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GRADIENT ESTIMATES FOR HARMONIC FUNCTIONS
ON MANIFOLDSWITH LIPSCHITZ METRICS

JINGY| CHEN AND ELTON P. HSU

ABSTRACT. Weintroduce adistributional Ricci curvature on complete smooth man-
ifolds with Lipschitz continuous metrics. Under an assumption on the volume growth
of geodesics balls, we obtain a gradient estimate for weakly harmonic functions if the
distributional Ricci curvature is bounded below.

1. Introduction. The study of harmonic functions has a long history. On Rieman-
nian manifolds, Yau [12] proved afundamental gradient estimate for harmonic functions
in terms of the lower bound of Ricci curvature. Asone of the many applicationsof Yau's
gradient estimate, we have a generalization of Liouville's theorem to the effect that a
positive harmonic function on a complete Riemannian manifold of nonnegative Ricci
curvature is constant.

Recently there is an increasing interest in the study of harmonic functions (and
harmonic mappings) on nonsmooth spaces. In this paper, we study the behavior of
weakly harmonic functions on smooth manifolds with Lipschitz Riemannian metrics.
We introduce the concept of distributional Ricci curvature and, under a mild volume
growth condition, we derive agradient estimate for positive (weakly) harmonic functions
in terms of the lower bound of distributional Ricci curvature. Liouville's theorem also
follows from our gradient estimate. The main result of our work can be stated asfollows.

THEOREM 1.1. Let M be a complete differentiable manifold with a Lipschitz Rie-
mannian metric such that volumes of geodesic balls satisfies sub-quadr atic exponential
growth condition, i.e.,

Vol (B(R)) < €.

Assume that the distributional Ricci curvatureis bounded from below by —(n — 1)K for
some nonnegative constant K. If uis positive weakly har monic function on M, then

U< v 1K

Inparticular, if thedistributional Ricci curvatureisnonnegative, then any positiveweakly
harmonic function is constant.
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Our argument is based on an early observation attributed to R. Schoen in Yau [13].
Onefeature of thisargument isthat it avoids using the maximum principle, thusallowing
us to handle weakly harmonic functions on manifolds with Lipschitz metrics.

Let us make a few remarks on the Ricci curvature on a smooth manifold with a
Lipschitz metric. For Riemannian metrics which are not C?, it is natural from analytical
point of view to understand the Ricci curvature in the sense of distribution. Our basic
assumptionisthat the Ricci curvatureis bounded from below by aconstant in the sense of
distribution. From awell-known result in distribution theory this assumptionimpliesthat
the distributional Ricci curvatureisin fact ameasure. Such a definition of distributional
Ricci curvatureisenoughfor usto carry out theanalytical part of our argument. However,
we do not know whether a constant lower bound on the distributional Ricci curvatureis
sufficient for obtaining an exponential volume growth for geodesic balls. In the case of
smooth metrics, such an implication is well known. Unlike Alexandrov’s interpretation
of sectional curvature through triangle comparison inequalities, to our knowledge so far
thereisno adequateinterpretation for Ricci curvaturein nonsmooth cases. In this respect,
Lin [9] has recently studied the Liouville type theorems for L-harmonic functions, i.e.
solutions of the elliptic equation

_ 0

0
T X

Lu .
ax!

(A”(x) )u =0,

where Al (x) are bounded measurable functions and
Al < (Al(x)) < xal

for positive constants A1 < A2, under some assumptions on the asymptotic behavior of
L and on the growth of volume of geodesic balls. We also point out that recent works
of Colding [3] [4] provide an interesting integral version of the Toponogov comparison
theorem for Ricci curvature.

Therest of the paper is arranged as follows. In Section 2 we define weakly harmonic
functionsand distributional Ricci curvatures. In Section 3wefollow R. Schoen’ssugges-
tion presentedin Yau[13] and provean integrated gradient estimatefor positive harmonic
functions on smooth Riemannian manifold with Ricci curvature bounded from below. In
Section 4 we show how to prove the pointwise gradient estimate for weakly harmonic
functions using the integrated gradient estimate and distributional Ricci curvature. Liou-
ville’'stheorem for manifoldswith nonnegative Ricci curvature followsimmediately. We
also prove a variation of Liouville's theorem for weakly harmonic functions satisfying
certain growth conditions. Finally in Section 5 we give two examples where our theory
can be applied.

2. Weakly harmonic functions and Ricci curvature. Let M be an n-dimensional
smooth differentiable manifold and g a Riemannian metric on M. Throughout this paper
we assume that the metric g islocally Lipschitz on M.
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Recall that in local coordinates x = {x'} the Riemannian volume vy = ,/detgdx and
the Laplace Beltrami operator

1 ,
A= ———3d;(,/detgg9)).
NG i 99"9)
where g = {g;j} in local coordinates, g~* = {g/'}. By definition, afunction u € W;2(M)
is (weakly) harmonic on M if it satisfies the equation Ah = 0 in the weak sense, i.e., for
any test function ¢ € C°(M) with support in alocal coordinate neighborhood,

/M g”aigbajudvg =0.

According to standard theory of elliptic equations, for uniformly elliptic operators in
divergence form with bounded measurable coefficients, generalized solutions arein fact
Holder continuous (Gilbarg and Trudinger [6], p. 205); if the coefficientsare continuous,
then the solutions are in the Sobolev space \/\/,2£(M) for p > 1 (Gilbarg and Trudinger
[6], p. 241). Furthermore, if the coefficientsare Holder continuouswith exponent o, then
solutions are C,lc;(g(M) (Gilbarg and Trudinger [6], p. 211). Hence, under our assumption

on the metric g, aweakly harmonic function u € C:2(M) N WZP(M), for p > 1.

oc loc
We now explain the meaning of the Ricci curvature of (M, g) for alocally Lipschitz

metric. Recall the local expression for the Riemannian curvature tensor:

@ Rik = ailjk — ik + TR — TR ke
where

1
@) Fﬁ = Egkl{ajgli +0i0j — 010;j }

are Christoffel symbols. First of all since we assume that the metric is Lipschitz, the
Christoffel symbols F!j are locally bounded measurable functions. It follows that each
component R}jk isadistribution of order 1 (for the definition of the order of adistribution,
see Hormander [8], 33-34.) In fact R;jk can bewritten asalinear combination of bounded
measurablefunctionsand partial derivativesof bounded measurablefunctions. TheRicci
curvature components are given by R;j = g|kR}kj. Because gk are locally Lipschitz, we
see that the Ricci curvature components are again distributions of order 1. Now if
X = a9 is a smooth vector field with compact support, then Ric(X. X) = aaR; is a
distribution of order 1 independent of the choice of local coordinates. We call Ric(X, X)
the distributional Ricci curvature along the vector field X. Of course when the metric g
is smooth the distributional Ricci curvature agrees with the usual Ricci curvature.

For a smooth function ¢, we use Ric(X, X)(¢) or fy Ric(X, X)¢ to denote the value of
the distribution (as alinear functional) on the test function ¢.

DErFINITION 2.1. Let M be adifferentiable manifold with alocally Lipschitz Rieman-
nian metric g. We say that the Ricci curvature of (M, g) is bounded from below by a
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constant —(n — 1)K if for any smooth vector field X with compact support, the (distri-
butional) Ricci curvature Ric(X, X) > —(n — 1)K|X|? on M in the sense of distribution,
i.e., for any nonnegative smooth function ¢ with compact support,

Ric(X, X)(#) > —(n— DK [ ¢|X[? dvg.

As a matter of fact, since Ric(X, X) is a linear combination of bounded measurable
functions and derivatives of such functions, we can allow the test function ¢ € W2 (M)
in the above inequality.

Now supposethat the (distributional) Ricci curvature of (M, g) isbounded from below
by K. Then the distribution Ric(X, X) — K|X|?vy > 0. Every positive distribution is a
positive measure (see Hormander [8], p. 38). It follows that Ric(X, X) is a measure on
M. Now in local coordinates,

Rj = Ric(d.9;) = %{RiC(ﬁi +9;.0; +9;) — Ric(d — 9j, 9y — Hj)}

therefore each component R; is (locally) ameasure.

3. An inequality on integrated gradient. We will prove gradient estimates for
positive weakly harmonic functions through approximating the Lipschitz metric by a
seguence of smooth metrics and approximating harmonic functions by a sequence of
smooth (not necessarily harmonic) functions. For this purpose we need an integral form
of gradient estimates. The advantage of this integral version is that one does not need
the maximum principle nor need to worry about the cut locus. An argument with these
features is especialy useful in a nonsmooth setting. We would like to point out that
the main inequality of this section (Theorem 3.1 below) holds for any smooth functions
which are bounded from below by positive constants. In the next section we show how
this inequality can be used together with an assumption of exponential volume growth
to obtain a gradient estimate for positive weakly harmonic functions.

THEOREM 3.1. Let (M, g) be a smooth Riemannian manifold whose Ricci curvature
is bounded from below by —(n — 1)K and u a positive smooth function on M. Then for
any smooth positive function ¢ with compact support and sufficiently large p we have

(fy o1 'Ogul")l/p < 2n(n—K{ [ ¢*) 1/p
+8\/n_p{/¢2p‘%‘p}1/p
wanpf [ Vo) "

PROOF. Let F = u~?|Vul?>. Using Weitzenbdck's formula and the inequality
| Hessf|2 > n~1(Af)? we have (see also Yau [12])
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AF = A|Vioguf?
= 2| Hes(log u)|? + 2Ric(V logu, Vlog u) + 2V loguV A logu

> %(Alog u)? + 2Ric(Vlogu, Vlogu) + 2V loguVA logu

(uUtAu—F)?+2Ric(Vlogu, Vlogu) + 2u-Vuv(utAu—F)

SINSIN

F?2 — 2u"'VuVF + E(Lrlﬁu)2 + 207 VuvAu
_ (‘ﬁ‘ + Z)Fu’lAu +2Ric(V logu. Vlogu).

We multiply the above inequality by $2°FP~2 and integrate with respect to the Rieman-
nian volume. This gives the inequality

2 [ 2P 2ppp-2 2ppp-2,-1
3) ﬁ/M¢>F§/M¢>F AF+2/M¢F u; 'VuvF
2
_ 20Ep—2,—-2 _ £ 20 p—2,,—2 2
2./M¢> FPeu™“nuVAu n‘/Mgé FP™2u™(Au)
+(2+%) /MgbZPF”*lu*ZAu

-2 /M $PPFP-2y2 Rig(Vu, VU)

=i+l +ls+ls+Is+g.

We will leave l4, |5, and I alone and estimate integrals |4, |2, and I3. We useintegration
by partsin |; and obtain

/ $PFP2AF

M

_ 2p—1pp-2 —(n_ 2pp-3 2
2p [ 6P IFPRVOVF — (p—2) [ 6PFP3|VFP.

I

Applying theinequality 2ab < \~'a?+ Ab? with \ = 2 to thefirst term on the right-hand
side, we obtain

2 [ 0®IFP2VGVF = 2 [ {6P|VFIFT HoP Vo |F7 )

< 5 [ PEPIVER 42 [ 6P 2FP Vo
Hencewe have
@ < (5 -2) [, 0PFRIVFE 4 2p [ 6P 2RO VL,
For I, we have
(5) l2 = 2 [ ¢®FP2u"'VuvF
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IA

2 [ ¢PFP 2 |VF|
2 [ {6°F"7 |VF|HoPFE)

1
2pep-3 2, + 2pEp
n_/M¢> F |VF|+n./M¢> FP.

IA

Note that the last term is half of the left-hand side of (3). We now estimate I3. Using
integration by parts we have

(6) l3=—2 /M PPFP2U"2Vuv Au
- P p—2,,—2 2 _ 2p-p-1,,-1
2./“A¢F u"2(Au) 4./M¢>F ulAu
+4p /M 6P LFP242V 6 VuAu
+2(p—2) /M $PFP3u"2VFVuAL.
The third term on the right-hand side of (6) can be estimated as follows:
2p—1p-2,,—2 2p—1pp—2+1 —1
2/M¢ FP2y VqSVuAugz./Ma) FP253|Vo|u AU
2p—2p p-1 2 2PEp-2,,—2 2
< [, ¥ IFPHVOR + [ PR AU (AuP.
The fourth term on the right-hand side of (6) can be estimated as follows:

2pep—3,,-2 ppEp-3+3 1
@ 2/M¢ FP3y VuVFAugZ(/MqS FP343u V|| Au|

IN

1 2 p—3 2 2pEp—2,,—2 2
3 OFFPRIVEP +4 [ 0PEPUE (AP,
Hence we have
_ pep—2,,—2 2 2ppEp-1,,-1
8) s < 6(p—1) [ 6PFP2uP(Au+4 [ ¢PFP Al
p;z 2pEp-3 2 2p—2pp-1 2
+ 2 [ OPRPIVEP +2p [ 6P R VP,

Now from (3), (4), (5), and (8) we have

9 1‘ /¢2D|:D < _(2 — § _ n> /M ¢2pr—3|VF|2

n.
+ap [ 0P PRPVGP
+ (6+ g) /M H*PFP U Ayl

2 2P p—2, —2 2
+(6p—6—ﬁ)/M¢ FP20—2(Au)
_ P22 Rj

2/M¢ FP-2u=2Ric(Vu, Vu).
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If we assumethat p > 4n + 6, the first term on the right-hand side can be dropped. We
will use Holder’s inequality on the remaining four terms. Let

o= (e

for the sake of simplicity. Using the lower bound for the Ricci curvature,
1 — | ¢PFPeu“Ric(VUu,Vu) < (n— 1K | ¢PFP
(10) [ 9PFP2u?Ric(Vu. VU) < (n— 1K [ ¢PFP?
1
< (n—1)KGF’*1{/M ¢2P} ®
We also have
1/p
2p—2pp-1 2 —1 2
[ 6% 2w <GP [ Vo)
Au|py1/p
2p-p—1,,~1 p—1 2p| 2~
fyoFtutiod <@ [LoE )
o _ Au|py2/p
e <o o ST

Using these estimatesin (9) we have a quadratic inequality for G:
%GZ < 4p{_/M |V¢|2p}1/pG + 10{/M Qgﬂ% p}l/pG
-l "o 2

This inequality has the form n~1G2? < aG + b, from which we have G < v/nb + na. It

follows that
6 < ann— K[ [, o} " +oym{ [T} anpf [ 1w ]
This completes the proof of Theorem 4.1. .

4. Gradient estimate for positive weakly harmonic functions. In this section
we study positive weakly harmonic functions on a complete differentiable manifold
with a Lipschitz continuous Riemannian metric. We prove a gradient estimate for such
functions under the conditions that the distributional Ricci curvature is bounded from
below by a constant and that the volume of geodesic balls grow at most exponentially.
As a conseguence we obtain Liouville's theorem for such harmonic functions when the
Ricci curvature is nonnegative.

PrOPOSITION 4.1. Let M be a complete differentiable manifold with a Lipschitz con-
tinuous Riemannian metric g. Supposethat the distributional Ricci curvatureis bounded
from below by —(n — 1)K. If u is a positive weakly harmonic function on M and ¢ a
smooth positive function with compact support, then

@ ([ 6*Iviogup)”” < ann— 2K [ 6@} +anp [ Vo) ",

https://doi.org/10.4153/CJM-1998-056-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-056-8

1170 J.CHEN AND E. P HSU

PrROOF. Theinequality basically followsfrom Theorem 3.1, becausewe have Au = 0.
But since the metric is assumed Lipschitz, we need an approximation argument. Let
(Ui. ¢i) be aparacompact atlas of M, where ¢;: U; — R" are diffeomorphisms onto their
images ¢i(U;). Let p be a mallifier, i.e., a nonnegative function in C>*(R") vanishing
outside the unit ball B;(0) and satisfying

[P0 dy=1.

Let {1} be a partition of unity subordinate to the covering {U;}. Define the mollified

function 1 '
w9 =3 % [ o 2= o 00) o

The metric can also be mollified. More precisely, let {x*} be the Cartesian coordinate
functions on ¢;(U;) and denote the metric matrix on U; by g; o3. Suppose that X, Y are
two vector fields at x € M, then the mollified metric g, is defined by

g(X. V)= Zb ; X(6Y)(X)Y($P)(X)da(ef © o7 an(¢f 0 ¢
i.j,ab.c,
1 (¢i x)—y

= ; )g(ac. da) (i () dy.

6I'l RN

We set
F=|Vioguj, Fc=|Vcloguj.

Since mollified functions and metrics are smooth, the part of the proof of Theorem 3.1
holdsupto (9). Thus(9) holdswith g and u replaced by g, and u.. Let uscall theresulting
inequality (9).. Aswe pointed out in Section 1, we haveu € V\/,ZC;‘C’(M), sinceu isweakly

harmonic. By basic properties of mollifiers (Gilbarg and Trudinger [6], 147-155), we
have

U — U inWER(M),
Vet — VU in WEP(M),

and
AU — Au inLf (M).

oc

Thus in the term on the left-hand side and the first four terms on the right-hand side
of (9). we can pass to the limit ase — 0. Of course the third and fourth terms on the
right-hand side converge to zero because u is weakly harmonic. We need to study the
limit of the last term ase — 0. We will show that

imi _ 202, 2 Dj _ 2pep-1
liminf 2)‘/M¢ FP2U 2 Ric.(VeU,, Veu,) < 2(n 1)K./M¢ FPl,
In a smooth local coordinate system x = {x'}, the expression under the limit can be

written as
(12) /M Hejj Ricc(d;. ) dx,
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where

quij = _2¢2pF572u:2\/@vf.iufvﬂj Ue.
Again from basic properties of mollifiers and the fact that u € \N,%E(M), we have
(13) H.jj — Hj inWEP(M)

where obviously
Hij = —2¢*FP~2u™2, /gViu - Vju.
On the other hand, for the mollified Riemannian metric we have

(14) i — G InCEO(M).

loc

From the formulafor the Ricci curvature Ric,(9;. 9;) in terms of the metric matrix {g. i }
(see (1) and (2)) we know that it involves at most second derivatives of the metric matrix
0.ij. Thereforefor thetermsin (12) involving second derivatives of the metric matrix we
can shift one derivative from Ric. j; to H. jj by integration by parts. Having done this, we
can pass to the limit ase — 0 by virtue of (13) and (14). The resulting limit is just the
definition of the action of Ric(s;, 9j) on H;;. Note that H;j € V\l,l(;‘C’(M) and that Ric(d;. 9;)
is adistribution of order 1. Therefore the action of Ric(d;, 9;) on Hj; makes sense. Now
we can write
/M He.jj Ric.(d;, 8]) dx — /M Hij Ric(a;, aj) dx,

wheretheright-hand sideisunderstood inthe sense of distribution. By the assumption that
thedistributional Ricci curvatureisbounded from below by —(n—1)K (see Definition 2.1)
and the definition of H;; we have

(15) | Hi Ric(an. o) dx < 20— DK [ 6FP2u?Vup
< 2(n—1K /M HPFPL,
Up to this point we have shown that (9) in the proof of Theorem 3.1 holdswith thelast

term there replaced by the last term of (15). We can now follow the proof of Theorem 3.1
to complete the proof of the present proposition. ]

Now we are ready to prove our main result.

THEOREM 4.2. Let M be a complete differentiable manifold with a Lipschitz Rie-
mannian metric such that volumes of geodesic balls satisfies sub-quadratic exponential
growth condition, i.e.,

Vol (B(R)) < &),

Assume that the distributional Ricci curvatureis bounded from below by —(n — 1)K for
some nonnegative constant K. If uis positive weakly harmonic function on M, then

(16) U< vani- 1K

Inparticular, if thedistributional Ricci curvatureisnonnegative, then any positiveweakly
harmonic function is constant.
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PROCF. Let ¢ be asmooth nonnegative cut-off function on M such that

o(X) =1 forxe B(R)
#(x) € [0,1] forx € B(2R) \ B(R)
#(x) =0 forxe M\ B(2R)
IVo(x)| <CR ! forxe M,

where as usual B(R) and B(2R) are the balls centered at afixed point X, € M with radius
R and 2R respectively. From (11) we have

1/p + 4Cnp

1/p
R2 )

1/p
p _
(. /B oF ) < 2n(n— 1)K Vol (B(2R)) Vol (B(2R))
Fix a positive integer N. Setp = N IogVoI(B(ZR)) and let R — oo. Using the volume
growth condition and the definition of F we have

2
sup‘@‘ < 2n(n — 1Ke'/N.
M u

Letting N — oo we obtain (16). ]

REMARK 4.3. Itiswell know if the metric is smooth then Ric > —(n — 1)K implies
Vol (B(R)) < C,R'eV (" DKR

for aconstant Cy,. In thiscasethe volumegrowth condition inthe abovetheoremisimplied
by the condition on the lower bound of the Ricci curvature. In the nonsmooth case, we do
not know whether a constant lower bound on the distributional Ricci curvature implies
the above volume growth condition.

For harmonic functions which may not be bounded from one side but with some
growth condition, the following results are well known. On a complete smooth Rieman-
nian manifold with nonnegative Ricci curvature, Cheng [2] proved that any sublinear
growth harmonic function must be a constant. For manifolds with nonnegative Ricci
outside a compact set, Donnelly [5] observed that the space of bounded harmonic func-
tions is finite dimensional and S. Y. Cheng proved that the same result holds for the
space of positive harmonic functions. Later, Li and Tam [10] [11] studied systematically
harmonic functions with various growth conditions. In the nonsmooth case, we have

THEOREM 3.3. Let M be a complete differentiable manifold with a Lipschitz Rieman-
nian metric. Assume that the distributional Ricci curvature is nonnegative. Let r(x) be
the distance from x to some fixed point g € M.

(1) Supposethat

Vol (B(R)) < e**”

for some positive constant C and o € [0, 1). If a weakly harmonic function u satisfies

Ju)| = o(r()).
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then u isa constant.
(2) Supposethat
Vol(B(R)) < CR¥

for some k > 0. If a weakly harmonic function u satisfies

_ r(x)
ubl = °(W)~

then u is a constant.

PROOF. For any R > 0, the function supg ;s U — U+ 1 isapositive weakly harmonic
function on B(2R). Let ¢ bethe cut-off function with support in B(2R) as defined before.
By Theorem 3.1, we have for any fixedp > 4n+6

(oI ton(sup u—u+ 1)) " < aco [ 1v) "

Thisimplies that

i/p _ 1/p . 2
2p 2 —
(‘/B(R) Iyl ) < 4CnpR2V(B(2R)) (;;F%u inf u+ 1)%
Now welet p = R¥1=%) in case (1) and p = log Rin case (2), then let R go to infinity. We
see immediately in both cases
sup|Vu? = 0.
M

Hence u must be a constant. n

4. Examples. In this section we give two examples of smooth manifolds with
Lipschitz Riemannian metrics for which the above theory applies.

ExAMPLE 5.1. We consider radially symmetric manifolds. Without loss of generality
we consider the casen = 2. Let M = R? with aradially symmetric Riemannian manifold
given by

g =dr? + G(r)? d¢>.

Fix a positive constant K. To make the matter simple, we assume that G is smooth in
aneighborhood of 0, G(0) = 0, G'(0) = 1, and —G” /G > —K in a neighborhood of 0
so that M has curvature > —K in the ordinary sense. Now let ¢ be defined by G = €”.
We assume that ¢ is a concave function such that |¢/|> < K for a fixed constant K.
Thus ¢ is locally Lipschitz but in general not C* for any 0 < a < 1 let alone C°.
Note that ¢(r) ~ logr whenr — 0. Now it is clear that (R?, g) has a Lipschitz (but not
necessarily C?) Riemannian metric. We now verify that that Ricy > —K. It is enough
to verify this outside a neighborhood of 0. When the metric is smooth the curvature is
givenby —G” /G in the local coordinates {r, #}. Hence, according to our definition, M
has distributional (Ricci) curvature > —K if

(17 [, Ghdrds > —K [ fGdrds
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for all smooth, nonnegative functions f = f(r, §) with compact support in M \ {0} =
R? \ {0}. Substituting G = e” and integrating by parts we have

[,Ghdrdo = [ ¢'efidrdo
= —./RZ fe do’ dg — _/sz|¢'|2e¢ dr dg.

Since ¢ isconcave, d¢’ isanonpositive measure. Therefore the first termis nonnegative.
Using the hypothesisthat |¢'|? < K the second termisbounded from below by —K fz. fG.
This shows (17).

From the assumption on ¢, there is a constant C such that ¢(r) < Cr. Hence

Vol (B(R)) = /B . e’ drdg < CieR.

Therefore Theorem 1.1 applies.

If we take the ¢ to be ¢(r) = logr for r < rg and ¢(r) = logrg for r > rq for
somerg > 0. Then we can take K = 0. This gives an example of Lipschitz metric with
nonnegative (Ricci) curvature and every nonnegative weakly harmonic function must be
constant. In fact the curvature is a nonnegative measure concentrated the circle r = ry,.

EXAMPLE 5.2. Let M be a connected smooth n-dimensional manifold. Let {g;} bea
sequence of complete Riemannian metrics on M. Suppose that there exists a sequence
of compact subdomains (Qy, gi) € (M, gi) which exhausts M, such that

1. |sectional curvature|(q, ) < K?(K);

2. theinjectivity radius of (Q. gi) > 6(K);

3. thevolume Volg (Qk) < V(K);
whereV(k) and §(K) are positive numbersindependent of i. According to the theorems of
Green and Wu [ 7] and Anderson and Cheeger [1], thereisfor each fixed k a subsequence
of (Qu, g;) convergesto (Qy. g.,), and moreover g,, € C-*® where 0 < a(k) < 1 and
the convergence can be taken to be in the C1*® norm. By taking the diagonal process
(picking a subsequence from the previous subsequence when k increases), we have a
subsequenceof {g;} which convergesto g, in C+*(®-norm for every compact Q C M.
Note that there may not be apositive o such that g, isC* globally on M. Nevertheless,
O is C! on M. In particular, the distributional Ricci curvature for the limit metric g,
is well-defined. In general the limit metric is not C?, so the usual definition of Ricci
curvature does not apply. Now we assume in addition that the Ricci curvature of g; is
nonnegative for eachi. It is easy to see that the distributional Ricci curvature of g, is
also nonnegative. Moreover, for afixede > 0, if i issufficiently large,

Volg,, (Bx,(R)) < (1+¢)Volg (B, (R) < (1+€)CiR",

where we have used the standard volume comparison theorem to obtain the the second
inequality. Hence Volg, (By,(R)) < CqR". Therefore Theorem 1.1 applies to the limit
Riemannian manifold (M, g,).
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