x) = 1 for x 2 B(R)

û(x) 2 [0Ò 1] for x 2 B(2R) n B(R)

û(x) = 0 for x 2 M n B(2R)

jrû(x)j � CR�1 for x 2 MÒ
where as usual B(R) and B(2R) are the balls centered at a fixed point x0 2 M with radius
R and 2R respectively. From (11) we have

�Z
B(R)

F p
�1Ûp � 2n(n� 1)K Vol

�
B(2R)

�1Ûp
+

4Cnp
R2

Vol
�
B(2R)

�1Ûp

Fix a positive integer N. Set p = N log Vol
�
B(2R)

�
and let R ! 1. Using the volume

growth condition and the definition of F we have

sup
M

þþþþru
u

þþþþ2 � 2n(n� 1)Ke1ÛN

Letting N !1 we obtain (16).

REMARK 4.3. It is well know if the metric is smooth then Ric ½ �(n� 1)K implies

Vol
�
B(R)

� � CnRne
p

(n�1)KR

for a constant Cn. In this case the volume growth condition in the above theorem is implied
by the condition on the lower bound of the Ricci curvature. In the nonsmooth case, we do
not know whether a constant lower bound on the distributional Ricci curvature implies
the above volume growth condition.

For harmonic functions which may not be bounded from one side but with some
growth condition, the following results are well known. On a complete smooth Rieman-
nian manifold with nonnegative Ricci curvature, Cheng [2] proved that any sublinear
growth harmonic function must be a constant. For manifolds with nonnegative Ricci
outside a compact set, Donnelly [5] observed that the space of bounded harmonic func-
tions is finite dimensional and S. Y. Cheng proved that the same result holds for the
space of positive harmonic functions. Later, Li and Tam [10] [11] studied systematically
harmonic functions with various growth conditions. In the nonsmooth case, we have

THEOREM 3.3. Let M be a complete differentiable manifold with a Lipschitz Rieman-
nian metric. Assume that the distributional Ricci curvature is nonnegative. Let r(x) be
the distance from x to some fixed point q 2 M.

(1) Suppose that
Vol

�
B(R)

� � eCR2(1�ã)

for some positive constant C and ã 2 [0Ò 1). If a weakly harmonic function u satisfies

ju(x)j = o
�
r(x)ã

�Ò
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then u is a constant.
(2) Suppose that

Vol
�
B(R)

� � CRk

for some k Ù 0. If a weakly harmonic function u satisfies

ju(x)j = o
 

r(x)p
log r(x)

!
Ò

then u is a constant.

PROOF. For any R Ù 0, the function supB(2R) u� u + 1 is a positive weakly harmonic
function on B(2R). Let û be the cut-off function with support in B(2R) as defined before.
By Theorem 3.1, we have for any fixed p Ù 4n + 6

�Z
M
û2p

þþþr log
�

sup
B(2R)

u� u + 1
�þþþ2p

�1Ûp � 4Cnp
�Z

M
jrûj2p

�1Ûp

This implies that

�Z
B(R)

jruj2p
�1Ûp � 4CnpR�2V

�
B(2R)

�1Ûp�
sup
B(2R)

u� inf
B(2R)

u + 1
�2

Now we let p = R2(1�ã) in case (1) and p = log R in case (2), then let R go to infinity. We
see immediately in both cases

sup
M
jruj2 = 0

Hence u must be a constant.

4. Examples. In this section we give two examples of smooth manifolds with
Lipschitz Riemannian metrics for which the above theory applies.

EXAMPLE 5.1. We consider radially symmetric manifolds. Without loss of generality
we consider the case n = 2. Let M = R2 with a radially symmetric Riemannian manifold
given by

g = dr2 + G(r)2 dí2
Fix a positive constant K. To make the matter simple, we assume that G is smooth in
a neighborhood of 0, G(0) = 0, G0(0) = 1, and �G00ÛG ½ �K in a neighborhood of 0
so that M has curvature ½ �K in the ordinary sense. Now let û be defined by G = eû.
We assume that û is a concave function such that jû0j2 � K for a fixed constant K.
Thus û is locally Lipschitz but in general not C1Òã for any 0 Ú ã Ú 1 let alone C2.
Note that û(r) ¾ log r when r ! 0. Now it is clear that (R2Ò g) has a Lipschitz (but not
necessarily C2) Riemannian metric. We now verify that that RicM ½ �K. It is enough
to verify this outside a neighborhood of 0. When the metric is smooth the curvature is
given by �G00ÛG in the local coordinates frÒ íg. Hence, according to our definition, M
has distributional (Ricci) curvature ½ �K ifZ

R2
G0fr dr dí ½ �K

Z
R2

f G dr dí(17)
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for all smooth, nonnegative functions f = f (rÒ í) with compact support in M n f0g =
R2 n f0g. Substituting G = eû and integrating by parts we have

Z
R2

G0fr dr dí =
Z
R2
û0eûfr dr dí

= � Z
R2

f eû dû0 dí � Z
R2

f jû0j2eû dr dí

Since û is concave, dû0 is a nonpositive measure. Therefore the first term is nonnegative.
Using the hypothesis that jû0j2 � K the second term is bounded from below by�K

R
R2 f G.

This shows (17).
From the assumption on û, there is a constant C such that û(r) � Cr. Hence

Vol
�
B(R)

�
=
Z

B(R)
eû(r) dr dí � C1eCR

Therefore Theorem 1.1 applies.
If we take the û to be û(r) = log r for r � r0 and û(r) = log r0 for r ½ r0 for

some r0 Ù 0. Then we can take K = 0. This gives an example of Lipschitz metric with
nonnegative (Ricci) curvature and every nonnegative weakly harmonic function must be
constant. In fact the curvature is a nonnegative measure concentrated the circle r = r0.

EXAMPLE 5.2. Let M be a connected smooth n-dimensional manifold. Let fgig be a
sequence of complete Riemannian metrics on M. Suppose that there exists a sequence
of compact subdomains (ΩkÒ gi) � (MÒ gi) which exhausts M, such that

1. jsectional curvaturej(ΩkÒgi) � K2(k);
2. the injectivity radius of (ΩkÒ gi) Ù é(k);
3. the volume Volgi (Ωk) � V(k);

where V(k) and é(k) are positive numbers independent of i. According to the theorems of
Green and Wu [7] and Anderson and Cheeger [1], there is for each fixed k a subsequence
of (ΩkÒ gi) converges to (ΩkÒ g1), and moreover g1 2 C1Òã(k) where 0 Ú ã(k) Ú 1 and
the convergence can be taken to be in the C1Òã(k) norm. By taking the diagonal process
(picking a subsequence from the previous subsequence when k increases), we have a
subsequence of fgig which converges to g1 in C1Òã(Ω)-norm for every compact Ω ² M.
Note that there may not be a positive ã such that g1 is C1Òã globally on M. Nevertheless,
g1 is C1 on M. In particular, the distributional Ricci curvature for the limit metric g1
is well-defined. In general the limit metric is not C2, so the usual definition of Ricci
curvature does not apply. Now we assume in addition that the Ricci curvature of gi is
nonnegative for each i. It is easy to see that the distributional Ricci curvature of g1 is
also nonnegative. Moreover, for a fixed è Ù 0, if i is sufficiently large,

Volg1
�
Bx0 (R)

� � (1 + è) Volgi

�
Bx0 (R)

� � (1 + è)CnRnÒ
where we have used the standard volume comparison theorem to obtain the the second
inequality. Hence Volg1

�
Bx0 (R)

� � CnRn. Therefore Theorem 1.1 applies to the limit
Riemannian manifold (MÒ g1).

https://doi.org/10.4153/CJM-1998-056-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-056-8


HARMONIC FUNCTIONS ON LIPSCHITZ RIEMANNIAN MANIFOLDS 1175

REFERENCES

1. M. Anderson and J. Cheeger, Cã-compactness for manifolds with Ricci curvature and injectivity radius
bounded below. J. Differential Geom. 35(1992), 265–281.

2. S. Y. Cheng, Eigenvalue comparison theorems and its geometric applications. Math. Z. 143(1975),
289–297.

3. T. H. Colding, Ricci curvature and volume convergence. (1995), preprint.
4. , Large manifolds with positive Ricci curvature. (1995), preprint.
5. H. Donnelly, Bounded harmonic functions and positive Ricci curvature. Math. Z. 191(1986), 559–565.
6. D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag,

Berlin, 1983.
7. R. Green and H. Wu, Lipschitz convergence of Riemannian manifolds. Pacific J. Math. 131(1988),

119–141.
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