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THE SEMIDIRECT PRODUCT OF AN INVERSE

SEMIGROUP AND A GROUP

G,B. PRESTON

It is shown that a semidirect product of an inverse semigroup

and a group, in that order, contains an inverse subsemigroup that

is a retract and that, together with the retraction mapping, forms

a free inverse morphic image of the semidirect product. The con-

gruence determined by the retraction mapping is shown to be

determined by the semigroup of idempotents of the semidirect

product.

Introduction.

In [3] the author included a theorem of R. G. Wilkinson that states

that the semidirect product f .x S of two groups T and 5 is a group

if and only if the antimorphism 6 V- End T is such that 58 c Aut T, the

automorphism group of T . When 8 does not satisfy this condition it

was shown (Theorem 4) that T Qx 5 is a left group. In analogy with

Wilkinson's result for groups, and extending a result of W. R. Nico for"

inverse monoids [2], it was also shown in [3], Theorem 6, that when T
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262 G. B. Preston

and S are inverse semigroups then T x 5 is inverse if and only if

0: 5 *v £ W T again satisfies 59 c 4wt T. Left open in [I] is the

problem of what kind of semigroup T „* S is when this condition is not

satisfied. There seems to be no simple overall description of such

semidirect products. In this paper we look at one special case only,

namely when 5 is a group. The results we obtain are not too dissimilar

from those for the case when just T is a group, but they are sufficiently

different to require an independent treatment.

1. Preliminaries

If T and 5 are semigroups and 9: S w- End T that is 9 is an

antimorphism of 5 into the endomorphism semigroup of T , then we

denote by T .x S the set T * S equipped with the product

q

(t,s) (t ,s J = (tt^ssJ ,

where t- denotes, for t. in T and s in S , the image t^(sQ) of

£- under the endomorphism s6 of T . This product is called the

semidirect product of T and 5 (with structure map 9 ) .

In Theorem 6 of [3J it was shown that T x 5 is an inverse
9

semigroup if and only if (i) S and T are inverse semigroups and (ii)

56 £ Aut T, the automorphism group of T . Necessary and sufficient

conditions for T flx 5 to be regular, again extending a result of Nico

[2], were found in [3], Theorem 5. Applied to the situation in which 5

and T are inverse Theorem 5 of [3] simplifies to

PROPOSITION 1. Let S and T be inverse semigroups and

9.- 5 v-End T. Then T g- S is regular if and only if for all idempotents

e of 5 and for all t in T we have t s Tte.

This condition for regularity of T * 5 is a strong one. When 5
6

is a group then 5 has a unique idempotent, 1 say, and so we have

PROPOSITION 2. Let S be a group and T an inverse semigroup

and 6 : 5 * End T. Then T Q* S is regular if and only if for all t
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in T we have t e. Tt .

Alternatively, when T is a group. Proposition 1 immediately gives

PROPOSITION 3. Let S be inverse and T a group and 6:Sv-End T.

Then T * S is regular.
V

Propositions 2 and 3 show there is a basic difference between T ~x S

when T is a group and S inverse and when S is a group and T

inverse. In this paper we restrict ourselves to the latter situation.

2. An inverse retract.

From now on the second factor of the semidirect products we consider

will be a group and, to emphasize this, we denote it by G. T is an

inverse semigroup and 6 is an antimorphism G f" End T. The identity of

G will be denoted by 1 and sometimes we shall denote 19 by 6 • The

inverse semigroup 2*3 will be denoted by H . We denote by f „ the

restriction of a mapping f to X.

LEMMA 1. For g e G set g$ = g%
H

Then

X

G «• Aut H.

Proof. We have, for all g in G ,

H =

Hence T3 = H , for all

is

for all h in H . Hence

-1 -1
= I89 = (I0 )9 c T3 =

= H .

r.2
in G . Moreover = h , that

= (h9)9 = h ,

is a bijection of H upon H with inverse

As a corollary, using Theorem 6 of [ 3], we have

LEMMA 2. H fy* G is an inverse semigroup. Since product in

H iK G coincides with that in f .x C, B x C is an inverse subsemigroup

of T fix G.
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For (t,g) e T $<• G define a by

(t3g)a = m,g) . (1)

Then we easily check the following proposition.

PROPOSITION 3. The map ex is a surmorphism of T 0x G upon

H Qx G, a subsemigroup of T 0x G.

Indeed a, regarded as an endomorphism of T gX G , is idempotent,

so H gx G is a retract of T gX G . Effectively, the retraction a of

T gX Q is an extension of the retraction (3; T -*• H.

3. The subsemigroup of idempotents

We determine the idempotents of T gX G and show that they form a

subsemigroup which is a strong semilattice of left zero semigroups.

LEMMA 3. The idempotents of T Q* G are the elements (t,l) suah

that t = t(U) .

Proof. From (t,g) = (ti^}g ) = (t,g) we have immediately that

2 1

g = g = 1, whence t - tt = t(t&). Conversely, when t = t(tQ), then

(tjl) is idempotent.

Observe also

LEMMA 4. If t e T and t = t(tQ)s then t$ is an idempotent.

Proof. This follows immediately from 8 = 6 .

Denote the set of idempotents of H by E(H) and by {KJf e E(H)}

the kernel normal system of & (see [I, 17.4]). Thus Kf = {t e T\t$ = f}.

Using this notation and Lemma 4, we can reformulate Lemma 3 as follows.

LEMMA 5. The idempotents of T x G are the elements (t,l) suah

that t e KS for same f in E(H).
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Proof. Let t = uf , where u e X and f e E(H) . Then

t& = (uZ)(f&) = f(fB) = f , since B fixes H . Hence t(t&) = uf2 = uf

t. Thus, by Lemma 3, (t,l) is idempotent.

Conversely, if it,l) is idempotent, setting tB = / , then from

Lemma 4, f e E(E) and thus, by Lemma 3 again, t e K~f ,

If / l e y and g e G , write A x g = {fa.,g,l|a e 4}.

LEMMA 6. The se t o / idempotents K^f x ^ uftere f e BCH^ /owns a

left zero subsemigroup of T QX G.

Proof. Let t ,t c K~ . Then
1 & J

since (t J ) 1 = (tJ$>) (f &) = f2 = f .

Let f,g e E(H) and let f > g . Then we define the mapping <j> „

by (t,l)i>~ = (tq.l) for t e K.S .

f,g f

LEMMA 7 . For f > g, $ „ is a morphism of KS x 2 into

Ka x i. Moreover

(i) if f = g, then <(>„ is the identity on K^f * 1 ;

(ii) if f > g > h , then <(i. <j> , = 4> _ , .

Proof. Let t e KJ and / > g . Then Ctgjg = (t&)(g$) = fg = g,

s i n c e f Z q . Hence tq = (tq)g e K q . Thus <(>„ .•^_f x 1 ->• X_ff x i .

Let t 3t- e. KS . Then, u s i n g Lemma 6,

and
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266 G. B. Preston

Thus <(>„ is morphic.
j J y

Suppose f = g . Then for t in K-f, (t,l)$f „= (tf,l)

so that (i) holds.

see (ii) , consider / S g > h , and let t e. K~f . ThenTo

and

(t,l)i,f h = (fh,l) = (tgh,l) ,

since g 2- h implies gh = h .

LEMMA 8. Let f,g e E(R), t e KJ and u e K g. Then

Proof. We easily calculate that

(tal)(u,l) = (t(u&),l) = (tg,l) = (tfg,l),

since t = tf ; and

= (tfg(ufg)B,D

= (tfggfg,l)

= (tfgtl) .

Denote by F the set of all idempotents of T 0x G , so that

F = V[KJ> x l\f e.

Set F» = KJ x 1, f e

Then Lemmas 3 to 8 combine to give the following theorem.
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THEOREM 1. The idempotents of T gx G form a subsemigroup F

which is a strong semilattiae {F~\f e E(H)} of left zero subsemigroups

Ff = Kff * 1, f £ E(H) , of T QX G, with structure morphisms

$fj9 f*g, f,g
 e E(H).

4. F determines a o a~ .

We first show that the F~ are determined by F . The next

proposition includes this result.

PROPOSITION 4. The mapping y :(t,l) -> t&, (t,l) e F is a

suimorphism of F upon the semilattice E(H). Moreover, if S: F •+ L

is a morphism of F into a semilattice L then there is a (unique)

morphism z: E(H) -*• L, say, such that 6 = ye. .

Proof. Let (t,l),(u,l) e Ff, so that t& = u& = f . Then

(t,l)(u,l) = (t,l) and (u,l)(t,l) = (u,l), by Lemma 6. Since L is a

semilattice,

that is (t,l)& = (u,l)& .

Hence, if we define e by (tB)e = (t',l)6 for (t,l) e F, then e

is well-defined, ye = S , and e is the sole mapping satisfying this

equation. Also e is clearly a morphism.

COROLLARY. F determines its subsemigroups Ff,f e E(H) .

Proof. By the proposition {F'\f e E(H)} is the set of congruence

classes induced by y and Fy is the free semilattice on F .

The next theorem shows how F determines the congruence o ° a

THEOREM 2. Let (t,g) and (u,h) e T e* G . Then

((t,g),(u,h)) e a o a~ if and only if there exists f e E(K) such that

(t^gJCtZsg)'1 , (u,h) (uSsh)'1 and (t,g) (u^h)'1 belong to Ff.

Proof. Suppose ((t,g), (u,h)) e. a ° a" . Then (t$,g) = (u$,h) ,
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so that g = h and tB = uB , = v , say.

Now (t&3g) belongs to the inverse semigroup H ,x G and has

inverse ((tB)'1)9 3g~
A') = ((t~2B)9 3g~

2 ) . Similarly, ((u~2&)9 ,g~2 )

is the inverse of (uB,h.) = (uB,g). Hence

(t,g){tB,§~2 = (t(t~2B)39 ,gg~2)

2
since B — 3 ; and similarly,

) 2

(tyg)(uB,h)~
2 = (t(u~2&),l) .

Consider now (tit $),1) . This is idempotent if

t(t~2e>)(t(t~2B))B = t(t~2&) , by Lemma 3. But

= t(t~2S) .

Similarly, (u(u Q)31) and (hence, since uB = t&)3 (t(u~ B)31)

are idempotent.

Since, immediately, we have (with y as in Proposition 4)

(t(t~2B)>Dy = (u(u~2B),Dy = (t(u~2B)3l)y = f , say, where / £ E(H) ,

therefore (t(t~2B)3D3 (u(u'2B),l) and (t(u~2B)3l) all belong to F .

It remains to deal with the 'if part of the theorem. Suppose

then that / £ E(H) and that (t,g)(tB,g)~2 , (u,h) (uB,h)~2

(t,g)(uB,h)~ all belong to F_ . Then, with calculations as before,

it follows that g = h and

(t(t~2B),l)y = (u(u~2B)sl)y = (t(u~
2B),Dy = / ,

that is (tt~2)B = (uu~1)B - (tu~2)B = / .

Since 6 is a morphism from the inverse semigroup T to the inverse

semigroup H , it follows that tB = uB ([7.57.4]). Thus

(t3g)a — (u,h)a ; and this completes the proof of the theorem.
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Note that, since T .x C is not always an inverse semigroup, an

element (t,g) does not necessarily have a unique inverse, nor (see

Proposition 2) any inverse. So we cannot replace the (t&,g) and

(u$,h) in the above theorem by (t,g) and (u,h) . The

introduction of 8 has allowed us to give a description of the congruence

a o a that mimics closely the inverse semigroup situation.

5. The kernel normal system of a ° a"

1

The kernel normal system of B ° 3~ is {K-Af e E(H)} . Set
I

A~ = K~ x 1 ; then A~ = (f,l)a and so

A = {Af\f e. E(H)}

is the set of inverses of idempotents of (T _x G)a. Furthermore, as we

have just seen, A determines a ° a . So, by analogy with inverse

semigroup terminology, let us call A the kernel normal system of

-1
a » a

A = UA is a semilattice of its subsemigroups A~ , whose

multiplication induces that of its subsemigroup, the strong semilattice

F . The following lemmas give more information on how F sits within A.

First let us define, for f s E(H) , a mapping Xf: A •* A ,

(t,l) -*• (tf,l)j (t,l) e A. Straightforward calculations immediately give

the next lemma.

LEMMA 9. (a) For f,g e E(H) ,

(ii) AgXf=Afg.

(b) For f e E(H) , x^ is a morphism of A into A.

LEMMA 10. Fj, is a two sided ideal of A~. Furthermore, for all

x in A- j

(i) xAf = xxf ;
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(ii) Xf is the identity mapping on Ff ;

(iii) for y in A~, yx = yx~ , whence AJ: = F . .
J J J J

Proof. For (t,l),(u,l) in A~, (t,l)(u,l) = (tf,l) = (t,l)xf ,

from which (i) and (ii i) follow. (ii) then follows since if (t,l) e A~

then (t3l) e F« only if tf = t 3 by Lemma 5.

The next lemma determines product in A .

LEMMA 11. Let x,y e A so that x e Af , y e A , for some f,g

in E(H) . Then

xy = xXg e Afg .

Hence F is a right ideal of A.

Proof. I f x £ A~ y e A then there ex is t t e K- , u e K
J J y j y

such that x = (t,l), y = (u,l). Then

xy = (t,l)(u,l) = (t(u$),l)= (tg,l)

Moreover, (tg) 6 = (t&) (gb) = fg , tha t i s tg e. K~ . Thus xy e Af

If also x e F , so that x e F„ and tf = t , then

(tg)fg = (tf)g = tg and so, by Lemma 5, xy = (tg,l) e Ff . Thus F

is a right ideal of A.

6. B -x G is a free inverse morphic image of T 0x G .

We show that H J* G is a maximal inverse image of T gx G ,

or in other words, that H JX G is a free inverse morphic image of

T gX G (under the morphism a). We have to show that if U is any

inverse semigroup and x: T • x G -*-*• U is any surmorphism, then there
6

exists a unique morphism K , say, such that a< = x .

The next lemma states a useful manipulative result we shall need;

indeed it has been used often already.
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LEMMA 12. Let (t,g)(t.,g J , . . . , (t ,g ) be elements of T x G.
J. J. Yl Yl o

Then

Proof. We have

(tjg)(trgj = (tt^ggj = (tCt/ )
9,gg2)

= (tigHtf.gJ = (tig)(t^,gi).

The result follows by induction.

LEMMA 13. Let V be an -inverse semigroup and let T : T „* G -*->• U

be a swmorphism. Then for all (t,g) e T Qx G , (t,g)x = (t&,g)T.

Proof. Let (t}g)\ = u and (t$,g)x = V . Since T is surjective

there exists (t.,g~) such that (t^gJi = u . Then

U = uu u = uu U j b y Lemma 12. Hence u < V .

Similarly V = VV V = W M j b y Lemma 12. Hence V < u . Thus

u = V , and the proof of the lemma is complete.

COROLLARY. Let U be an inverse semigroup and let T: T Qx G ->-+ U

be a surmorphism. Let K denote the restriction of T to H ̂ G.

Then a< = T , and K is the unique morphism satisfying this equation.

Hence we have, in summary, the following theorem.

THEOREM 3. Let T be inverse, G a group and B: Ci*- End T. Let

16 = 6 and T& = H . Set $ = 9, . Then <t>: G v- Aut H and H x G
Iff <t>

is inverse, an inverse subsemigroup of To * G .

Moreover a: (t,g)+ (t&,g) belongs to End(T 0x G) and has image

o
H AX G and, since a. = a, H ,x G is a retract of T Qx G .

Furthermore, H ±* G is a free inverse morphia image of T gX G,

under the morphism a.
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