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A CHARACTERIZATION OF THE FINITE
SIMPLE GROUP PSp,(3)

JOHN L. HAYDEN

The aim of this paper is to characterize the finite simple group PSp.(3)
by the structure of the centralizer of an element of order three contained in
the center of its Sylow 3-subgroup. More precisely, we shall prove the fol-
lowing results.

THEOREM 1. Let o be an element of order 3 contained in the center of a Sylow
3-subgroup of PSps(3). Denote by H, the centralizer of a 1n PSp4(3). Let G be
a finite group with the following properties:

(@) G has no normal subgroup of index 3.

(b) G has an element ay of order 3 such that Cg(a1) is isomorphic to H,.

(c) Celar) has an elementary abelian subgroup M of order 27 for which
WNe(M, 3') s trivial. (Refer to the structure of Ho in Section 1.)

Then G is isomorphic to PSp4(3).

THEOREM 2. Let G be a finite group satisfying (b) and (c) of Theorem 1.
Then one of the following occurs:
(1) G has a normal subgroup of index 3.
(i1) G is isomorphic to PSp4(3).

Clearly, Theorem 2 is an immediate consequence of Theorem 1.

The main difficulty in proving this theorem is in showing that a group
possessing properties (a), (b), and (c) has a 3-structure similar to that of
PSp4(3). Once this is obtained, the centralizer of an involution in the centre
of a Sylow 2-subgroup is determined. Finally, G is identified with PSp4(3)
by use of [6]. It seems unfortunate that condition (c) is necessary, but its
use in determining the 3-structure of G is indispensable in this method of proof.

1. Structure of H,. We shall now study the structure of the centralizer of
an element @ of order 3 contained in the center of a Sylow 3-subgroup of
PSp.(3). Let F; be the finite field of three elements and V be a four-dimensional
vector space over F3 equipped with a non-singular skew-symmetric bilinear
form x-y € F3 (x,y € V). Then V has a “symplectic basis”’, i.e., a basis
ny1, N2, N3, Ny SUCh that NNy = N3 = 1 and NiNe = NNz = NoNy = N34 = 0.
The group of all linear transformations ¢ of V such that o(x) -o(y) = x -y
for all x, y in V is called the symplectic group Sp:(3). This group has a centre
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of order 2 and the corresponding factor group is PSp4(3). PSp.(3) is a simple
group of order 3¢- 265 (see Artin [1]).

This means that a linear transformation o of V' belongs to Spi(3) if and
only if

Il

0’(113) . 0'(%4) =0,
1.

a(m) - a(ny) = o(n1) - a(n3) = o(ns) - o(n4)

oc(n1) - o(ns) = o(n2) - a(ny)

It follows that a linear transformation ¢ given by the matrix (¢y;),
1,7 =1, 2, 3, 4 in terms of the basis #, ns, 3, #ns where

oc(n1) = tuny + tane + taing + tans  etc.,

belongs to Sps(3) if and only if (¢;)'J(:y;) = J where (¢;)’ denotes the
transpose matrix and J is the 4 X 4 matrix

J = 1

Take

which is an element of order 3 in Sp.(3). If I is the identity transformation
of Sp4(8), it is clear that — I generates the centre of Sp4(3). Therefore, PSp4(3)
can be obtained from Sp.(3) by identifying a matrix of Sps(3) and its negative.
A matrix (¢;;) of Sps(3) centralizes « if and only if

-
ci

tn te
T =
|:If21 522]
belongs to SL(2, 3), e = &1 and ¢ = e(bt11 — atsr), f = €(bbiz — alzs).
We conclude that H, is the totality of all matrices of the type (1.1) and
that any two such matrices are identified if they are negatives of each other.

From (1.1) we calculate that H, has order 3*- 2% Several subgroups of H,
are important in the proof of Theorem 1. We list them here for convenience.

1.1) (tey) =

S TN Q o

where
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(1.2) Let P be the totality of all matrices of H, of the form

I

1 where e =00 — ad,
d 1 f= —a.
e f 1

It is easily verified that P is a Sylow 3-subgroup of H, of order 81 and is
isomorphic to a Sylow 3-subgroup of PSp.(3). The centre of P is generated
by a and the center of H, and P coincide.

(1.3) Let M be the subgroup of P which is the totality of all matrices

1
a
b
c

1

b
¢

S R
(=

1]

It is easily checked that M is the unique elementary abelian subgroup of P
of order 27. M is a self-centralizing subgroup of H, which contains a.

(1.4) Ny, (P) = P(t) where (t) is a complement of order 2 generated by
the involution

(1.5) A Sylow 2-subgroup of H, is a quaternion group of order 8. Let Q be
the quaternion group with £ in its center generated by

1 1
B 1 ‘l B 11
&= ~1 2= 1 —1
1J 1.

The mapping 6 of H, which sends each matrix of (1.1) onto its corresponding
matrix 7" is a homomorphism of H, onto PSL(2, 3). The kernel of this homo-
morphism is the set of all matrices of (1.1) with 7" = == and is the semidirect
product of a nonabelian subgroup of P of order 27 and {¢). It is easily verified
that O3(Ho) = KeI' (0) M P and Z(.Ho) = Z(Og(H(,)) = <Ot>

2. The structure of N(M). Let G be a finite group satisfying (a), (b) and
(c) of Theorem 1. Let H be a subgroup of G isomorphic to H, and let a3 be

the generator of the center of H. Let P, M, ¢ have the same meaningasin (1.2),
(1.3), and (1.4) but now identified as subgroups of H.

(2.1) P is a Sylow 3-subgroup of G.
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Proof. Let S be a Sylow 3-subgroup of G containing P. Then Z(S) is a
subgroup of Co(M) = Cy(M) = M so that Z(S) centralizes P. It follows that
Z(S) = Z(P) = {e1)and S C H. Since P is a Sylow 3-subgroup of H, P = S.

(2.2) Ng(M)/M s isomorphic to a subgroup of GL(3,3) and has a self-
centralizing Sylow 3-subgroup of order 3. In fact, Ng(P) = P{t).

Proof. The subgroup M contains «; so that Ce(M) = Cyg(M) = M and
it follows that Nq(M)/M is isomorphic to a subgroup of GL(3, 3). The
commutator subgroup P’ of P is elementary abelian of order 9, contains a;
and is calculated to be O;(H) M M. It follows that C4(P’) = Cx(P') = M
and that N4(P’")/M is isomorphic to a subgroup of GL (2, 3). Since N¢(P)/M
is a Sylow 3-normalizer of N¢(P’)/M and since GL(2, 3) has a Sylow 3-nor-
malizer of order 12, N4 (P)/M has order 6 or 12.

Suppose that Ng(P)/M has order 12 so that the Sylow 2-subgroup of
N¢(P)/M is elementary abelian of order 4. If N (P) contained an element y
of order 4, then y2 € M which is impossible. It follows that Ny(P) = P{¢, 7)
where ¢ € Ng(P) and 7 is an involution not contained in H such that (¢, 7) is
a four group. Since N4 (P)/M is isomorphic to a Sylow 3-normalizer of GL (2, 3)
and since ¢ inverts a generator of P/M, we may assume that 7 centralizes
P/M. From the structure of P, O3(H) is the unique nonabelian subgroup of P
of order 27 and exponent 3. Let X be the unique subgroup of P of order 27
which is nonabelian of exponent 9. It follows that {¢, ) normalizes M, O;(H)
and X and that X = Cx()Cx(r)Cx(tr). Since Cx(t) = {a), it follows
that 7 or 7 centralize an element of X — O3(H). This implies that 7 or {7 central-
izes P/03(H). However, ¢ centralizes P /03 (H) so that (¢, 7) centralizes P /03 (H).
Letm € M — P'. Thenm € P — O3(H) so that [r, m] € O;(H) N M = P’.
Thus 7 centralizes M/P’.

Since 7 centralizes P/M and M /P’ we have that 7 stabilizes the normal
series P/P' D M/P' D 1 of P/P'. It follows that r acts trivially on P/P’.
Since P’ = &(P), 7 acts trivially on P which is not the case. We conclude that
N (P)/M has order 6 so that Ng(P) = P(¢). Since ¢ inverts a generator of
P/M, P/M is a self-centralizing Sylow 3-subgroup of N (M) /M.

(2.3) Ng(M) is not 3-closed.

Proof. Suppose that Ng(M) is 3-closed. Then Ng(M) © Ng(P) so that
Ne(M) = Ne(P) = P({t). Let g € G and suppose that ay? € P. Since a;? has
order 3, a1 € M for some & € H. As M is the unique maximal elementary
abelian subgroup of P, oy and a;?* are conjugate in Nq(M). This implies that
a1 = a1’ so that a; = ay?. It follows that the centre of P is weakly closed in
P and by a theorem of Griin, the largest abelian 3-quotient group of G
and Ng(Z(P)) are isomorphic. Since a3 and «;~! are not conjugate,
Ng(Z(P)) = Ce(Z(P)) = H. From the structure of H we see that H/O;(H)
is isomorphic to SL(2, 3) so that H has a normal subgroup of index 3. This
implies that condition (a) of Theorem 1 is violated, a contradiction.
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(24) Ng(M) = ML, M\ L = 1 and L is isomorphic to S,.

Proof. By a theorem of Gaschiitz [7], M has a complement L such that
Ne(M) = ML, M L = 1. From (2.2), L has a self-centralizing Sylow
3-subgroup of order 3 and a Sylow 3-normalizer of order 6. Since L is iso-
morphic to a subgroup of GL(3, 3), the order of L is a divisor of 25-33-13
and it follows from a theorem of Feit and Thompson [3] that L contains a
normal nilpotent subgroup N such that L/N is isomorphic to S; or A;. Let L
be chosen that ¢ € L and let L M P be generated by x. Then txt = x~! and
since |L : N | is divisible by 3, L/N =2 S;.

Suppose that 13 is a divisor of [V |. Since N is nilpotent, the Sylow 13-sub-
group S is centralized by N and C(S) = N. It follows that L/N is isomorphic
to a subgroup of Aut(S). This is impossible as L/N == S; and Aut(S) is cyclic.

We conclude that NV is a 2-group and that IV has order 4 or 16. If |V | = 16,
then |L | = 253 and L contains a Sylow 2-subgroup W which is isomorphic
to a Sylow 2-subgroup of GL (3, 3). By a result of [2], W = W; X C; where

W, = {a,bla® =02 =1,0"lab = a3)

and C, is a cyclic group of order 2. If N contained an element of order 8, then
N would contain exactly 3 or 6 elements or order 8. However, any subgroup
of W containing an element of order 8 contains 4 or 8 such elements. Thus N
is a maximal subgroup of W whose elements are of order 4 or 2. Since a maximal
subgroup of W; is cyclic, quaternion or dihedral, it follows that N has a
maximal subgroup which is quaternion or dihedral of order 8. It follows that
|Z(N)| = 4 and that Z(N) = Z(W). Let W = N{t) so that Z(N) = Z(N(t)).
Then ¢ € C,(Z(N)) which implies that x € C,(Z(N)), a contradiction.

Finally, |[N| = 4 and N is not cyclic. Clearly ¢ does not centralize N so
that N{¢) is a dihedral group of order 8. It follows that L = N{x, t) is iso-
morphic to Ss.

Let L be a complement for M such that Ngy(M) = ML, MN\L = 1,
L =~S, We may assume ¢ ¢ L since (¢) is a complement for P in N¢(P).
From the structure of P, L M P is generated by an element x of order 3
inverted by ¢ so that x € O3;(H) and P = M({x). Let r be the involution of
L such that {r, x~'7x) is the normal subgroup of L of order 4 and ¢ centralizes 7.
We have the relations

(2.5) fxt = x71, tr =7t xtx = e~ 7 or (xr)® = 1.
Choose a basis for M given by
1 1 1
1 1 1

o= 1 R | 1 I 11
1 1 1
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From the structure of H we see that lait = a1, last = a7}, tast = a;. Replacing
x by x~1if necessary, we have that x satisfies x~la;x = ay, ¥ 'aex = a1 las and
xlazx = aiases. Relative to this basis,

1 00 1 00
x—]1—1 1 0], t—10 —1 0
1 1 1 0 0 1

Viewing 7 as an involution of GL(3, 3) satisfying the relations (2.5) we
calculate that

1 0 1 -1 01 0 0 1
iHr=10 -1 0 ir=| 0 —1 0 Gi)r={0 —1 0]
0 0 —1 0 0 1 1 00

The fusion pattern is calculated:

(1) Y oy a1—1a2a3 ~ a1_1a2—1a3

art ~ar ey ~ agae T lay T~ agasag Tt

1

g ™ a2—1 ~/ al"‘ (67} ~/ [e31e %) ~ al—laz"l ~ a1a2_1 ~/ a3 ~ 10y N

1

aras g ~ ayTl ~ oy e o T ~ o lasay !

ar oy ~ asay ~ asTlas ~ aslayTl ~ asas T ~ aga L

(1) a1 ~ ar log ~ asay ~ oyl

1 1

ar”l ~ ajas ~ agTlag T ~ o™

la2"‘1 ~ a1a2_1 ~ oy a1—1a3_1 ~

1

Ao ™~ a2"1 ~ al“‘]a2 ~ Ay al—

—1(120(3 ~ 1"

1

oy ar oy ~ ajag s ~ oot

1 1 1

1 ag—l ~ 1T o .

a3~ a1y ~ s lay ~ a3l ~ oy

(ii1) a1~ a3 ~ ajosaz ~ o}

10(2—1

a3

1

ol ~ayTl ~ar a3l ~ ay lasay™

g ™ az—‘l ~ a1_1a2 ~ Qg al‘laz—l ~Y alaZ—l ~ al"lag ~ ala3_1

1 1

013—1 ~ Qg

ag—la?, ~ ala;»"lag"l ~ Ollazag_l.

oty ~ ao g ~ as”

1 1

aias ~ oag lagTt ~ oy lasay ~ o™

In any case we see that G has exactly four classes of elements of order 3
with representatives ai, ai™!, a1~ lai”, aion”. Furthermore, 7asr = ay™! in all
cases. We have proven the following.

(2.6) Ng(M) = M{x,t,v) where (x,t,7) is a complement for M satisfying
the relations 12 = 12 = x3 = 1, txt = x~Y, tr = 71, (x7)3 = 1. G has exactly
four classes of elements of order 3 with representatives ai, ar™!, ai™lon”, aa1”
where " # oy, 0(1—1.

Crngan (1) = P{t), Cnxganler™) = P(t), Cygan(aroan™) = M(t),
and Cygan (ren™) = M, 7).
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3. The structure of Cy(a;"'a;7) and Cg(ea;”). Let 7 be the involution of
N (M) given in (2.6).

(3.1) Celar™oy™) M Cylaz) = M.

Proof. By (2.6), Crnean (™ r™) = M{t) and Cygan (@) = M{tr). It
follows that M is a Sylow 3-subgroup of

Colar a1™) M Cgla)

which is located in the center of its normalizer. By a theorem of Burnside,
Color ™) M Celaz) = MV, MM V =1 and V is a normal complement
of M. Thus V € Ueg(M, 3') and it follows that V = 1 by (c) of Theorem 1.

(3.2) Celaa™ar7) = M(t), Celaz) = M{tr).

Proof. Cglar™'ey™) has M{t) as a Sylow 3-normalizer so that {a;) X {(a:7) is
the centre of the Sylow 3-normalizer. By a theorem of Griin, Cg (0 %;7) has
a normal subgroup K of index 9 and M N K = [M, ] = {a2). By (3.1),
Cx(as) = {a») so that K has a self-centralizing Sylow 3-subgroup of order 3.
By [3], K is isomorphic to 45 or PSL(2, 7) or has a normal nilpotent subgroup
N such that K/N is isomorphic to 43, S; or 4s.

Since K admits «; as an automorphism, we may assume that «; acts non-
trivially on K as otherwise K = {as, t) and we have our desired result. Assum-
ing that «; acts nontrivially on K we have that a; centralizes {as, ¢) so can
not be the inner automorphism induced by as. It follows that «; is a nontrivial
outer automorphism of K and since 45 and PSL(2, 7) admit no such outer
automorphism, K is not simple. We have that K has a normal nilpotent
subgroup V.

If K/N == A4;, then N*t < K and since NN*t K, it follows that NNet = N
and a; normalizes N. Thus NV € Vg (M, 3’) and we have N = 1. This implies
that K is simple contrary to our preceding discussion.

Since {as, t) is a dihedral group of order 6, K/N =< .S;. It follows that
Ne1 = N, so that N € Ug(M,3’). Thus, in any case K = {(as, ) and
Celon™ey™) = M{t). Since a; and a; 'a;” are conjugate in Ng(M),
Colas) = M{tr).

To determine the structure of C¢(aia:17) it is necessary to prove the following
lemma.

(8.3) Let G be any finite group which satisfies the following conditions:
i) T = {a) X {B) is a Sylow 3-subgroup of order 9 with o3 = 2 = 1.
(ii) No(T) = T{t, 7) such that @' =a™ =a7, tr=171t, 2 =72 =1 and
gt =pg,p"=p"1
(iii) Ce(B) = T(t), Cole) = T{tr), ColaB) = T.
Then G = Ng(T) = Tt, 7).
Proof. Let D = T# = T — 1. From (ii), 7% is the union of 3 classes of
elements of order 3 of Ng(7T) with representatives «, 8, and «f. Since T is
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abelian, these representatives are not conjugate in G, and by (iii), Ng(7)
contains the centralizer of each of «, 8, and «B. It follows that D is a closed
set of special classes of G and that M (D), the module of generalized characters
of Ng(T) with support on D, has a basis consisting of three generalized
characters of N (T") (see [8]).

The character table of N¢(7") can be computed by computing an induced
character form each of T, T'(ir), and T'(¢).

1 B8 aof of* ¢ T tr  tra 1B

¢1 1 1 1 1 1 1 1 1 1

¢; 4 —2 =2 1 0 0 0 0 0
¢s 2 2 -1 -1 0 0 2 -1 0
o7 2 2 -1 -1 0 0 -2 0
¢s 2 —1 2 -1 2 0 0 0 -1
¢ 2 —1 2 -1 =2 0 0 0 1

= special classes

A basis for M (D) is given by
Py =5 — 1 — P2 — Pz — P4
Dy = ¢5 — s — P
Dy = ¢5 — s — .
By [8], (&%, &;*)¢ = (®,, ®;)» where ®* denotes the induced character
and (,)e (, )~ denote, respectively, the inner product in G and Ng(7).
Let 14 denote the principal character of G and let |®.*| = (&.*, ®*).
By the Frobenius Reciprocity Formula, (®*, 1) = (1, ly)y = —1.
Since |®.*| = 5, it follows that ®;* = e + exxs + ex3 + exs — 1g where

e; = +1,1 £ 17 £ 4 and x; are all distinct irreducible characters of G. Since
[|®.*| = 3, (B2*, ®1%)¢ = (P2, ?1)x = 1, it follows that

®* = 11 + Xy + —ex; or Do = ey + n1y1 + 72y

where 9; = %1 and ¥, y; are irreducible characters of G distinct from the x;,
1<i=<4.
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Let us suppose that we are in the first case so that

B* = w1 + ex2 + %3 + ey — g

@2* = €1X1 + €2X2 — €3X3.

Since (®.*, ®3*) = 1, (&%, ®3*) = 1, &;* has exactly 3 characters in common
with &;* or exactly one character in common. If ®;* = ux; + woxs + usxs,
then Ki1€1 + Mo€2 + M3€3 = 1 and M1€1 + Mo€2 — M3€3 = 1 which is impossible.
Since (®;*, ®.*) = 1, &;* can not have x4 and two other characters of ®,* in
common. Thus &;* has exactly one character of &,* in common and it must be
X1, X2 Or X3. Since x; appears in ®,* and ®,* with opposite signs, x; can not be
the common character. Since ®,*, ®,* are symmetric in x; and x;, we may
suppose X3 is the common character and we have ®;* = €1 + my1 + 7292,
n: = =1, y1, ¥, irreducible characters distinct from x;, 1 =7 = 4.

Case (i): O* = 101 + exxs + €sx3 + Xy — 1lg
b,* = 1 + €2X2 — €3X3

Py*

1

ex1 + my1 + 72y,

with x;, y;, 1¢ distinct irreducible characters of G, ¢; = +1, 7, = +1.
On the other hand, if ®* = ex; 4+ n1y1 + 722,

P* = ex1 + exs + esx3 + ey — 1g,

let us suppose that ®;* has three nonprincipal characters in common with &*.
We have that &;* = e;x; + ex; — €;x; and we are back in case (i) except for
a permutation of the subscripts of the ®* and the x;. We may assume that &,*
has exactly one irreducible character in common with ®;* and &;* = ex; +
¢121 + $o29; 25, 1 £ 7 £ 2 distinct from 14 and the x,. If &;* has y; in common,
then ®3* = exx1 + myr — ney2and ®*(1) = eft + g — naga = 0, B*(1) =
erft + mg1 + n:g2 = 0 where f; = x:(1), g; = y;(1), 1 =7 =< 2. This is im-
possible. We have proved,

Case (ii): ®* = X1 + e2xs + 33 + esxs — g
®.* = a1 + my1 + n2ye
$,* X1 + {121 + $220

I

with ¢; = &1, 9, = *1, ¢, = %1, 14, x4, 4, 3, distinct irreducible characters
of G.

It is now possible to compute a fragment of the character table of G. In
case (1) it is found that X1 = €1¢;5, X3 = —62(4)1 + ¢6), X3 = 53(—¢1 + ¢5),
Xs = —edr, Y1 = n(p1 + &5 + d6), ¥2 = 12(d1 + ¢5 + ¢5) when restricted
to the special classes of Ng (7).
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Case (i): 1 B a af
1¢ 1 1 1 1
X1 fi —2a —2a4 @
Xy fo —3e 0 0
X3 fs €3 —2¢5 —2¢;
X4 fa —€4 —e€ —e
31 g o —=2nm om
Y2 g2 ne  —2n2 72

In case (ii), X1 = €15, X2 = —ead1, X3 = — €31, X4 = —esp1, Y1 = — 16,

Yo = —nas, 21 = {1(d1 + @5 + P6), 22 = {2(d1 + ¢5 + ¢6) when restricted to

the special classes of N¢(7').

Case (ii): 1 I¢] o af
1¢ 1 1 1 1
X1 fi —2e1 —2¢ €1
X fe —€ —€ —e
X3 fs —€3 —e€3 —e€3
X4 fa —€1 —€ —é€
Y1 g1 —2pmom N1
Y2 g2 —2n2 72 72
21 h 1 =2 &
Za he o =20 o

Now we prove a lemma which will be used in computing |G|.

(3.4) Leta,b,cbeelements of the special classes of No(T'). If for somex,y € G
we have a®b? = ¢ and we assume that a, b, ¢ do not belong to the same class of
Ne(T), then a*, b¥ belong to T .

Proof. Let a®b? = ¢ and suppose that ¢, b, ¢ do not belong to the same class
of Ng(T). Let S = (a® b¥). By aresult of [3], S has a normal abelian subgroup
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NV of index 3. If N has order prime to 3, .S has a Sylow 3-subgroup of order 3
and a, b, ¢ are in the same class of Ng(7"). It follows that .S has a Sylow 3-
subgroup of order 9 containing ¢. Since Cglc) S Ng(1), T Sand NN T
has order 3. This implies that N centralizes an element of T'so that N & N (7).
It follows that S € N4(T') so that a®, b¥ € T.

Let £ be the number of ways a%b¥ = ¢, where a, b, ¢ are elements of the
special classes of Ng(7'). If x;, 1 £ j £ n are the irreducible characters of G
we have,

_ |G] (@) %, (0) x5 ()
(8.5) oo s @

Using the fragment in case (i), (3.4) and (3.5),

a=ab=0:c¢=ap

=_J§|_[ dey 4_@_&211_2@]
(1) 1 (18)2 1+f1 +f3 f4 21 g2

a=a,b=8¢=ua

861 4:63 €4 47]1 4"12
=1 — = _ - = —= —22
(2) 0 fl + fs f4 g1 £

a=8b=0aBc=8
461 263 €4

- €1 4€ €4, M,y N2
(3) 0_1+f1 f:s f4+g1+gz

81 2 es  2m 2
fi  fs fi @ g

Subtracting (4) from (3), we have

0o=daym
f1 g1 g2
Since ®3* = ex1 + Y1 + n2ye, e1f1 = — (g1 + n2g2). Substituting for fi we
have that 2 = nm2(g2/g1 + g1/g2). 1t follows that g; = g, and 5; = 7. Since
erfi1 = — (g1 + n2g2), we find that f; = 2g1, 71 = —e
Using the above new information, (4) becomes
2¢s €4

0=1-3-7,

and (2) becomes

2 | dey e

0=1~f1 B
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Subtracting (2) from (4), we find that fi = eie34f; and it follows that ¢, = e,
f] = 4f3

From 0 = 1 — 2¢;/f3 — es/fs, we now find that e;/fs = 1 — 8e1/f1. Substi-
tuting all this information into (1), we have that |G| = 9ef1. Since |G| is
a positive integer, ¢, = 1 and f; = |G|/9. From elementary character theory,
|G| = f1? and we find that |G| < 81. Since |[Nq(T')| = 36, |G| = 36 or 72.
In the latter case 72 = fi2 4+ g:2 = 80, a contradiction. Thus |G| = 36 and
(3.3) holds in case (i).

We may now assume that case (ii) holds. Using the fragment in case (ii),
(3.4) and (3.5),

a=a,b=8,¢c=af

(DHJQD+@ o _a_«_2n m_&_&]

18)* i e fs fi @ g2 b ke
a=a,b=0,c=a

2) 0 = _8a e e e 2n_ 2n, 40 40
fl fo f3 fa £1 g2 7 ho
=Byb"‘aﬁyc—ﬁ

i da e o e dn dme O D
(3)0_1+f1 f2 fa f4+g1+gz+h1+h2

_ 4 e e e omo  om 41 40
(4)0~1+fl P f4+g1+g2+h1 W

Subtracting (4) from (2), we have

0= da 4 I 02
fr 21 go
Since (1)2*(1) = Elfl + 771g1 + Nege = O, we have that n = 72, g1 = Zo. Thus
f1= —2emg1 and we havefl = 2g1, &1 = —71.

Using this information (4) becomes

_q1_&e_&_ & 4 40
O=l= =% 7T T

and (3) becomes

1261 €9 €3 €4

112 e & §14 &
0=1 + n + T
Subtracting (3) from (4), we have

461 €1 €9
0="4242

f1 n1+h2.
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Using ®;*(1) = ef1 + ¢1h1 + ok = 0 and substituting the value of f;, we
ﬁnd that §‘1 = §'2, hl = hz. SiHCC f1 = —él(g'lhl + fghg), f1 = '—261?1}11 and

it follows that € = -~§‘1,f1 = 2]11
We now have that fi = 2g;, fi = 2h1, g1 = g2, m1 = 12, b1 = ha, {1 = {3,
€1 = —{1 and ¢, = —xu;. Using this information, (2) becomes
1661 € e e
2 0=1—"—F——=— 2> —-= .
@) h TR

Equation (1) becomes,

(1) 1=l 4 =22 S5 4

It follows that &; = 1and f, = |G|/9. Since |G| = fi2, 81 = |G| so that |G| = 36
or 72. In the latter case, fi = 8, g1 = 4, g2 = 4and 72 = 82 + 42 4 42 = 96,
a contradiction. Finally, |G| = 36 so that G = N¢(7I') and (3.3) holds in
case (ii).

We are now in a position to prove the following theorem.

(3.6) G has precisely 4 classes of elements of order 3 given by the representatives
aq, Oél—l, (11_10517, ajay”. We have Cg(al) = Cg(al_l) = H and Cg(al‘lalf) = M(t),
Colonar™) = M, 7).

Proof. The first part of this theorem follows from (2.6) and (3.2). It remains
to determine the structure of Cg(ei1™). Since ajei” is not conjugate to oy
or aryl, Cglai;”) has N = M{¢, ) as a Sylow 3-normalizer. Since
Z(N) N M = {aia1"), Cglaza:”) has a normal subgroup K of index 3 and
Kﬂ ]lf = [M, <t, T>] = <0t2> X <a1‘1a1">. Let T = Kf\ M From (32),
Cxlaz) = T{rt) and Ck{ar~la1r”) = T{t). Since oai” centralizes K,
CxlorYas;”) € Cx(aiz). However, aias and as are conjugate so that
Celaras) S M{t, 7,x) = Ng(M). It follows that Ck (@1 esen”) = 1. We have
shown that K is a group satisfying the hypothesis of (3.3) so that K = I'(, 7).
If follows that C¢(ai1™) = M{t, 7).

4. Structure of Cg(f). It is now possible to determine the structure of
Cq(t). The first result of this section is a characterization of the centralizer
of a central involution in PSp4(3).

(4.1) Let G be a finite group with an involution t in its center. If G has a Sylow
3-subgroup T which is elementary abelian of order 9 and a Sylow 3-normalizer
T, T) such that

(i) T = <a> X (B)a =B,7=1;
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(ii) Cela) = TQ, Ce(B) = TQ" where Q is a quaternion group of order 8
normalized by T and not centralized by B;
(iii) Cola'B) = T'(t), ColaB) = T, 7).
Then G = 5152<T> where Sl = <6>Q, SQ = <a>Q’, [Sl, SQ] = 1,
Sl N SQ = <t> and Slr = SQ.

Proof. Let N = T'(t, 7). By a theorem of Griin, G has a normal subgroup K
ofindex3suchthat KN\ T = [T, {{,7)] = (a~'8). By (iii), Cx (&~ 18) = {a™B,¢).
Let X = K/{t). Then X has a self-centralizing Sylow 3-group of order 3 and
a Sylow 3-normalizer of order 6. Since X admits 7" as a group of automorphisms
and since a3 does not centralize Q, o induces a nontrivial automorphism of X.
Since af centralizes 7 and o8 is inverted by 7, it follows that a8 and o8
induce distinct automorphisms of X. Furthermore, the only inner automor-
phism of X that centralizes {(«~18,t)/(t) is induced by a—'8. It follows that
af induces a nontrivial outer automorphism of X of order 3. We conclude that
X is not isomorphic to PSL(2, 5) or PSL(2, 7).

By [3], K has a normal nilpotent subgroup R such that K/R is isomorphic
to S; or PSL(2, 5). For any ¢ € 7, RR° is a normal subgroup of K of order
prime to 3. From the structure of K/R, RR° = R so that R = R. Thus R is
a 7" invariant nilpotent subgroup of K. Let P be a Sylow p-subgroup of R,
p # 2,9 # 3. Then

P = Cpl@)Cr(B)Cp(aB)Crlap) =1

and we conclude that R is a 2-group such that R = Cr(a)Cr(B). Since R # (),
we may assume without loss of generality that C(a) ## (¢). Then Q N\ R 5 {¢)
and since B acts regularly on the nonidentity elements of Q/{¢), Q C R.
Since R <1 K, Q" € R and we have R = QQ".

Now let us suppose that K/R = PSL(2,5). Then K has a subgroup I
such that F/R is an elementary abelian group of order 4 which is normalized
by a~'8. If @B induces a trivial automorphism of K/R, then T leaves F/R
invariant and F = Cp(@)Cr(8)Cr(aB)Cr(a~'8). This implies that F =
QQ7™ = R which is not the case. We conclude that a8 induces a nontrivial
outer automorphism of K/R of order 3, a contradiction.

Finally, K/R =~ S; so that K = R{a™8,7) = QQ7(a™'8, 7). Since R is a
2-group, Q7 M Ng(Q) # (¢). This implies that Q7 C N(Q) since a acts regu-
larly on the nonidentity elements of Q7/(¢). It follows that R is a 2-group of
N¢(Q) of order 32 and since Ng(Q)/Ce(Q) is isomorphic to a subgroup of S,
Q07 C Cq(Q). Let S1 = (8)Q, Sz = {&)Q7. Then S1 M Sy = {¢), [S1,S:] = 1,
Sl'r = Sz and G = SISz<T>.

We can now determine the structure of Cg(f). Let ¢, 7, Q have the same
meaning as in (1.4), (1.5) and (2.6).

(4.2)  Cq(t) = S1Se(r), St = {1™)Q, S2 = (01)Q7, [S1,52] = 1, 51N S = (¢)
and Sl‘r = Sz.
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Proof. From the structure of H, Cy(t) = {a1) X {a17). Let T = {a1) X {a17).
Then Cg(T) = Cy(T) = M{¢) and it follows that Nu(T') C Ng(M). From
the structure of Ng(M), T'(t, 7) is a Sylow 3-normalizer of C¢(?). From the
structure of H, Cg(t) N Cela1) = TQ and Ce(t) N Cglen™) = TQ™. By
(3.6), Colarar™) = M{t,7)and Cglar~tan™) = M{t)so that C(t) N Cg(aion™) =
T<t, 7)yand Ce(t) M Clar ™) = Tt). Applying (4.1), the result follows.

(4.3) LetS = QQ7(r) be a Sylow 2-group of C¢(t). Then S is a Sylow 2-group
of G.

Proof. Let S; be a Sylow 2-group of G containing S. Since Z(S) = (),
N, (S) C C(¢). This implies that Ng,(S) = S and we have S; = S.

From (4.2) we see that condition (b) of [6] has been established.

By the structure of Cg(¢), C¢(t) has exactly 4 classes of involutions with
representatives £, 7, ¢r, and ¢¢” where ¢ € Q is some element of order 4. The
involution ¢ is conjugate in G to one of 7, {r or ¢gq” since otherwise
G = 02 (G)Cs(t) by [4] and G has a normal subgroup of index 3, a contradic-
tion to (a) of Theorem 1. The proof of Theorem 1 now follows from [6].

It is perhaps interesting to notice that Sections 2, 3, and 4 of this paper
together with the first three sections of [6] determine the local 2 and 3 structure
of G. Letting B = Ng(P)and N = {(r, 7q), N/{t) is a dihedral group of order 8
and one may show that G = BNB = PSp,(3) directly without the use of
the last sections of [6] and particularly without the aid of the characterization
of PSp,(3) in [9].
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