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Abstract

A basisB = {ui}i∈I of a commutative or anticommutative algebra C, over an arbitrary base field F, is called
multiplicative if for any i, j ∈ I we have that uiu j ∈ Fuk for some k ∈ I. We show that if a commutative or
anticommutative algebra C admits a multiplicative basis then it decomposes as the direct sum C =

⊕
j i j

of well-described ideals each one of which admits a multiplicative basis. Also the minimality of C is
characterised in terms of the multiplicative basis and it is shown that, under a mild condition, the above
direct sum is indexed by the family of its minimal ideals admitting a multiplicative basis.
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1. Introduction and previous definitions

Throughout this paper C will denote a commutative or anticommutative algebra (in
which further identities on the product are not supposed) of arbitrary dimension and
over an arbitrary base field F, whose product will be denoted by juxtaposition.

Definition 1.1. A basis B = {ui}i∈I of C is said to be multiplicative if for any i, j ∈ I we
have either uiu j = 0 or 0 , uiu j ∈ Fuk for some (unique) k ∈ I.

We can easily construct many examples of (anti)commutative algebras admitting
multiplicative bases. Indeed, it is enough to fix an arbitrary (nonempty) set of indexes
I, a symmetric mapping α : I × I → I ∪̇ {0} and an ε-symmetric map β : I × I → F
in the sense α(i, j) = α( j, i) for any i, j ∈ I and β(k, l) = εβ(l, k) for any (k, l) ∈ I × I
such that α(i, j) , 0, and ε ∈ {±1}. Then the F-linear space C with basis {ui}i∈I and
product among the elements of the basis given by uiu j = β(i, j)uα(i, j), where u0 := 0,
becomes a commutative or anticommutative algebra admitting B as a multiplicative
basis according as ε = 1 or ε = −1. For instance:
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Example 1.2. Let C be the algebra where B = {un : n ∈ Z} is a basis of C and the
nonzero products with respect to the elements in the basis B are unum = nmun+m. Then
C becomes a commutative algebra admitting B as a multiplicative basis.

Classical examples of commutative algebras with a multiplicative basis are the
commutative group-algebras [4], the more general category of commutative twisted
group-algebras which generalises a number of types of Banach algebras (see [14, 18]
and the seminal work [3]), and generalised L1 algebras and commutative group-
algebras (see [18]). We also observe that since it is usual in the literature to describe
an algebra by exhibiting a multiplicative table among the elements of a fixed basis, we
can also find many examples of (anti)commutative algebras admitting multiplicative
bases in the categories of Lie algebras, Malcev algebras, hom-Lie algebras, Jordan
algebras and hom-Jordan algebras. For instance, semisimple finite-dimensional Lie
algebras, semisimple separable L∗-algebras [17], semisimple locally finite split Lie
algebras [19], Heisenberg algebras [15], twisted Heisenberg algebras [1], the split
Lie algebras considered in [6, Section 3] and the Lie algebras shown in [10, 11] as
examples of nonsemigroup gradings are classes of anticommutative algebras admitting
a multiplicative basis. By looking at the multiplication table of the non-Lie Malcev
algebra C0 (seven-dimensional algebra over its centroid) [16, Section 6], we have
another example of an anticommutative algebra with a multiplicative basis. In [13]
we can find examples of hom-Jordan algebras admitting multiplicative bases and so of
commutative algebras with multiplicative bases.

Remark 1.3. The definition of multiplicative basis given in Definition 1.1 is a little
more general than the usual one in the literature [2, 4, 5, 12]. In fact, in these
references, a basis B = {ui}i∈I is called multiplicative if for any i, j ∈ I we have either
uiu j = 0 or 0 , uiu j = uk for some k ∈ I.

The present paper is devoted to the study of commutative or anticommutative
algebras C of arbitrary dimension over an arbitrary base field F admitting a
multiplicative basis, focusing on their structure. The paper is organised as follows.
In Section 2, inspired by the connection techniques developed for split algebras in
[7–9], we introduce connection techniques on the set of indexes I of the multiplicative
basis so as to get a powerful tool for the study of this class of algebras. By making
use of these techniques, we show that any commutative or anticommutative algebra
C admitting a multiplicative basis is of the form C =

⊕
k ik, where each ik is a well-

described ideal of C admitting also a multiplicative basis. In Section 3 we characterise
minimality of C in terms of the multiplicative basis and show that, in case the basis
is ?-multiplicative, the above decomposition of C is by means of the family of its
minimal ideals.

2. Connections in the support. Decompositions

In what follows B = {ui}i∈I denotes the multiplicative basis of C, and P(I) the power
set of I.
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We begin this section by developing connection techniques among the elements in
the set of indexes I as the main tool in our study.

For each i ∈ I, a new variable i < I is introduced and we denote by

I := {i : i ∈ I}

the set consisting of all these new symbols.
Next, we consider the following operation which recovers, in some sense, certain

multiplicative relations among the elements of B:

? : I × (I ∪̇ I)→P(I).

This is given by:

• for i, j ∈ I,

i ? j =
{
∅ if uiu j = 0,
{k} if 0 , uiu j ∈ Fuk;

• for i ∈ I and j ∈ I,
i ? j = {k ∈ I : 0 , uku j ∈ Fui}.

Finally, we also define the mapping

φ : P(I) × (I ∪̇ I)→P(I)

as

• φ(∅, I ∪̇ I) = ∅;
• for any J ∈ P(I) and a ∈ I ∪̇ I,

φ(J, a) =
⋃
x∈J

(x ? a).

From now on, given any i ∈ I, we will denote

(i) := i.

Observe that for any i, j ∈ I and a ∈ I ∪̇ I, we have that j ∈ i ? a if and only if
i ∈ j ? a. This fact implies that for any J ∈ P(I) and a ∈ I ∪̇ I,

i ∈ φ(J, a) if and only if φ({i}, a) ∩ J , ∅. (2.1)

Definition 2.1. Let i and j be distinct elements in the set of indexes I. We say that i is
connected to j if there exists a subset

{i1, i2, . . . , in−1, in} ⊂ I ∪̇ I

with n ≥ 2 such that the following conditions hold:

(1) i1 = i;
(2) φ({i1}, i2) , ∅,

φ(φ({i1}, i2), i3) , ∅,
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φ(φ(φ({i1}, i2), i3), i4) , ∅,
· · ·

φ(φ(· · · (φ({i1}, i2), · · · ), in−2), in−1) , ∅;
(3) j ∈ φ(φ(· · · (φ({i1}, i2), · · · ), in−1), in).

The subset {i1, i2, . . . , in−1, in} is called a connection from i to j. We consider i to be
connected to itself.

Proposition 2.2. The relation ∼ on I, defined by i ∼ j if and only if i is connected to j,
is an equivalence relation.

Proof. By definition i ∼ i, that is, the relation ∼ is reflexive.
Let us show the symmetric character of ∼. If i ∼ j with i , j then there exist an

n ≥ 2 and a connection
{i1, i2, . . . , in−1, in} ⊂ I ∪̇ I

from i to j satisfying Definition 2.1. Let us verify that the set

{ j, in, in−1, . . . , i3, i2} ⊂ I ∪̇ I

gives us a connection from j to i. Indeed, (2.1) together with the fact that

j ∈ φ(φ(· · · (φ({i1}, i2), · · · ), in−1), in)

gives us
φ({ j}, in) ∩ φ(φ(· · · (φ({i1}, i2), · · · ), in−2), in−1) , ∅

and so φ({ j}, in) , ∅. By taking

k1 ∈ φ({ j}, in) ∩ φ(φ(· · · (φ({i1}, i2), · · · ), in−2), in−1),

Equation (2.1) and the fact that k1 ∈ φ(φ(· · · (φ({i1}, i2), · · · ), in−2), in−1) imply that

φ(φ({ j}, in), in−1) ∩ φ(φ(· · · (φ({i1}, i2), · · · ), in−3), in−2) , ∅

and consequently φ(φ({ j}, in), in−1) , ∅.
By iterating this process we get

φ(φ(· · · (φ({ j}, in), · · · ), in−i+1), in−i) ∩ φ(φ(· · · (φ({i1}, i2), · · · ), in−i−2), in−i−1) , ∅

for 0 ≤ i ≤ n − 3. Observe that for i = n − 3 we have

φ(φ(· · · (φ({ j}, in), · · · ), i4), i3) ∩ φ({i1}, i2) , ∅.

This equation, together with the fact that i1 = i and (2.1), allows us to assert that

i ∈ φ(φ(· · · (φ({ j}, in), · · · ), i3), i2)

and conclude that ∼ is symmetric.
Finally, let us verify the transitive character of ∼. Suppose that i ∼ j and j ∼ k. If

i = j or j = k it is clear that i ∼ k. Consider then i , j and j , k and write {i1, . . . , in}
for a connection from i to j and { j1, . . . , jm} for a connection from j to k. Then we
clearly have that {i1, . . . , in, j2, . . . , jm} is a connection from j to k. We have shown that
the connection relation is an equivalence relation. �
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By the above proposition we can introduce the quotient set

I/∼= {[i] : i ∈ I},

where [i] denotes the set of elements in I which are connected to i.
For any [i] ∈ I/∼ we define the linear subspace

C[i] :=
⊕
j∈[i]

Fu j.

Lemma 2.3. If C[i]C[ j] , 0 for some [i], [ j] ∈ I/∼, then [i] = [ j] and C[i]C[ j] ⊂ C[i].

Proof. For any k ∈ [i] and h ∈ [ j] such that ukuh , 0, we have 0 , ukuh ∈ Ful for
some l ∈ I. Hence, l ∈ φ({k}, h) and so the set {k, h} is a connection from k to l
which, together with the transitivity of the connection relation, gives us [i] = [l].
Consequently C[i]C[ j] ⊂ C[i]. Now observe that by (anti)commutativity 0 , uhuk ∈ Ful

and then h ∈ l ? k. Hence {l, k} is a connection from l to h and we conclude that
[i] = [ j]. �

Definition 2.4. Let C be an (anti)commutative algebra with a multiplicative basis B.
It is said that a subalgebra a of C admits a multiplicative basis Ba inherited from B if
Ba is a multiplicative basis of a satisfying Ba ⊂ B.

Theorem 2.5. Let C be an (anti)commutative algebra with a multiplicative basis. Then

C =
⊕

[i]∈I/∼

C[i],

where each C[i] is an ideal of C admitting a multiplicative basis inherited from that of
C and satisfying

C[i]C[ j] = 0

whenever [i] , [ j].

Proof. Since we can write
C =

⊕
i∈I

Fui,

we have
C =

⊕
[i]∈I/∼

C[i].

Hence, Lemma 2.3 gives us that for any [i] ∈ I/∼,

C[i]C = C[i]

(
C[i] ⊕

( ⊕
[ j]∈I/∼,[ j],[i]

C[ j]

))
⊂ C[i].

That is, any C[i] is actually an ideal of C satisfying C[i]C[ j] = 0 whenever [ j] , [i] by
Lemma 2.3. �

Corollary 2.6. If C is simple, then there exists a connection between any two elements
of I.

Proof. The simplicity of C means that C[i] = C for some [i] ∈ I/∼. Hence [i] = I and
so any pair of elements in I are connected. �
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3. The minimal components

In this section, our target is to characterise the minimality of the ideals which give
rise to the decomposition of C in Theorem 2.5 in terms of connectivity properties in
the set of indexes I. We begin by introducing the concept of minimality.

Definition 3.1. An anti(commutative) algebra C admitting a multiplicative basis B is
called minimal if its only nonzero ideal admitting a multiplicative basis inherited from
B is C.

Let us introduce the notion of ?-multiplicativity in the framework of
anti(commutative) algebras with multiplicative bases, in a similar way to the concept
of closed multiplicativity for Poisson algebras, split Leibniz algebras, or split colour
algebras among other classes of algebras (see [7–9] for these notions and examples).

Definition 3.2. We say that an (anti)commutative algebra C admits a ?-multiplicative
basis B = {ui}i∈I if it is multiplicative and given i, j ∈ I such that j ∈ i ? a for some
a ∈ I ∪̇ I then u j ∈ uiC.

Examples of (anti)commutative algebras admitting ?-multiplicative bases are the
semisimple finite-dimensional Lie algebras, the semisimple separable L∗-algebras,
the semisimple locally finite split Lie algebras, the split Lie algebras considered in
[6, Section 3], the non-Lie Malcev algebra C0 (see Section 1) and the algebra C in
Example 1.2.

Theorem 3.3. Let C be an (anti)commutative algebra admitting a ?-multiplicative
basis B = {ui}i∈I . Then C is minimal if and only if the set of indexes I has all of its
elements connected.

Proof. The first implication is similar to Corollary 2.6. To prove the converse, consider
a nonzero ideal i of C admitting a basis inherited by B. Then we can write i = ⊕ j∈IiFu j

for a certain ∅ , Ii ⊂ I. Fix some i0 ∈ Ii whence

0 , ui0 ∈ i. (3.1)

Given now any k ∈ I, since I has all of its elements connected, there exists a
connection

{i0, i2, . . . , in−1, in} ⊂ I ∪̇ I (3.2)

from i0 to k. Hence
φ({i0}, i2) , ∅,

and so for any b1 ∈ φ({i0}, i2) we have b1 ∈ i0 ? i2. Taking into account (3.1) and the
?-multiplicativity of B,

ub1 ∈ ui0C ⊂ i.

Hence we can assert that ⊕
j∈φ({i0},i2)

Fu j ⊂ i. (3.3)
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Since
φ(φ({i0}, i2), i3) , ∅,

we can argue as above, taking into account (3.3), that⊕
j∈φ(φ({i0},i2),i3)

Fu j ⊂ i.

By iterating this process with the connection (3.2), we obtain⊕
j∈φ(φ(···(φ(i0,i2),··· ),in−1),in)

Fu j ⊂ i

and so, since k ∈ φ(φ(· · · (φ(i0, i2), · · · ), in−1), in), we get uk ∈ i. Hence i = C and C is
minimal. �

Theorem 3.4. Let C be an (anti)commutative algebra admitting a ?-multiplicative
basis B = {ui}i∈I . Then

C =
⊕

k

ik

is the direct sum of the family of its minimal ideals, each summand of which admits a
∗-multiplicative basis inherited from B.

Proof. By Corollary 2.6 we have that C =
⊕

[i]∈I/∼ C[i] is the direct sum of the ideals
C[i].

We wish to apply Theorem 3.3 to any summand C[i], so we have to verify that C[i]

admits a ?-multiplicative basis and that the basis {ui : i ∈ [i]} of C[i] is such that all of
the elements in the set of indexes [i] are [i]-connected (connected through connections
contained in [i] ∪̇ [i]).

Clearly, C[i] admits a ?-multiplicative basis as a consequence of having a basis
inherited from B and the fact that C[i]C[ j] = 0 when [i] , [ j]. Taking into account
the anti(commutativity) of C, it is easy to verify that [i] has all of its elements
[i]-connected. So we can apply Theorem 3.3 to any C[i] to conclude that C[i] is
minimal. It is clear that the decomposition C =

⊕
[i]∈I/∼ C[i] satisfies the assertions of

the theorem. �
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