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A CHARACTERIZATION OF THE FINITE 
SIMPLE GROUP PSp4(3) 

JOHN L. HAYDEN 

The aim of this paper is to characterize the finite simple group PSp4(3) 
by the structure of the centralizer of an element of order three contained in 
the center of its Sylow 3-subgroup. More precisely, we shall prove the fol­
lowing results. 

THEOREM 1. Let a be an element of order 3 contained in the center of a Sylow 
3-subgroup of PSp4(3). Denote by H0 the centralizer of a in PSp4(3). Let G be 
a finite group with the following properties: 

(a) G has no normal subgroup of index 3. 
(b) G has an element a± of order 3 such that CG(ai) is isomorphic to Ho. 
(c) CG(ai) has an elementary abelian subgroup M of order 27 for which 

V\G(M, 30 is trivial. (Refer to the structure of H0 in Section 1.) 
Then G is isomorphic to PSp4(3). 

THEOREM 2. Let G be a finite group satisfying (b) and (c) of Theorem 1. 
Then one of the following occurs: 

(i) G has a normal subgroup of index 3. 
(ii) G is isomorphic to PSp4(3). 

Clearly, Theorem 2 is an immediate consequence of Theorem 1. 
The main difficulty in proving this theorem is in showing that a group 

possessing properties (a), (b), and (c) has a 3-structure similar to that of 
PSp4(3). Once this is obtained, the centralizer of an involution in the centre 
of a Sylow 2-subgroup is determined. Finally, G is identified with PSp4(3) 
by use of [6]. It seems unfortunate that condition (c) is necessary, but its 
use in determining the 3-structure of G is indispensable in this method of proof. 

1. Structure of Ho. We shall now study the structure of the centralizer of 
an element a of order 3 contained in the center of a Sylow 3-subgroup of 
PSp4(3). Let Fz be the finite field of three elements and F be a four-dimensional 
vector space over Fz equipped with a non-singular skew-symmetric bilinear 
form x - y G Fz (x, y £ V). Then V has a "symplectic basis", i.e., a basis 
ni, n2, n$, n± such that n\n± — n2n% = 1 and n\n2 = n\nz = n2n± = n^n^ = 0. 
The group of all linear transformations a of V such that a(x) • a(y) = x • y 
for all x, y in V is called the symplectic group Sp4(3). This group has a centre 
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of order 2 and the corresponding factor group is PSp4(3). PSp4(3) is a simple 
group of order 34 • 26 • 5 (see Artin [1]). 

This means that a linear transformation <r of V belongs to Sp4(3) if and 
only if 

a(ni) - a(n2) = c(wi) • a(nz) = a(n2) • o-(»4) = o"(w3) • <x(?z4) = 0, 

cr(^i) • o-(w4) = o"(n2) • o"(w3) = 1. 

It follows that a linear transformation a given by the matrix (tfj), 
i,j = 1, 2, 3, 4 in terms of the basis ni, n2, n%, ri\ where 

o"(^i) = hitii + t2in2 + ^3in3 + tnn± etc., 

belongs to Sp4(3) if and only if {ta)'J {to) = / where {tti)
f denotes the 

transpose matrix and / is the 4 X 4 matrix 

J = 
1 

- 1 

Take 

which is an element of order 3 in Sp4(3). If / is the identity transformation 
of Sp4(3), it is clear that — / generates the centre of Sp4(3). Therefore, PSp4(3) 
can be obtained from Sp4(3) by identifying a matrix of Sp4(3) and its negative. 
A matrix (ti}) of Sp4(3) centralizes a if and only if 

( i . i ) 

where 

(tu) = 

e 
a 
b 
c e f 

T _ hi hi 

belongs to SL(2, 3), e = ± 1 and e = e(bhi — ahi),f = e(bh2 — at22). 
We conclude that H0 is the totality of all matrices of the type (1.1) and 

that any two such matrices are identified if they are negatives of each other. 
From (1.1) we calculate that HQ has order 34 • 23. Several subgroups of H0 

are important in the proof of Theorem 1. We list them here for convenience. 
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(1.2) Let P be the totality of all matrices of H0 of the form 

[1 
I a 1 
\b d 1 
[_c e f 1 

It is easily verified that P is a Sylow 3-subgroup of H0 of order 81 and is 
isomorphic to a Sylow 3-subgroup of PSp4(3). The centre of P is generated 
by a and the center of H0 and P coincide. 
(1.3) Let M be the subgroup of P which is the totality of all matrices 

Tl 1 
1 

6 d 1 
[_c b lj. 

It is easily checked that M is the unique elementary abelian subgroup of P 
of order 27. M is a self-centralizing subgroup of H0 which contains a. 
(1.4) NHo(P) = P{t) where (t) is a complement of order 2 generated by 
the involution 

fl 1 

L !J-
(1.5) A Sylow 2-subgroup of H0 is a quaternion group of order 8. Let Q be 
the quaternion group with / in its center generated by 

[1 IT1 1 
1 1 1 

g i = - 1 , g 2 = = 1 - 1 

L lJ L l_l 
The mapping 6 of H0 which sends each matrix of (1.1) onto its corresponding 

matrix T is a homomorphism of H0 onto PSL(2, 3). The kernel of this homo-
morphism is the set of all matrices of (1.1) with T = ± 1 and is the semidirect 
product of a nonabelian subgroup of P of order 27 and (t). It is easily verified 
that Oz(H0) = Ker (6) C\ P and Z(H0) = Z(03(i^o)) = (a). 

2. The structure of NG(M). Let G be a finite group satisfying (a), (b) and 
(c) of Theorem 1. Let H be a subgroup of G isomorphic to H0 and let a± be 
the generator of the center of H. Let P , M, t have the same meaning as in (1.2), 
(1.3), and (1.4) but now identified as subgroups of H. 

where e = b — ad, 
/ = -a. 

(2.1) P is a Sylow 3-subgroup of G. 
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Proof. Le t S be a Sylow 3-subgroup of G containing P . Then Z(S) is a 
subgroup of CG(M) = CH{M) = M so t h a t Z ( 5 ) centralizes P . I t follows t h a t 
Z ( 5 ) = Z(P) = (a i ) and S Çl H. Since P is a Sylow 3-subgroup of H, P = S. 

(2.2) NG(M)/M is isomorphic to a subgroup of G L ( 3 , 3) and has a self-
centralizing Sylow 3-subgroup of order 3. In fact, NG(P) = P(t). 

Proof. T h e subgroup M contains ax so t h a t CG(M) = CH(M) = M and 
it follows t h a t NG(M)/M is isomorphic to a subgroup of G L ( 3 , 3) . T h e 
commuta to r subgroup P' of P is e lementary abelian of order 9, contains a\ 
and is calculated to be Oz(H) C\M. It follows t h a t CQ(P') = CH(P') = M 
and t h a t NG(P')/M is isomorphic to a subgroup of GL(2 , 3) . Since NG{P)/M 
is a Sylow 3-normalizer of NG(P')/M and since G L ( 2 , 3) has a Sylow 3-nor-
malizer of order 12, NG(P)/M has order 6 or 12. 

Suppose t h a t NG(P)/M has order 12 so t h a t the Sylow 2-subgroup of 
NG(P)/M is e lementary abelian of order 4. If NG(P) contained an element y 
of order 4, then y2 £ M which is impossible. I t follows t h a t NG(P) = P(t, r ) 
where / Ç NH(P) and r is an involution not contained in H such t h a t (t, r ) is 
a four group. Since NG(P)/M is isomorphic to a Sylow 3-normalizer of GL(2 , 3) 
and since / inverts a generator of P/M, we m a y assume t h a t r centralizes 
P/M. From the s t ructure of P , Oz{H) is the unique nonabelian subgroup of P 
of order 27 and exponent 3. Le t X be the unique subgroup of P of order 27 
which is nonabelian of exponent 9. I t follows t h a t (/, r ) normalizes M, Oz(H) 
and X and t h a t X = Cx(t)Cx(r)Cx(tT). Since Cx(t) = (ÛÎI), it follows 
t h a t r or tr centralize an element of X — 0 3 (H). Th i s implies t h a t r or tr central­
izes P/Oz(H). However, / cen t ra l i zesP/0 3 (H) so t h a t (/, r ) c e n t r a l i z e s P / 0 3 ( i ^ ) . 
Le t m e M - Pf. T h e n m Ç P - 0 3 ( # ) so t h a t [r, w] Ç 0Z(H) C\M = P'. 
T h u s r centralizes M/P''. 

Since r centralizes P/M and M/Pf we have t h a t r stabilizes the normal 
series P/P' D ikT/P' D Ï of P/P'. I t follows t h a t r acts trivially on P/P'. 
Since P' = <£(P), r acts trivially on P which is not the case. W e conclude t h a t 
NG(P)/M has order 6 so t h a t NG(P) = P(t). Since / inverts a generator of 
P/M, P/M is a self-centralizing Sylow 3-subgroup of NG{M)/M. 

(2.3) NG{M) is not S-closed. 

Proof. Suppose t h a t NG(M) is 3-closed. Then NG(M) C iVG(P) so t h a t 
NG(M) = iVG(P) = P(t). Let g G G and suppose t h a t a / Ç P . Since c ^ has 
order 3, aiffA G M for some h Ç 77. As M is the unique maximal e lementary 
abelian subgroup of P , a i and « i ^ are conjugate in NG(M). Th i s implies t h a t 
ai = a\gn so t h a t a\ = ai°. I t follows t h a t the centre of P is weakly closed in 
P and by a theorem of Grim, the largest abelian 3-quotient group of G 
and NG(Z(P)) are isomorphic. Since ot\ and « r 1 are not conjugate, 
NG{Z{P)) = C G ( Z ( P ) ) = # . From the s t ructure of # we see t h a t H/Oz(H) 
is isomorphic to SL(2 , 3) so t h a t H has a normal subgroup of index 3. Th is 
implies t h a t condition (a) of Theorem 1 is violated, a contradict ion. 
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(2.4) NG{M) = ML, M C\ L = 1 and L is isomorphic to S4. 

Proof. By a theorem of Gaschiitz [7], M has a complement L such that 
NG(M) = ML, M r\L = 1. From (2.2), L has a self-centralizing Sylow 
3-subgroup of order 3 and a Sylow 3-normalizer of order 6. Since L is iso­
morphic to a subgroup of GL(3, 3), the order of L is a divisor of 25 • 33 • 13 
and it follows from a theorem of Feit and Thompson [3] that L contains a 
normal nilpotent subgroup N such that L/N is isomorphic to S3 or Az. Let L 
be chosen that t £ L and let L C\ P be generated by x. Then to = x~l and 
since |L : N | is divisible by 3, L/N ^ S3. 

Suppose that 13 is a divisor of \N \. Since iV is nilpotent, the Sylow 13-sub-
group S is centralized by N and CL(S) — N. It follows that L/iV is isomorphic 
to a subgroup of Aut(S). This is impossible as L/N = S3 and Aut(S) is cyclic. 

We conclude that N is a 2-group and that N has order 4 or 16. If \N \ = 16, 
then \L\ = 25 • 3 and L contains a Sylow 2-subgroup W which is isomorphic 
to a Sylow 2-subgroup of GL(3, 3). By a result of [2], W = W± X C2 where 

Wx = (a, 6 |a8 = 62 = 1, b-W = a3) 

and C2 is a cyclic group of order 2. If iV contained an element of order 8, then 
N would contain exactly 3 or 6 elements or order 8. However, any subgroup 
of W containing an element of order 8 contains 4 or 8 such elements. Thus N 
is a maximal subgroup of W whose elements are of order 4 or 2. Since a maximal 
subgroup of W\ is cyclic, quaternion or dihedral, it follows that N has a 
maximal subgroup which is quaternion or dihedral of order 8. It follows that 
\Z(N)\ = 4 and that Z(N) = Z(W). Let W = N(t) so that Z(N) = Z(N(t)). 
Then t Ç CL(Z(N)) which implies that x G CL(Z(N)), a contradiction. 

Finally, |iV| = 4 and N is not cyclic. Clearly t does not centralize N so 
that N{t) is a dihedral group of order 8. It follows that L = N(x, t) is iso­
morphic to S4. 

Let L be a complement for M such that NG(M) = AfL, Af H i = 1, 
L == S4. We may assume / G I- since (J) is a complement for P in NG(P). 
From the structure of P, L Pi P is generated by an element x of order 3 
inverted by t so that x G Os (H) and P = M(x). Let r be the involution of 
L such that (r, x~xrx) is the normal subgroup of L of order 4 and t centralizes r. 
We have the relations 

(2.5) txt — x~1
1 tr = rt, xrx = TX~1T or (xr)3 = 1. 

Choose a basis for M given by 

1 1 
1 
1 1 

1J. 

ai a2 

1 
1 

1 1 
1 1 
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From the s t ructure of H we see t h a t ta\t = «i , ta2t = o:2
_1, tarf, = a3. Replacing 

x by x - 1 if necessary, we have t h a t x satisfies x~la\% — «i , x~la2x = a r ^ o ^ and 
x-103X = 0:10:20:3. Relat ive to this basis, 

1 0 0 
- 1 1 0 

1 1 1 

1 0 0 
0 - 1 0 
0 0 1 

Viewing r as an involution of G L ( 3 , 3) satisfying the relations (2.5) we 
calculate t h a t 

( i ) r = 
1 0 1 
0 - 1 0 
0 0 - 1 

(ii) r = 
1 0 1 
0 - 1 0 
0 0 1 

(iii) r = 
0 0 1 
0 - 1 0 
1 0 0 

T h e fusion pa t t e rn is calculated: 

(i) « i ' 0:10:3 

Oil 

0:2 ^ o:2— 1 ^ ai~1a2 ^ 0:10:2 ^ a{~la2~
l ^ aia.2~1 ^ 0:3 ^ 0:10:20:3 ^ 

a± x «3 ^ 0:20:3 '—' 0:2 X0!3 ^ (X2 L(X3 

( i i ) « 1 ^ o:i—1o:3 ^ 0:203 ^ «2 _ 1 o:3 

OL\~1 ^ OLIOL%~1 ^ Û Î 2 - 1 O : 3 _ 1 ^ 0:203" 

' 0:3 

' 0:203^ ' 0:10:3 

0:3 - ' 0:10:20:3 ^ 0:10:2 1OL% 

( i i i ) a\ ^ a% ^ «10:003 <^> 0:102 ^ 3 

' o:2 ' « i "0:3 • ' 0:10:3 

0:103 ' «1020:3 

In any case we see t h a t G has exactly four classes of elements of order 3 
with representat ives 0:1, af -1, ai_1o:iT, o:io:ir. Fur thermore , ra2T = o:2_1 in all 
cases. W e have proven the following. 

(2.6) NG(M) = M(x, t, r ) where (x, t, r ) is a complement for M satisfying 
the relations t2 — r2 = x3 = 1, txt = x _ 1 , tr = rt, (x r ) 3 = 1. G has exactly 
four classes of elements of order 3 with representatives 0:1, ar"1 , « r ^ i 7 , 0:10:iT 

where o:iT 9^ «i , ai-1. 

CNG(M)(oii) = P{t), CNGiM)(ar1) = P(t), CNQ(M)(pnrloL\T) = M{t), 

and CNG(M)(onaiT) = M{t,r). 
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3. T h e s t r u c t u r e of CG{al~
lal

T) a n d CG^OH7). Let r be the involution of 
NG(M) given in (2.6). 

(3.1) Cafard) r\ CG(a2) = M. 

Proof. By (2.6), CNG(M) ( a f 1 . / ) = M{t) and CNo(M) (a2) = M{tr). I t 
follows t ha t M is a Sylow 3-subgroup of 

CoiarW) H CG(a2) 

which is located in the center of its normalizer. By a theorem of Burnside, 
CG{ai~1a{r) C\ CG(a2) = MV, MC\ V = 1 and F is a normal complement 
of M. T h u s V e \AG(M, 3') and it follows t h a t V = 1 by (c) of Theorem 1. 

(3.2) CoiarW) = M(t), CG(a2) = M ( / r ) . 

Proof. CGr(ai_1aiT) has M ( / ) as a Sylow 3-normalizer so t h a t («i) X («iT) is 
the centre of the Sylow 3-normalizer. By a theorem of Griin, CG(ai~laiT) has 
a normal subgroup K of index 9 and MHK = [M,t] = (a 2) . By (3.1), 
Cj r fe) = («2) so t h a t i£ has a self-centralizing Sylow 3-subgroup of order 3. 
By [3], K is isomorphic to A 5 or PSL(2, 7) or has a normal nilpotent subgroup 
N such t ha t K/N is isomorphic to 4̂ 3, S% or ^ 5 . 

Since K admits a\ as an automorphism, we may assume t h a t a i acts non-
trivially on K as otherwise K = (a2, t) and we have our desired result. Assum­
ing tha t a i acts nontrivially on K we have t ha t a i centralizes {a2, t) so can 
not be the inner automorphism induced by a2. I t follows t h a t ai is a nontrivial 
outer automorphism of K and since A5 and PSL(2 , 7) admi t no such outer 
automorphism, K is not simple. We have t h a t K has a normal ni lpotent 
subgroup N. 

If i£/iV ^A5, then iVal <3 X and since NNal < K, it follows t ha t NNal = N 
and ai normalizes N. Thus N £ MG(ikf, 3') and we have iV = 1. This implies 
t h a t K is simple contrary to our preceding discussion. 

Since (a2j t) is a dihedral group of order 6, K/N = S$. I t follows t h a t 
Nal = N, so t h a t N G M G ( M , 3 ') . Thus , in any case K = (a2, 0 and 
C^(ai_1a:iT) = M{t). Since a2 and ai~laiT are conjugate in NG{M)1 

CG(a2) = M ( / r ) . 

T o determine the s t ructure of C c ^ i ^ r ) it is necessary to prove the following 
lemma. 

(3.3) Let G be any finite group which satisfies the following conditions: 
(i) T = (a) X (/3) is a Sylow 3-subgroup of order 9 with as = /33 = 1. 

(ii) NG(T) = T(t, T) such that a1 = aT = or\ tr = rt, t2 = r2 = 1 and 
(3* = p}$r = 0-1. 

(hi) CG((3) = T(t), CG{a) = 7 » , CG(a$) = T. 
Then G = NG(T) = T(t,r). 

Proof. Let D = T* = T - 1. From (ii), T # is the union of 3 classes of 
elements of order 3 of NG(T) with representatives a, fi, and afi. Since T is 
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abelian, these representat ives are not conjugate in G, and by (iii), NG(T) 
contains the centralizer of each of a, £, and a(3. I t follows t h a t D is a closed 
set of special classes of G and t h a t M(D), the module of generalized characters 
of NG(T) with suppor t on D, has a basis consisting of three generalized 
characters of NG(T) (see [8]). 

T h e character table of NG(T) can be computed by comput ing an induced 
character form each of T, T(tr), and T(t). 

1 0* a* a$* t T tr tra tfi 

01 1 1 1 1 L 1 1 1 1 1 

02 1 1 1 1 L - 1 1 - 1 - 1 - 1 

03 1 1 1 1 I - 1 - 1 1 1 - 1 

04 1 1 1 ] L 1 - 1 - 1 - 1 1 

05 4 - 2 - 2 1 L 0 0 0 0 0 

06 2 2 - 1 - ] [ 0 0 2 - 1 0 

07 2 2 - 1 - ] L 0 0 — 2 1 0 

08 2 - 1 2 — ] L 2 0 0 0 - 1 

09 2 - 1 2 - ] L - 2 0 0 0 1 

* = special classes 

A basis for M(D) is given by 

$1 = 05 ~ 01 — 02 — 03 ~~ 04 

$2 = 05 — 06 — 07 

$3 = 05 — 08 — 09-

By [8], ($**, $*)G = ($u ®J)N where <£** denotes the induced character 
and ( , ) ( ? , ( , )JV denote, respectively, the inner p roduc t in G and NG(T). 
Let 1G denote the principal character of G and let \$*\ = ($*, $*)G-

By the Frobenius Reciprocity Formula , (3>i*, lG)G = ($1, IN)N = ~ 1. 
Since | $ i* | = 5, i t follows t h a t $ i* = t\X\ + e2x2 + e3x3 + e4x4 — lG where 
€,- = ± 1 , 1 ^ i < 4 and x î are all dist inct irreducible characters of G. Since 
| $2*| = 3, ($ 2 *, $I*)G = ($2, $ i ) * = 1, it follows t h a t 

$2* = €1X1 + e2x2 H e3x3 or 3>2* = eiXi + myx + 772̂ 2 

where rji = ± 1 and ^ i , ;y2 are irreducible characters of G dist inct from the xu 
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Let us suppose t ha t we are in the first case so t ha t 

$i* = ei*! + e2x2 + €3*3 + e4X4 - 1G 

$2* = €i*i + e2x2 — e3*3. 

Since ($2*, $3*) = 1, (3>i*, $3*) = 1, $3* has exactly 3 characters in common 
with # i* or exactly one character in common. If 3>3* = MI^I + M2#2 + M3#3, 
then /ziei + /ji2e2 + ^3*3 = 1 and /xi^i + M2€2 — M3€3 = 1 which is impossible. 
Since ($3*, $2*) = 1, $3* can not have x4 and two other characters of $1* in 
common. T h u s $3* has exactly one character of $1* in common and it mus t be 
Xi, x2 or *3 . Since x3 appears in $1* and $2* with opposite signs, #3 can not be 
the common character . Since $1*, $2* are symmetric in Xi and x2, we m a y 
suppose Xi is the common character and we have $3* = €1*1 + 771̂ 1 + 772̂ 2, 
7]i — rfcl, 3>i, y2 irreducible characters distinct from xif 1 g i ^ 4. 

Case (i): $1* = ei*i + e2x2 + €3X3 + e4x4 — 1^ 

$ 2 * = €1X1 + €2X2 — €3X3 

$ 3 * = e i^ i + 7}iji + r}2y2, 

with xu yu 1G distinct irreducible characters of G, et = ± 1 , 77* = ± 1 . 
On the o ther hand, if <3>2* = €1*1 + viyi + ^2^2, 

$1* = €i*i + €2*2 + e3*3 + €4*4 — lGl 

let us suppose t h a t $3* has three nonprincipal characters in common with $1*. 
We have t ha t $3* = €1*1 + ekxk — ejXj and we are back in case (i) except for 
a permuta t ion of the subscripts of the $* and the Xi. We may assume t h a t $3* 
has exactly one irreducible character in common with $1* and $3* = €1*1 + 
f i2i + £2^2; zu 1 S i ^ 2 distinct from 1^ and the xz-. If $3* has yi in common, 
then $3* = eiXi + r^yi - r)2y2 and $3*(1) = €1/1 + vigi — >72̂ 2 = 0, $2*(1) = 
€1/1 + mgi + V2g2 = 0 where /1 = * i ( l ) , g, = ;y<(l), 1 ^ i ^ 2. This is im­
possible. We have proved, 

Case (ii): $1* = ei*i + e2x2 + e3*3 + e4*4 — lG 

$2* = €1*1 + viyi + W 2 

$3* = ei*i + fiSi + ? 2S2 

with €i = zb l , 7ji = d=l, f Î = ± 1 , 1er, * i , yu zt dist inct irreducible characters 
of G. 

I t is now possible to compute a fragment of the character table of G. In 
case (i) i t is found t h a t Xi = ei05, x2 = — e2(0i + 0e), *3 = €3( —0i + 06), 
* 4 = — €40i, j i = 771 (0i + 05 + 0e), ^2 = 172(01 + 05 + 06) when restricted 
to the special classes of NG(T). 
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l P a a(3 

U l i 1 1 

Xi / i - 2 e i - 2 e x € l 

x2 /« — 3e2 0 0 

# 3 h €3 - 2 e 3 - 2 ( 

X\ n — e4 — e4 — e 

yi gi Vi — 2?7i *7i 

y* g* V2 - 2 7 ? 2 *?2 

In case (ii), Xi = ei</>5, x2 = — e20i, x3 = — e30i, x4 = — e4<£i, 3>i = — 77i06, 
y2 = — 7̂206, Zi = fi(0i + 05 + 0e), z2 = f2(0i + </>5 + 0e) when restricted to 
the special classes of NG(T). 

1 P a: a/3 

U 1 1 1 1 

XI / l - 2 e i - 2 e i € l 

x2 /» — e2 — e2 — e2 

Xz h — e3 — e3 — e 3 

XA / 4 — e4 — e4 — e4 

yi gl - 2 7 7 1 *?i i?i 

y^ g2 — 2?72 *?2 7̂2 

Z\ Ai f l - 2 f t f l 

z2 h2 f2 -2f2 f2 

Now we prove a lemma which will be used in computing \G\. 

(3.4) Let a, £, c fre elements of the special classes of N G(T). If for some x, y G G 
we have axbv = c and we assume that a, b, c do not belong to the same class of 
NG(T), then ax, bv belong to T. 

Proof. Let axbv = c and suppose that a, b, c do not belong to the same class 
of NG(T). Let S — (ax, bv). By a result of [3], S has a normal abelian subgroup 
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N of index 3. If N has order prime to 3, S has a Sylow 3-subgroup of order 3 
and a, b, c are in the same class of NG(T). It follows that S has a Sylow 3-
subgroup of order 9 containing c. Since CG(c) C NG(T), T Q S and N (^ T 
has order 3. This implies that N centralizes an element of T so that N C iV^ ( r ) . 
It follows that S C i M r ) so that a*, 5y G T. 

Let k be the number of ways axbv = c, where a, b, c are elements of the 
special classes of NG(T). If Xh 1 = 3 = n a r e the irreducible characters of G 
we have, 

(o K\ L 1̂ 1 v Xj(a)XjQ>)xj(c) 
{ j |C*(a)| |C*(ft) |£i Xi(D 

Using the fragment in case (i), (3.4) and (3.5), 

a = a , & = jS, £ = a/3 

( i ) i = 7 l 8 7 | _ i + 7 7 + 77-^----j 

a = a , 6 = /3, c = a 

( 2 ) 0 = 1 - ^ + ^ - ^ + ^ + ^ 
J l 73 /4 gl g2 

a = 0, b = a/3, c = 0 

( 3 ) 0 = l + ^ - ? 9 - ^ + 2i + 2* 
h h /4 gi ^2 

a = a, 6 = j8, c = ft 

(4) 0 = 1 - ^ - ^-3 - f4 - ^ - ^ . 
h h A gi 2̂ 

Subtracting (4) from (3), we have 

0 = ^ 1 + ^1 + ^ . 
/ l gl ^2 

Since $3* = eiXi + 77^1 + 772̂ 2, €1/1 = — 0?igi + 772̂ 2). Substituting for/ i we 
have that 2 = ^1^2(^2/^1 + gi/gz)- It follows that gi = g2 and TJI = 772. Since 
ei/i = —(vigi + 972̂ 2), we find that /1 = 2gi, 771 = — ei. 

Using the above new information, (4) becomes 

0 = 1 - — - -
/« U 

and (2) becomes 

1 _ 2É£1 « É£§ __ €4 

/1 / . A ' 
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Subtracting (2) from (4), we find t h a t / i = eie34/3 and it follows that ei = e3, 
/ i = 4 / , . 

From 0 = 1 — 2ez/fz — t\/f±, we now find that C4//4 = 1 — 8ei//i. Substi­
tuting all this information into (1), we have that \G\ = 9ei/i. Since \G\ is 
a positive integer, ei = 1 and/1 = |G|/9. From elementary character theory, 
\G\ ^ / i 2 and we find that \G\ S 81. Since | i M ^ ) | = 36, \G\ = 36 or 72. 
In the latter case 72 g; / 1 2 + gi2 = 80, a contradiction. Thus |G| = 36 and 
(3.3) holds in case (i). 

We may now assume that case (ii) holds. Using the fragment in case (ii), 
(3.4) and (3.5), 

a — a, b = jS, c = a(3 

U; (18)2L ^ / i U h h gi £* *i A2J 

a — a, b = @, c = a 

(2 ) 0 = 1 - ^ - ? - f - * - ^ - ^ + f1 + f-2 

fi h h U Zi & hi A2 

a = I3,b = ap, c = (3 

ro\ n 1 1 4 e i €2 € 3 €4 _i_ ^ 1 _i_ 4 r ? 2 _L_ f ! _i_ f2 

h h /s / 4 gi g2 Ai A2 

a = a, 5 = a, c = a/3 

( 4 ) 0 = 1 + ^ - ^ - ^ - ^ + ^ + ^ + ^ + ^ . 
h h h U gi 2̂ Ai A2 

Subtracting (4) from (2), we have 

o4 1 +~+--
/ l £ l ^2 

Since $2*(1) = ei/i + 771̂ 1 + *?2g2 = 0, we have that ru = 772, gi = g2. Thus 
/1 = — 2ei77igi and we have / i = 2gi, ei = —771. 

Using this information (4) becomes 

and (3) becomes 

0 = i - ^ - ^ - ^ i - i - ^ i + if2 

/ 2 / s / 4 Al A2 

A _ 1 _ l ^ 6 ! _ _ l 2 _ e 3 _ £ 4 , j j , f 2 

~~ / l / 2 / s / 4 Al A2 ' 

Subtracting (3) from (4), we have 

0 = ^ + ^ - ^ 
/1 fli A2 
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Using $3*(1) = ci/i + fiAi + f2A2 = 0 and subst i tut ing the value of flt we 
find t h a t fi = f2, Ax = ft2. Since / i = — ci(fiAi + f2/*2), / i = —2eifi&i and 
it follows t h a t €1 = — f i , / i = 2Ai. 

We now have t h a t fx = 2gu fi = 2hu gx = g2f vi = i?2, *i = h2, fi = f2, 
€1 = — fi and ei = — 771. Using this information, (2) becomes 

/0 \ n _ 1 I®61 €2 €3 €4 

^ ; u - i — — — — . 

7i h h U 

Equat ion (1) becomes, 

Subst i tu t ing (2) into (1), we have 

t |G| r 3 6 e i l , |G| 

I t follows t h a t €1 = l a n d / i = |G| /9 . Since |G| è M 81 ^ |G| so t h a t \G\ = 36 
or 72. In the lat ter case, fx = 8, gi = 4, g2 = 4 and 72 ^ 82 + 42 + 42 = 96, 
a contradiction. Finally, |G| = 36 so t h a t G = NG(T) and (3.3) holds in 
case (ii). 

We are now in a position to prove the following theorem. 

(3.6) G has precisely 4 classes of elements of order 3 given by the representatives 
ai, ai~l

y <xi-laiT, OLIOLIT. Wehave CG(ai) = CG{a{~1) = H and CG(ar1aiT) = M(t), 
Cofaaf) = M(t,r). 

Proof. The first pa r t of this theorem follows from (2.6) and (3.2). I t remains 
to determine the s t ructure of CG(aiaiT). Since aiaiT is not conjugate to a\ 
or « I - 1 , CG(aiaiT) has N = M(t, r ) as a Sylow 3-normalizer. Since 
Z(N) r\ M = (aiaiT), CG(aiaiT) has a normal subgroup K of index 3 and 
K C\ M = [M, {t, r>] = <a2) X (ar1^*). Let r = K C\ M. F rom (3.2), 
CK(a2) ~ T{rt) and C^ar" 1 ^ 7 " ) = T(t). Since «iaiT centralizes K, 
CK{ai~la2<xiT) C Cx(ai«2). However, a i« 2 and a2 are conjugate so t h a t 
CG{aia2) C Af (t, r, x ) = NG(M). I t follows tha t C * ( a r W i r ) = T. We have 
shown tha t K is a group satisfying the hypothesis of (3.3) so t h a t K — T(t, r ) . 
If follows t h a t C G ( a i « r ) = M(t, r ) . 

4. S t r u c t u r e of CG(t). I t is now possible to determine the s t ructure of 
CG(t). T h e first result of this section is a characterization of the centralizer 
of a central involution in PSp 4 (3) . 

(4.1 ) Let G be a finite group with an involution t in its center. If G has a Sylow 
3-subgroup T which is elementary abelian of order 9 and a Sylow 3-normalizer 
T(t, r ) such that 

(i) T = (a)X {P),a* = £ , r 2 = 1; 
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(ii) CG(a) = TQ, CG((3) = TQT where Q is a quaternion group of order 8 
normalized by T and not centralized by /3; 

(iii) Coipr^) = Tit), CG(a$) = T(t,r). 
Then G = SxS2{r) where Si = (l3)Q, S2 = (<*><2T, [Si, S2] = 1, 

S1r\S2 = (t) and Si* = S2 . 

Proof. Let iV = T{t,r). By a theorem of Grûn, G has a normal subgroup X 
of index 3 such t ha t i m r = [7\ <*,T>] = (a"1/?). By (iii), CK{or^) = (a"1 /?, /}. 
Let X = K/(t). Then X has a self-centralizing Sylow 3-group of order 3 and 
a Sylow 3-normalizer of order 6. Since X admi ts T as a group of au tomorphisms 
and since a/3 does not centralize Q, a/3 induces a nontrivial automorphism of X . 
Since a& centralizes r and a~1P is inverted by r, it follows t h a t a/3 and crlf$ 
induce dist inct automorphisms of X. Fur thermore , the only inner automor­
phism of X t h a t centralizes (a - 1/3, t)/(t) is induced by a~xp. I t follows t h a t 
a/3 induces a nontrivial outer automorphism of X of order 3. W e conclude t h a t 
X is no t isomorphic to PSL(2 , 5) or PSL(2 , 7) . 

By [3], K has a normal ni lpotent subgroup R such t h a t K/R is isomorphic 
to S3 or PSL(2 , 5) . For any a £ T, RRa is a normal subgroup of i£ of order 
prime to 3. F rom the s t ructure of K/R, RRC = R so t h a t Ra = R. T h u s P is 
a T invar iant ni lpotent subgroup of K. Le t P be a Sylow ^-subgroup of R, 
p jfL 2, p 9* 3. Then 

P = CP(a)Cp(/3)Cp(a/5)Cp(a-1 /3) = 1 

and we conclude t h a t R is a 2-group such t h a t R = CR(a)CR(fi). Since P 9e- (t), 
we may assume wi thout loss of generality t h a t CR(a) ?* (t). Then Q C\ R i£ (t) 
and since /3 acts regularly on the nonident i ty elements of Q/(t), Q ÇI P . 
Since R < K, QT ^ R and we have P = <2(X 

Now let us suppose t h a t K/R ~ PSL(2 , 5) . Then K has a subgroup F 
such t h a t F/R is an e lementary abelian group of order 4 which is normalized 
by a - 1 /3. If a/3 induces a trivial automorphism of K/R, then P leaves F/R 
invar iant and F = Cp(a)Cp(/3)Cp(a/3)Cp(a_1/3). Th is implies t h a t P = 
QQT = R which is not the case. We conclude t h a t a/3 induces a nontrivial 
outer automorphism of K/R of order 3, a contradict ion. 

Finally, K/R ^ S3 so t h a t K = R(a-^,r) = QQT{cTlp, r ) . Since R is a 
2-group, QT H iVG((?) 5* (0 - This implies t h a t <2r C N(Q) since a acts regu­
larly on the nonident i ty elements of QT/(t). I t follows t h a t R is a 2-group of 
NG(Q) of order 32 and since NG(Q)/CG(Q) is isomorphic to a subgroup of 5*4, 
<2T C CG(Q). Le t Si = (0)Q, S2 = {a)Q\ Then Si H S 2 = (t), [Si, S2] = 1, 
SiT = S2 and G = SIS2{T). 

W e can now determine the s t ruc ture of CG(t). Le t t, r , Q have the same 
meaning as in (1.4), (1.5) and (2.6). 

(4.2) CG(t) = S I S 2 < T > , S1 = (aS)Q, S2 = {a,)Q\ [Si, S2] = 1, S i H S 2 = (t) 
and SiT = S2 . 
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Proof. From the structure of H, CM(t) = (ai) X (a^). Let T = (ai) X (aiT). 
Then CG(T) = C^(r) = Af<*) and it follows that NG(T) C NG(M). From 
the structure of NG(M), T(t, r ) is a Sylow 3-normalizer of CG(t). From the 
structure of # , C0(*) H CG(«i) = TÇ and CG(/) Pi CQ(aiT) = TQT. By 
(3.6), Cofaaf) = Af</,r) and C G ( a r 1 a r ) = Af (0 so that C(J) H CG(aiai*) = 
T{t, T) and CG(/) H Ciar1*!*) = r<*>. Applying (4.1), the result follows. 

(4.3) Le/ S = QQT(T) be a Sylow 2-group of CG{t). Then S is a Sylow 2-group 
ofG. 

Proof. Let S\ be a Sylow 2-group of G containing S. Since Z(S) = (t), 
NSl(S) Ç C(0- This implies that NSi(S) = S and we have Si = 5. 

From (4.2) we see that condition (b) of [6] has been established. 
By the structure of CG(t), CG(t) has exactly 4 classes of involutions with 

representatives t, r, /r, and qqT where q G Q is some element of order 4. The 
involution t is conjugate in G to one of r, £r or qqT since otherwise 
G = 02>(G)CG(t) by [4] and G has a normal subgroup of index 3, a contradic­
tion to (a) of Theorem 1. The proof of Theorem 1 now follows from [6]. 

It is perhaps interesting to notice that Sections 2, 3, and 4 of this paper 
together with the first three sections of [6] determine the local 2 and 3 structure 
of G. Letting £ = NG(P) and N = <r, rq), N/(t) is a dihedral group of order 8 
and one may show that G = BNB = PSp4(3) directly without the use of 
the last sections of [6] and particularly without the aid of the characterization 
of PSp4(3) in [9]. 
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