
Can. J. Math., Vol. XL, No. 1, 1988, pp. 142-196 

THE MOD 2 ^-HOMOLOGY OF &S3X 

J. G. MAYORQUIN 

1. Introduction. In order to compute the group K*(iï3S3X; Z/2) when X 
is a finite, torsion free CW-complex we apply the techniques developed by 
Snaith in [38], [39], [40], [41] which were used in [42] to determine the 
Atiyah-Hirzebruch spectral sequence ( [11], [1, Part III] ) 

H*(tt2S3X- Z/2) => K*(22S3X; Z/2) 

for X as above. Roughly speaking the method consists in defining certain 
classes in AT*(Q £ X\ Z/2) via the 77-equivariant mod 2 i^-homology of 
S2 X F2, 

Kl(S2 X Y2\ Z/2), 

( [35] ), 77 the cyclic group of order 2 (acting antipodally on S , by 
permuting factors in Y , and diagonally on S X Y ), Y a finite sub-
complex of SI S X, and then showing that the classes so produced map 
under the edge homomorphism to cycles (in the Z^-term of the 
Atiyah-Hirzebruch spectral sequence for 

KJS2 x {Q3s3xf\ z/2)] 

which determine certain homology classes of 7/*(i2 S X; Z/2), thus 
exhibiting these as infinite cycles of the spectral sequence 

H*(Q3S3X; Z/2) =̂> K*(tt3S3X; Z/2). 

Use of the infinite cycles so produced and of homotopy properties of 
the iterated loop spaces [37] will reduce the determination of the 
Atiyah-Hirzebruch spectral sequence for K*(Çl S X;.Z/2) to homological 
algebra. 

The main technicality required by the procedure outlined above is the 
Rothenberg-Steenrod spectral sequence for AT-theory introduced by 
Hodgkin, [25], and exploited by Snaith in the papers above to make 
computations in AT-theory. Our calculations heavily rely on the work of 
this last author. 

We also compute the algebra structure of K*{Çl2S2n + x\ Z/2) making 
use of the rich knowledge in existence on the stable splitting of double 
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loops of spheres [15], [17], [20], and by applying a useful result of 
F. R. Cohen [19, P. Ill] concerning the torsion in the homology of the 
double loop of a space, Q, S X, which allows us to conveniently relate the 
mod 2 exact couples [32] of ordinary homology and ^-homology through 
the Atiyah-Hirzebruch spectral sequence. K*(Q S n ; Z/2), as a vector 
space, was known by the result of Snaith, [42], on K*(iï SX; Z/2) 
mentioned above. 

Underlying the computation of the Atiyah-Hirzebruch spectral se­
quences above is the description of H*(ÇlnSnX; Z/2) in terms of homology 
operations, [14], to which we dedicate the first section. 

The paper is arranged as follows. In Section 2 we briefly record the 
definition of the mod 2 Dyer-Lashof operations in the manner of Browder 
[14], which will be suitable for our purposes in later sections, and we then 
list the properties of the operations for finite loop spaces following here 
F. R. Cohen [19, Part III] from whom we also take a result on the torsion 
in //*(£2 S Y) useful for our computations in Section 6. In Section 3 we 
collect the necessary notions on KZ/2 and Â^Z/2-theory we will require 
in coming sections. Section 4 contains the technical features of the 
Rothenberg-Steenrod spectral sequence necessary for our computations 
in Section 5; these results are suitable analogs of some propositions of 
[41]. Section 5 consists of the proofs of the main theorems determining the 
Atiyah-Hirzebruch spectral sequences for 

K(ttvS3X; Z/2), v = 1, 2. 

Finally in Section 6 we determine the algebra structure of ÀT*(£2 S " + 1; 
Z/2), after a quick review on the stable splitting of &nSnX due to Snaith 
[37] and further improved in [21], [17]. 

The main result of Section 5, namely the determination of the 
Atiyah-Hirzebruch spectral sequence for Or SX, X a connected CW-
complex, has been proved by J. McLure, (private communication), using 
more sophisticated techniques than ours. 

2. Dyer-Lashof operations in mod 2 homology. In this section we 
introduce the Dyer-Lashof operations mod 2 in the manner of Browder 
[14]. Although May's theory of operads [30] is essential for the study of the 
properties of the homology operations [19, Parts I and III] the simplicity 
of Browder's exposition in [14] will suffice for our analysis of the 
Atiyah-Hirzebruch spectral sequences 

H*(ttvS3X; Z/2) => K*(ttvS3X; Z/2) v = 2, 3 

via the groups 

H1SV~1 X (2VS3X)2; Z/2] and KJSV~] X (ttvS3X)2; Z/2) 
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Sv~ the sphere, v as above, (see Section 5). Moreover, we present in 
Theorems 2.3 to 2.5 only the properties of the mod 2 Dyer-Lashof 
operations for finite loop spaces, taken from [19, Part III]. 

2.1. Definitions. The Hn structure of a space Xis given by an equivariant 
map 

4>:Sf1 X (X X X) -> X 

where TT acts by the antipodal action on Sn and by permuting factors on 
XXX, while X is a trivial 7r-space, [14]. 

Following Browder [14], a map 

<i>*:H(S") 0 H*(X, A) 0 H*(X,A) -> #*(*, ^ ) 

is defined by composing the map induced by 

V:C(Sn) 0 C(X) 0 C(X) -> C(Sn X X X X), 

(the natural map of normalized singular chains) and the map induced by 
<j>. A is any coefficient system. The Browder operation Xn is then defined 
by 

(2.2) X„(JC, .y) = «MY ® * ® >-), X, J e H*{X, A ) 

where y is a generator of H*(S"). 
The composite 

COS") ® C(X) ® C(X) -» C(5" X I X X ) t ! C(A-) 

factors through the collapsed module, so as to give 

C(S") ® C(X) ® C(X) HL C(S") 0 (C(X) ® C(A-) ) *H C(X) 

and then the method of Steenrod, used to define cohomology operations, 
can be paralleled in this situation [14]. This consists in constructing 
elementary complexes M(u, q) such that every chain map 

f:M(u, q) -> C(X) 

defines a homology class û e H' (X, Z/2) and conversely, for every 
û <E Hq(X, Z/2) a representative chain w of û can be chosen which gives 
a map 

/:M(i/, <?) -> C(*). 

Thus a map 

/ # :C(S ' 7 ) 0 M 0 M -> C(S") 0 C(X) 0 C(X) 

is defined, which is equivariant and so induces 
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f:C(S") ® (M 0 M) -» C(S") ® (C(A-) 0 C(A") ); 
77 IT 

composing / with <f># one obtains 

<j>#f:C(S") ®(M®M)-+ C(X) 
IT 

and this induces 

<Z>:H^C(Sn) 0 (M ® M)) -> / /*(*) . 

By the methods of Steenrod it can be shown [14] that any two chain 
representations of the cycle u give the same homomorphism O. 

The group 

HJC(S")<8 (M®M)J 

is the homology of RPf\ the «-dimensional projective space, with coeffi­
cients H*(M ® M). The rath operation of Araki and Kudo is defined by 

(2.3) Qm(u) = {<t>J(eJ ®u®u} = $(£„) 

where £w is the generator of Hm(RPn, A), with 

A = u®u® Z/2, 

u as above. 
In order to consider the homology operations as abstract elements of an 

algebraic structure the following change of notation is useful. 

2.2. Definition. ( [28], Definition 2.3). Let X be an 7/,7-space, 
x G Hq(X9 Z/2), and define 

Qs:Hq(X, Z/2) -> Hq+s(X\ Z/2), s ^ q + n 

by: 

£>%x) = 0 if s < q and g*(jc) = 65_^(x) if s ^ q. 

We record the mod 2 cases of Theorems 1.1 to 1.4 of [19, Part III]. 
Through Theorems 2.3-2.6 the coefficients Z/2 are understood. 

2.3. THEOREM. ( [19], P. Ill, Theorem 1.1). There exist homomorphisms 

Qs:Hq(X) -> Hq+s(X) s^0,s ~ q < n, 

natural with respect to maps of Hn-spaces, such that 
a) Qsx = 0ifs< deg(jc), x e H*(X). 
b) Qsx = x2ifs = deg(x), x e / /*(*) . 
c) g > = 0 if s > 0, 4> e #0(X) f/ie identity element. 
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d) The following Car tan formulas hold: 

i) Qs{x®y) = 2 Q\x)®QJ(y), x ®y e H*{X X 7), 

ii) Ô5(*y) = 2 e''(Jc)Ô''(^), x,yeH.(X), 
i+j=s 

iii) ^ej(x) = 2 e V ) ® e7 (•*"), 

xP(x) = 2 * ' 0 x", X G #*(*) . 

e) 77/£ Adem relations hold: 

QrQs = 2 ('" j / - " ̂ e'+'-'e''. 

f) 77*e Nishida relations hold: If 

Sqr*:H*(X) -> H*{X) 

is dual to Sqr*, then 

sq
r*Qs = 2(/r2 /)e ,"r+,'^i. 

The next theorem states the properties of the Browder operation which 
are relevant to our purposes. 

2.4. THEOREM. (Ibid, Theorem 1.2). There exist homomorphisms 

X„:Hq(X) ® Hr{X) -> Hq+r+n(X), 

natural with respect to maps of Hn spaces which satisfy: 
a) If X is an Hn + X space, A„(x, y) = 0, /or x, _y e H*(X). 
b) AQCX, 7) = jcy + yx9 for x, y e H*(X). 
c) X„(JC, j>) = X(j>, x), x, >> G H*(X), and \n(x, x) = 0. 
d) X„(<J>, x) = 0 = X„(x, <», <J> <E 7/0(X) f/ie identity element of H*(X) and 

x e / /*(*) . 

e) S^A„(x,j) = 2 A J ^ x , V*J]-
y 4 7 = 5 

0 X w [ ^ e V ] = 0 = Xn[e5x,^], x ^ e #*(*) . 

We next list the properties of the top operation Qn. 

2.5. THEOREM. (Ibid, Theorem 1.3). There is a function 

Qn:Hq(X) -* H2q+n(X) 
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defined for all q ^ 0, natural with respect to maps of Hn spaces, which 
satisfies the following formulas, where 

ad„(x)(j) = \n(y, x), ad'„(x)(j) = a d ^ X a d ^ ' W O O )• 

a) / / X is an Hn + X space, then 

Qn(*) = G"+'(*). 
b) Denoting Qn(x) by Qn+q(x), the formulas a)-c) and d), i, iii of 2.3 

hold, as well as 

Qn(xy)= 2 Q'(x)QJ(y) + xX„(x,y)y 
i+j = n + \xy\ 

where 

\xy\ = degx + deg(j>). 

c) The Nishida relations are now 

Sqr*Q„(x) = %\ ) _ 1 . jQm-r+'SaUx) 

+ 2-adn(Sqï(x))(Sql(x)) 
<i 

where m = n + \x\, and the second sum runs over all sequences (i\, i2) such 
that ;'| + i2 = r, i\ < i2. 

d) HQn(x) = (\x\+n- l ) ô W + " - ' ( x ) + \„(px, x). 

e) Xn(x, Qn{y) ) = a d ^ X * ) , x, y e Hm(X). 

0 Qn(x +y) = Q„(x) + Qn(y) + Xn(x,y). 

The following formulas relate the homology operations to the homology 
suspension 

2.6. THEOREM. (Ibid, Theorem 1.4). If x e //*(Œ'7 + 1X; Z/2) 

a) a # 6 V ) = Ô*(°*x), x e / /*(*) , 

b) **£„(*) = Ô*-i(a*x), * e #*(*) , 

The homology with mod 2 coefficients of £lnSnX was computed by 
Browder [14] using the homology operations of Definition 2.1 which 
by a suitable change of notation (cf. Definition 2.2) are those listed in 
Theorems 2.3 to 2.5. 
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2.7. THEOREM. ( [14], Theorem 3). 

H*(QrsnX; Z/2) - P(QH*(X\ Z/2) ), n = 2, 

where P{M) is the graded polynomial ring over Z/2 generated by M, 
Q(H*(X\ Z/2) ) is the submodule of H*(QnSnX; Z/2) generated by all 
elements Q\] . . . Ql£z\(\n(x, y))y Xn(x, y) as in (2.2), Qm as in (2.3), and 
(/"!,. . . ,/„_]) is any sequence of nonnegative integers, with Ql£ denoting 
the iteration of Qm, (Qm = identity). 

2.8. The mod 2 Bockstein spectral sequence for homology. The exact 
sequence 

2 
H*(X, Z) H*(X, Z) 

P 3 
-^ H*(X, Z/2) -> H*(X, Z) 

2- -
s> 

derived from the short exact sequence 

2 ' 
0 -^ Z -> Z/2Z 0 

gives rise to an exact couple [32], which is a triangle of graded groups and 
graded maps^ 

2- -
H*(X\ Z) -+»H*(X\ Z) 

(2.4) 

/ / * ( * ; Z/2) 

where deg(2 • — ) = deg p = 0 and deg 8 = — 1, with the triangle exact at 
each corner. 

Let E\ denote H*(X\ Z/2) and F denote H*(X; Z). The mod 2 Bockstein 
homomorphism ft = pd satisfies ft = 0, and allows the definition 

2 = 0, and allows the definition 

r2 _ ker_^ 

* " i m / T 

which fits in an exact sequence 

2- -

(2.5) 

2V 

= p-r 

called the derived couple of the exact couple [1, P. III]. The maps of (2.5) 
are induced by those in (2.4) in the obvious manner. Setting 
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B, p22~'92 

one can define 

im B2 

Iteration of the procedure above gives the rth derived couple 

TV —= • 2rV 

= P r - l * 

with 

Bt. L dr.rL% Ei*' 

The groups E* and the maps Br constitute the terms and differentials of 
a spectral sequence {£*, Br), ([7], Section 11), called the Bockstein 
spectral sequence. Denoting Zr the group ker(i?r), and by Br the group 
im(i?r) we state the following property of the Bockstein spectral 
sequence. 

2.9. PROPOSITION. ( [Ibid, Section 11] ). 

3 ( Z r ( 4 ) ) = (TV) n (ker 2 • - ) , r ^ 1 

p {(Br(E1)) = k e r ( 2 r : F ^ V) + 2V, r 1. 

The Bockstein spectral sequence provides information on the 2-primary 
part of the group H*(X; Z) as follows. 

2.10. PROPOSITION. ( [Ibid, Section 11] ). 

HiiX; Z) 
E;(X9 Z/2) Z/2 

Ltors Ht(X\ Z)J 

where tors H*(X; Z) denotes the torsion subgroup. 

Analysis of the effect of higher Bocksteins on the operations Qm and \n, 
(2.1, 2.2) allowed F. R. Cohen to prove the following result. 

2.11. PROPOSITION. ( [19], P. Ill, Corollary 3.13). If X has no 2-torsion, 
then the 2-torsion ofH*(tt2S2X; Z/2) is all of order 2. 

This proposition will be useful for us in Section 5. 

3. AT-theories. Our method will involve the computation of TT-
equivariant mod 2 /^-homology of certain spaces, understanding this 
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functor as the dual of its cohomology counterpart K%Z/2 defined in 
[41, Section 1], (see also [35] ). A thorough analysis of (non-equivariant) 
KZ/2 cohomology is presented in the papers by Araki and Toda [7]. 

We give a brief account of the facts from [7], and from elsewhere, which 
we need. 

3.1. Definitions. Let M be the space Sl U2 CS\ and let 

fZ X BU„ n even 
Un = { 

\U„ node 

be the spaces of the unitary spectrum. Then the space consisting of the 
based maps from M into the spaces Un constitute the spaces of a 
Z/2-graded 0, spectrum [46]. The maps of this spectrum are induced by the 
Bott maps 

{SU„%U„ + i}. 

The spectrum above, {Un , an}, represents the generalized cohomology 
theory, [46], denoted K*(-\ Z/2), which is Z/2 graded by virtue of Bott 
periodicity. 

Thus 

K°(X, Z/2) = [X, U%], Kx = [X, U?n + X). 

The associated homology theory, also Z/2-graded, denoted AT*(_; Z/2) is 
given by 

K0(X; Z/2) = lim [ST, X A U™] 

KX(X; Z/2) - lim [S* + 1, X A U™\ 

From the cofibration 

, i 77 9 

S1 -> M -> S2, 
/ the inclusion and 77 shrinking S{ to a point, and using Bott periodicity 
one gets the exact sequence 

[Sn, X A Un_x] = [Sn, X A uf] -> [ST, X A U™\ 

-* [sr, x A uf] = [sr, x A un_x\ 
which, taking direct limits, yields the exact sequence 

K*(X) -^ K^X- Z/2) -> ^ _ , ( I ) . 

p is called the reduction mod 2 and £ the Bockstein homomorphism. 
The mod 2 Bockstein homomorphism ft is defined as p£. The 
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exact sequence above extends to infinity on both sides to give an exact 
sequence 

. . . — ^ K*(X) -^ K*{XX Z/2) -> £*_ , (* ; Z/2) 

2- - ~ p 

( [7, Section 2] ) and there holds the universal coefficient exact sequence 

p _ 3 
0 -* (#*(*) 0 Z/2) -^ #*(*; Z/2) -> Tox(K*_x(X\ Z/2) -> 0 

where p and 8 are induced by p and 9, respectively, [Ibid]. More­
over K*(X\ Z/2) is a Z/2-vector space, a fact proved in [7, Section 2] for 
£*(_; Z/2) and which holds for iC*(_; Z/2) by the duality 

£*(_; Z/2) - Hom(£*(_; Z/2), Z/2), [3]. 

This duality defines a non-singular pairing 

Ka(X\ Z/2) 0 Ka(X; Z/2) -> Z/2, 

[41, Section 1], which will be useful for our purposes. 

3.2. Multiplication in K-theory. The external product of complex vector 
bundles defines a multiplication in periodic, reduced AT-theory 

v:Kl(X) 0 KJ\Y) -> K^J(X A 7), [11]. 

The definition of K*(X; Z/2) given in 3.1 is, by adjunction, clearly 
equivalent to set K\X\ Z/2) = Kl+2(X A M), by the suspension isomor­
phism o of AT-theory. The suspension isomorphism o2 of K*Z/2 theory can 
be expressed as the composite 

o2:K
J + 2(X A M) -> KJ + 3(X A M A S])lAr* -> ^• /+3(A' A S ' A M ) 

where 

T:X A S} -> S1 A X 

is the switching map, [7, Section 2]. 
The product v induces the following maps vR and vL, [Ibid, Section 3] 

Kl(X\ Z/2) ® K\Y) VJ* ^Kl+J(X A Y; Z/2) 

|| (1A7)* || 
^ / + 2 ( ^ A M ) ® ^ ( y) -> ^ ' + y + 2(X A M AY) +»Ki+j + 2(X A Y A M) 
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K\X) ® KJ(Y\ Z/2) 4 Kl+J(X A Y; Z/2) 
I l M 

K\X) ® KJ+\Y A M) -^ £ / + / + 2 ( X A Y A M). 

The maps vL and v̂  enjoy the following properties: 

(3.1) vR(p®\) = pv = vL(\®p) 

ÔV (̂JC ® j;) - v(8x ® y ) 8vL(x ®y) = v(x ® Sy) 

J8v*(x®j0 = v ^ x ® ; ; ) £v L (x®^) = vL(x®Py\ 

There is a multiplication 

v2:K\X; Z/2) ® £7(Y; Z/2) -> £ / + ; ( X A Y; Z/2) 

defined in [7] and which can be quickly described as follows: For 
x G À ^ A M) and j G KJ(Y A M) the external product of vector 
bundles gives 

x • y G £ / + 7 (X A 7 A M A M). 

In [7, Section 4] is defined a complex 

W = S2UgC(SM) 

and a map 

a:N -> M A M 

with the property that for all X the cofibration sequence 

0 -> £*(X A S2M) -> £*(X A N)-> K*(X A S2) -> 0 

is naturally split exact. 

v2(x ® y) e £7 + y(X A Y; Z/2) = £ / + 7 (X A y A S2M) 

is then defined as the component of a*(x • y) in this group. 
The multiplication v2 satisfies the following formulas [Ibid] 

(3.2) v* = v2(l ®p) vL = v2(p® 1) 

pv2(x ®y) = v2(/3x ®y) + v2(x ® fry) 

v2(v2(x ® y) ® z) = v2(x ® v2(y ® z) ) 

v2(p ® p) = pv 

T*v2(x ® j ) - v2(y ® x) + v2(j8x ® Ay), 

where 

T:X A y - > Y A * 

is the switching map. 
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3.3. PROPOSITION. ( [7, Section 6] ). For X, Y finite complexes, v2 is an 
isomorphism 

v2:K(X; Z/2) ® K*(Y; Z/2) -> K*(X A Y; Z/2). 

The maps v, v ,̂ v7, and v2 have their ^-homology counterparts when one 
considers the category of finite CPiT-complexes. This is a consequence of 
the fact that 

K*(X) = K~*(DX), 

where DX denotes the Spanier-Whitehead dual of X [18]. We denote by 
JU-, nR, ju,L and ju,2 the respective duals of the maps above, and the 
i^-homology versions of the formulas in (3.1) and (3.2) are valid. 

Dual to Proposition 3.3 we have 

3.4. PROPOSITION. /X2 is an isomorphism, 

l^\K^X\ Z/2) 0 K*(Y, Z/2) -> K*(X A Y; Z/2). 

3.5. The Bockstein Spectral Sequence in mod 2 K-homology. In analogy 
to the homology Bockstein spectral sequence of 2.8, the exact sequence of 
3.1 determines an exact couple 

K*(X\ Z) — • # * ( * ; Z) 

# * ( * ; Z/2) 

for /^-homology, ( [1], Part III). Properties 2.9 hold in this situation, 
except that, since we are in periodic AT-homology, degree must be replaced 
by filtration. The analogous of Proposition 2.10 also holds in /C-homology 
( [7, Section 11] ). Moreover the subquotient 

ker p K*(X\ Z/2) 

im /? im ft 

is selfdual under the duality 

K*(X- Z/2) = Hom(A:*(X; Z/2), Z/2), ( [41] ). 

3.6. Equivariant K-theory. Definitions. We follow [35]. If G is a topo­
logical group, a G-space is a topological space X together with a contin­
uous map G X X —» X denoted (g, x) —> g • x, such that 

(g ' (g ' x) = (g • g') • x) and lx = x, 

1 the identity element of G. If X is a G-space, then a G-vector bundle on 
X consists of a G-space E together with a G-map pE\E —» X, (i.e., /?£ 
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satisfiespE(g • x) = g • pE(x) ) such that (a)pE is a complex vector bundle 
on X, (b) for any g e G, x G X, the group action 

g\Ex —> Z^(x) 

is a homomorphism of vector spaces. Direct sum and tensor product of 
G-vector bundles on X are defined fibrewise, as in the non-equivariant 
case, and 

Hom(£, F)x = Hom(£x, Fx) 

gives rise to a G-vector bundle on X. Homomorphisms of G-vector bundles 
on X, denoted f\E —» F, are continuous maps such that pFf = pE. If M is a 
complex finite dimensional representation of G, i.e., if M is a G-module, 
then the G-vector bundle px\X X M —> X is denoted by M. For a map 
<J>: Y —> X of G-spaces, and E a G-vector bundle on X, the induced vector 
bundle <$>*(E) is defined as usual, and it is a G-vector bundle on Y. 
Suppose from now on that G is a compact group. Then the theory of 
G-vector bundles is linked to homotopy theory as follows. 

3.7. PROPOSITION. ([35, Proposition 11]). If <J>0, <$>X\Y —> X are 
G-homotopic G-maps, Y is compact, and E is a G-vector bundle on X, then 

<$>%E = tf(E). 

3.8. Definition. Let I b e a compact G-space, (G compact group). The set 
of isomorphism classes of G-vector bundles on X forms an abelian semi­
group under direct sum 0 . The Grothendieck construction on this 
semigroup is called KQ(X\ and it consists of formal differences E0 — Ex 

of G-vector bundles on X, modulo the equivalence relation: 

^o — E\ ~ ^o — Ex 

if and only if 

E0® E\® F = E'0® Ex® F 

for some G-vector bundle F on Xy ( [35, Section 2] ). The tensor product of 
G-vector bundles induces a commutative ring structure in KG(X\ which is 
then a contravariant functor from compact G-spaces to commutative 
rings, via the induced G-vector bundle construction mentioned above. 
Moreover, if <j>: Y —> X is a map from a compact //-space to a compact 
G-space, and a:H —* G is a homomorphism of compact groups, such 
that 

<f>(h - y) = a(h) • «JO), 

then </>* produces //-vector bundles on Y out of G-vector bundles on X, 
and induces 

**:KC(X)-»KH{Y). 
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If G = 1, write K(X) for KG(X). 

3.9. Example. If X is a point, then KG{X) = R(G), the representation 
ring of G. KG(X) is an algebra over R(G) via the map X —> /?/, which 
induces the map M -> [M] form #(G) to /CG(X), ( [Ibid] ). 

If H c G is a compact subgroup, and X is a compact //-space, then 
G X X has the diagonal action of // , and the space 

G X X = G X XIH 
H 

is constructed. There is an embedding 

ef>:X-> G X X 
H 

which identifies X with the //-subspace H X H X of G X H X. G X H X 
is a G-space and the induced vector bundle construction is an isomor­
phism between G-vector bundles on G X H X and //-vector bundles on X, 
( [Ibid] ). 

Let X be a compact G-space. The projection p:X —» XIG induces 

p*:K(X/G) -* KG(X). 

If G acts freely on X, i.e., if g • JC = x only if g 
proposition is true. 

3.10. PROPOSITION. ([Ibid, Proposition 2.1]) 
Then 

p*:K(X/G) -> tfc(*) 

is an isomorphism. 

G acts trivially on X if g • x = x, all g and x, and in this case there is the 
homomorphism K(X) —» ATG(X) which gives a vector bundle the trivial 
G-action. There is also the natural map mentioned above: R(G) —> KG(X). 
Combine these two homomorphisms to define 

li:R(G) 0 K(X) -> ^ G (Z ) . 

3.11. PROPOSITION. ( [Ibid, Proposition 2.2] ). If X is a trivial G-space, 
the natural map 

fi:R(G) ® K(X) -> KG(X) 

is a ring isomorphism. 

Notice that KG(X) is G-homotopy invariant as the induced G-vector 
bundle construction described above suggests, i.e.: 

3.12. PROPOSITION. ([Ibid, Proposition 2.3]). If <j>0, <j>}:Y —> X are 
G-homotopic G-maps then 

= 1, then the following 

Let G act freely on X. 

4>$ =tf:Kc(X)-»Kc(Y). 
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The next proposition is basic for the definition of reduced G-equivariant 
^-theory. 

3.13. PROPOSITION. ([Ibid, Proposition 2.4]). If E is a G-vector 
bundle then there is a G-module M and a G-vector bundle E such that 
EQ E1- = M 

3.14. Definition ( [Ibid] ). Two G-vector bundles E, Ef on X are called 
stably equivalent if there exist G-modules M, M such that 

E © M = E © M'. 

By 3.13 the stable equivalence classes of G-vector bundles on X form an 
abelian group under ©. This group is called KG(X) and is naturally 
equivalent to a quotient of KG(X). 

For a compact G-space X and a closed G-subspace A, both based at 
xQ G A9 the Puppe's construction gives the following exact sequence, 
( [Ibid] ): 

(3.3) KG(SX) -> KG(SA) -* KG(x U CA^> KG(X) -> KG(A). 

Defining 

Rc\X) = Rc(S?x), 

SqX = S(... (SX) ), 

Kc\X,A) = KG(si(xvj C4J), 

and 

KG\X, x0) = KG\X) 

the exact sequence (3.3) can be prolonged to infinity to the left to get the 
exact sequence: 

(3.4) . . . K~\X, A ) -» R-i(X) -> R-"(A) -» Rc"+ \X, A) 

-> Rcg+l(X) -»• Kcq+\A)-^ . .. -> KG(X) -> £ c ( / t ) . 

3.15. Remark. In fact ATG satisfies the conditions of a generalized 
cohomology theory, (46), defined on compact G-spaces. As usual, KG can 
be extended to non-compact locally compact spaces using the one point 
compactification X + : 

KG\X) = K~\X+\ KG%X, A) = KG\X+, A+). 

If X is already compact, X+ = X U x0, (disjoint), and KG(X) = 
KG(X). In particular 
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KG <{X, 0) = KG %X), ( [Ibid] ). 

Using the equivariant Thorn homomorphism the following proposition 
holds. 

3.16. PROPOSITION. ([Ibid, Proposition 3.5]). KG
q(X) is naturally iso­

morphic to Kq
G (X), by a map which is multiplication by a certain element 

ofK-\pt). 

This proposition allows the definition of K^(X) for positive q, and 
K%(X) can then be regarded as Z/2 graded, 

K&X) = K°G(X) 0 KX
G(X\ 

3.17. PROPOSITION. ([Ibid, Proposition 5.4]). If X is a locally 
G-contractible compact G-space such that XIG has finite covering dimension, 
then K°G(X) is a finite R(G)-module. 

3.18. Completion. The augmentation ideal IG of the representation ring 
R(G) induces the IG-adic topology on R(G), and if G is compact, Atiyah 
and Segal [12] showed that the completed ring character R(G) is 
isomorphic to K*(BG), BG denoting the classifying space for G. Furnishing 
KG(X) with the 7^-adic topology, the completion KG(X)A is defined and it 
is identified with 

lim K%(X)/IG, [Ibid]. 

n 

If X is a compact G-space, XG = (X X EG)/G where EG is the univer­
sal G-space. To each G-vector bundle F on X the vector bundle 
(F X EG)/G on XG is associated and this defines a homomorphism 

a:K%(X) -> K*{XG). 

Filtering EG by use of the Milnor resolution of G, {En
G}, [12, Section 

2], maps 

an:KG(pt) -> KG(EG) 

are defined by 

M - » [ M X En
G/G\ 

(for M a G-module). The augmentation ideal IG is the kernel of 

R(G) ^ K£(En
G) = K(Bn

G) -> Z. 

There is a homomorphism 

an:KG(X) -> KG(X X EG) 

induced by X X En
G —» Ĵ , and it factorizes through 
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an:KG(X)/IG - • K*(X X En
G), [Ibid]. 

Then the inverse limit map, lim an, gives an isomorphism 

n 

K%(X)A -^ lim K*(X X En
G) [Ibid]. 

n 

We will consider G-spaces X with free G-action, and for them the 
following theorem holds, which is part of Proposition 4.3 of [12]. 

3.19. THEOREM. ( [12] ). Let X be a compact G-space. X has free G-action 
if and only if K£(X) is complete (and Hausdorff). 

3.20. Definition. ( [41, Section 1] ). 

K$(X\ Z/2) = K*(X A M) 

where M is the 1-Moore space, (definition 3.2). 

3.21. The Transfer Homomorphism. For X and Y compact spaces and 
f:X—> y a finite covering, the direct image construction of bundles 
associates to a vector bundle E over X a vector bundle f(E) over 7, 
where the fibre of f(E) on y is 

e EX. 
f(x)=y 

The function E —»/,(£) is functorial on vector bundles, and gives rise to a 
homomorphism 

fi:K*(X) ^> K*(Y), 

called the transfer homomorphism. There is a reduced version of the 
transfer homomorphism f\K*(X) -> K*(Y). ( [9], [41, Section 2] ). 

3.22. PROPOSITION. ( [9, Section 1] ). If F is a vector bundle over Y and E 
is a vector bundle over X, then 

f(E ® / * (F ) ) = f(E) 0 F. 

Let X be a compact G-space, and Y a closed subspace. For H c G a 
subgroup of finite index define a map f:GX XIH —* X by 

/ [g, x] = x • g"1 . 

Then / and its restriction to G X y/H are finite coverings. G acts on 
G X A77/ by multiplication on the G-factor and then / is a G-map, thus 
defining 

fi:K%(G X X/H, G X YIH) -» Xg(Z, F), 
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( [41, Section 2] ). There is the isomorphism 

<l>:Kff(X, Y) -> K£(G X XI H, G X YIH) 

( [35] ). If (X, Y) = (/?/, 0), / , is the induced representation construction. 
Moreover, if X is a free G-space, the map 

ki:K*(X/H) -* K*(X/G) 

induced by the finite covering k\XIH —> XIG coincides, via 

K%(X) = K*(X/G) and À ^ W = K*(XIH), 

with the homomorphism 

f&.K%{X) -> *£(*) 

described above, ( [41, Section 2] ). 
Let G = 77 be the cyclic group of order 2, and consider the class 

y e ^(77) determined by the one-dimensional complex representation of 77 
whose character is e}ml ^ on the canonical cycle. 

Then 

If o = 1 4- y e #(77), then o2 = 0 in #(77) 0 Z/2 and {1, a} is a Z/2-basis 
for #(77) 0 Z/2. 

3.23. PROPOSITION. Le/ /', :/£*(,¥) —» AT*(X) Z><? //z<? transfer homomorphism 
associated to e —> 77, //ze inclusion of the identity element. Then 

/,(1) = a G #(77) 0 Z/2. 

Le/ 

/*:#*(*, Y) - > # * ( * , 7) 

/?e the forgetful homomorphism. Then the composite /',/* zs multiplication by 
a, <3/7d /*/, = 1 + T*, ( [41, Section 2] ). 

4. The Rothenberg-Steenrod spectral sequence in AT-theory. In 
this section we state the Rothenberg-Steenrod spectral sequence for 
77-equivariant, mod 2 AT-cohomology and AT-homology, where 77 is the 
group of order 2. We follow fairly closely the exposition of [41, Section 1]. 
The Rothenberg-Steenrod spectral sequence was adapted to AT-theory by 
L. Hodgkin [25] and improved by D. W. Anderson and L. Hodgkin in [4]; 
it is modelled in the corresponding spectral sequence for ordinary theory, 
( [34] ). In [41, Section 3], Snaith computed the spectral sequence for 
K*(X ; Z/2), where X has the permutation action of 77, the group of order 
2, and then defined secondary operations in the manner of Dyer-Lashof, 
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when X is an infinite loop space [Ibid, Section 5]. An application of these 
operations is given in [43]. A serious difficulty in applying the operations 
arises from the fact that they cannot be iterated at will [41, Section 4]. In 
an attempt to carry out the analogous project for finite iterated loop 
spaces Snaith computed in [42] the 77-equivariant mod 2 ^-theory of 
SV X X2, v = 1, 2. Then using the Hx -structure of X he defined a 
secondary operation 

Q _EJL % Kl(S] X X2; Z/2) -> K*(X\ Z/2) 
im ft 

(with 

ker 0 

i m £ 
c K*(X\ Z/2)/im 0, 

qx defined below, and 6 the structure map), which made possible 
the computation of the Atiyah-Hirzebruch spectral sequence for 
K*(22S3X; Z/2), where X is a finite CW-complex with H*(X; Z/2) torsion 
free. We parallel the method of [42] in order to determine the 
Atiyah-Hirzebruch spectral sequence for K*(Q S3X\ Z/2), where X is as 
above, (see Section 5). In this section we collect the necessary results to 
carry out this project. 

4.1. The Spectral Sequences. Consider the Milnor resolution of 77, 

* c 5 0 c . . . 5 " c S" + 1 c . . . S ° ° = ETT, 

[34]? [41? Section 1]. If X is a 77-space with 7 c l a closed 77-subspace, then 
the functors K*( — ; Z/2) and K*( — ; Z/2) applied to the filtered space 

. . . c p A S " + ) / i r C ( - A S " + 1 + ) / i r c 

. . . C ( - A E<ïï\/<ïï 

give spectral sequences convergent to 

and 

# * ( ( - A £7T+j/77-; Z/2] = K*((X X Y\\ Z/2) 

= K*(X9 Y\ Z/2) 

KJ(- A ETTA/TT; Z/2] = #£(*, y; Z/2), 

[25], [41], since in this situation 
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K*(X, Y; Z /2) A = K*( (X, Y\\ Z/2) 

where 

(X, Y\ = (x X ETT, Y X £77] 
\ 77" IT J 

and one can define 

K%X, Y\ Z/2) = #*( (X, y)ff; Z/2), 

( [41, Section 1] ). We next describe the spectral sequences above. 
The properties of the Milnor resolution of 77 are such that the 

complexes 

Z/2 - i K*(S°; Z/2) 4 K*(S\ S°; Z/2) - i K*(S2, Sl ; Z/2) - i . . . 

and 

Z/2 ^- K*(S°; Z/2) dl K*(S\ S0; Z/2) +11 K*(S2, S1; Z/2) ^ 

are respectively free 7^*(7r; Z/2)-comodule and K*{TT\ Z/2) = Z/2[7r]-
module resolutions of Z/2, and such properties also imply 

* * ( ( ! A Ev„}/w, ( | A £*) /*„_ , ) /* ; Z/2) 

= K*(X, Y; Z/2) . Q A:*(S"', S"~ \ Z/2) 
K (7r;Z/2) 

and 

**((f A E"n)'")> (f A ^„-l)/^. Z/2 

= * » ( * , y; Z/2) ® K*(S", S " _ l ; Z/2), [25], [41]. 
Z/2[77] 

The £,-terms of the spectral sequences are then, [Ibid], 

(4.1) K*(X, Y; Z/2) • /<:*(S0; Z/2) 
A (77";Zi/z) 

- ^ ** (* , F; Z/2) * * ( ° z / 2 ) (S\ S°; Z/2) d . . . 

and 

(4.2) K*(X, Y; Z/2) ® A ^ S 0 ; Z/2) 
Z/2[TT] 

^ — - # * ( * , Y; Z/2) ® ÀXS1, S°; Z/2) ^ -
Z/2[TT] 
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The £"** and £** terms are given by the homology of (4.1) and (4.2) 
respectively, and 

(4.3) E%a(X, Y) = Cotor^z/2)(K*(X, Y; Z /2) , Z /2) , 

(4.4) E2
qa(X, Y) = T o r ™ ( ^ ( * , 7; Z /2) , Z /2) , 

[25], [26], [41]. 

4.2.1. T H E O R E M . ( [41 , Theorem 1.4, b] ). The Rothenberg-Steenrod 
spectral sequence of X, [En dr), is a strongly convergent spectral sequence of 
Z X Z / 2 bigraded Z/2-algebras and E**(pt, <f>, Z/2)-modules such that 
a) £ f * is as in (4.3), b) dr\E

q;a -> Eq/r'a~r+l is a derivation with respect 
to the Z / 2 and E**(pt, <j>; Z /2 ) actions above, c) if X is a finite complex the 
spectral sequence converges strongly to K*(X, Y; Z /2) . 

II. D U A L L Y . ( [Ibid, Theorem 1.4.a] ). The Rothenberg-Steenrod spectral 
sequence for (X, Y), {Er, dr], is a strongly convergent spectral sequence of 
Z X Z / 2 bigraded "LI2-coalgebras and £ * *(/?/, <£; Z/2)~comodules such that 
a) £** is as in (4.4) b) dr\Er —> Er

 a+r_x is a derivation with respect 
to the coactions above, c) the spectral sequence converges strongly to 
Kl(X, 7; Z /2) . 

4.2. Remark. The t i t r a t ions for AT* and Kl above are, as usual, [16], 
decreasing and increasing, respectively, and the spectral sequences 
converge to 

fP f 
©—in- and © — ^ - . 

FP + X Fp_x 

4.3. The transfer in m-equivariant mod 2 K-theory. In order to analyse the 
transfer homomorphism induced by the inclusion e —» 77, (see 3.21), Snaith 
characterized the homomorphism 

/ , : #* (* , Y\ Z/2) -> # £ ( * , y; Z /2) 

in a useful way. We record some results from [41] which we will apply in 
this section. 

Let Dl = CSl~\ the cone on S%~\ with TT acting on Z)£ by the con-
wise action. Recall from 4.1 the space £77 and the notation we use. 

4.4. PROPOSITION. ( [41, Proposition 2.3] ). Let X be a compact ir-space. 
For m > 0 there are isomorphisms 

K*(X, Y\ Z /2 ) = K*((X, Y) X (Z)2m, S 2 m _ 1 ) ; Z /2 ) 

= # £ ( ( * , Y) X (£77, S 2 w _ 1 ) ; Z /2) . 

4.5. PROPOSITION. ( [Ibid, Proposition 2.4] ). Let i:e —» TT be as above, and 
X a compact Tr-space. Under the isomorphism in 4.4 and the isomorphism 
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Kl((X, Y) X (Si S°); Z/2) -> K a + , ( * , r ; Z/2) 

(7ze coboundary 

S-.KK (X, Y) X (Si, S°); Z/2) -» < + 1 ( (X, F) X (£V, ^ ) ; Z/2) 

corresponds to the transfer /,. 

A Z/2[77]-free resolution of Z/2 is given by 

Z/2 <- £>0 4- / ) , <-±- / ) 2 ^ . . . 

where Dq is the free, left Z/2[77]-module on one generator eq, q — 0, 
£(<?0) = 1, and 

d2k(e2k + \) = 0 + T) ' ^ 

2̂A + 1 ( ^ + 2) = (1 + T) • ^ + 1 , 

with T e 7T the non-identity element, [40]. 
Let 77 act on (X Y)2 by factor permutation. The isomorphisms, ( [41, 

Section 1] ), 

K*( (X, Y)2; Z/2) ^ K*(X, Y\ Z/lf2 

= K*(X, Y\ Z /2) 0 2 0 £> 
Z/2[TT] 

imply that 

T o r ? 7 * 2 ^ 3 ^ (X, r ) 2 ; Z/2), Z/2) 

is the homology of the complex 

( l+T*) 
0 <- #*(X, 7; Z/2) 0 2 ^ #*(*, y; Z/2) 0 2 

( l+T*) 

and dually 

Cotor*?(7r;Z/2)(^*( (X, y)2 ; Z/2), Z/2) 

is the homology of 

0 -» #*(*, y; z / 2 ) 0 2 — ^ K*(X, y, z /2) 6 

/^(X, y; Z/2)0 2 

1+7 

x®2 -^ #*(*, Y\ Z/2f 
1+T* 

4.6. Remark. The 77-action on ^ ( X , y; Z/2) 0 2 is 

T*(X ® y) = y ® x + fly ® fix, 
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( [7], [41] ), and there is a canonical choice of a basis for K*(X, 7; Z/2) 
which makes the 7r-module K*(X, 7; Z/2) expressible as a direct sum of 
two dimensional submodules of the form 

and one dimensional submodules of the form 

{ua\ftua = 0, ua £ im ft}, 

[8], [41]. Tor o is zero on the two-dimensional submodules if q > 0, and 
TorJ *2^ is the module of coinvariants; finally 

T o r ; ™ = Z/2 

for the one-dimensional submodules, generated by the class of ua ® e , 
and 

Torg21*1 = 0 

[41, Section 1]. The situation is expressed in the following: 

4.7. PROPOSITION. ([41, Proposition 1.7]). There are natural isomor­
phisms, q > 0: 

4>:Tor™(K*(X, Y; Z/2)0 2 , Z/2) = ^ ? C * * ( * y ; „ Z / 2 ) 

given by 

^ im ft im ft 

<H-x z ® ^ ) = x + im ft, 

Tor j /'s zero, a^d 

Tor j™(#*(Z , 7; Z/2)0 2 , Z/2) 

/s isomorphic to the coinvariants of the 7T-action. Dually, there are iso­
morphisms, q > 0: 

4>:Cotor^(fr.z/2)(K*(X9 Y; Z/2)0 2 , Z/2) 

= ker ft K*(X9 7; Z/2) 

im ft im ft 

such that 

<j>2(x®2 0 wq) = x + im ft, 

and Cotor^ w zero. 

Coiox^xn){K*(X, Y; Z/2)®1, Z/2) 

/5 isomorphic to the module of invariants of the ir-action on K*(X, 7; 
Z/2)0 2 . 
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The computation of Tor**2^ and Cotorf 2^ z / 2 ) described in 4.6 and 
Proposition 4.7 can be carried out for Sv X X furnished with the diagonal 
action, where Sv is given the antipodal action, v = 1,2. Let 

as Z/2-vector space, generated by 1 and yv. 

4.8. PROPOSITION. ( [42], Section 1). 

Cotor£l (^ z / 2 )(/P(Sv X Z2 ; Z/2), Z/2) 

[^-invariants in Av ® K*(X, Z /2) 0 2 if q = 0 

U v ® ^ ifq>0. 
im /? 

Moreover 

£?-* = ,4V ® £*(*; Z/2) 0 2 ® er and E0/ c £?'* 

/s //ze inclusion of the m-invariants. If q > 0, 

5 im yS im ft 

is defined by 

8(a ® [JC 4- im 0] ) = a ® x 0 2 ® ^ . 

In ( [41], Section 3) Snaith determined the Rothenberg-Steenrod 
spectral sequence of 77-spaces (X, Y)2, permutation action. His method 
uses bundle theoretic constructions called Massey triple products as well 
as the quadratic construction ( [41, Section 3 and Appendix II] ). The 
result is stated in the following theorem. 

4.9.1. THEOREM. ( [41], Theorem 3.8). In the spectral sequence 

{£'( (X, Yf, dr) ) 

the only non-trivial differential is d3, and if 

x G Ker ft - im ft c Ka(X, Y\ Z/2) 

then 

d3(x®2 ® e2q) = x 0 2 ® £?2<y_3, a ^ 0 mod 2 

d3(x®2 ® e2q+]) = x 0 2 ® e2{q_X), a = 1 mod 2; 

d3 is zero otherwise. Dual to I is the following statement: 
II. In the spectral sequence {Er(X, Y) , dr} the only non-trivial differential 

is d3, whose action on 

x €= ker ft - im ft c K*(X, F, Z/2) 
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IS 

d3(x®2 ® e2q+x) = x®2 ® ^ + 4 , a = 0 mod 2, 

</3(jt
02 ® e2<7) = x®2 ® é ^ + 3 , a = 1 mod 2, 

J3 is zero otherwise. 

4.9.1 and II together with the properties of the spectral sequence listed 
in Theorem 4.2 allow one to compute the Rothenberg-Steenrod spectral 
sequence 

{Er(S
v X X2, dr) } and {Er(Sv X X2, dr)}, v = 1, 2, 

whose £2 and E terms are given in Proposition 4.8. More specifically the 
Rothenberg-Steenrod spectral sequence for Sv, {Er(S

v, dr) }, can be easily 
computed from the fact that 

K*(SV- Z/2) = K*(RPV; Z/2) 

(see Proposition 3.10) and one obtains that ( [42, Section 1] ) 

d2(yx ® e0) = 1 ® e2, 

which by the derivation property of d2 implies that 

d2(yx ®eq)=\® eq+2 

if q > 0, and that higher differentials are all trivial. Similarly, 

d3(y2 ® e0) = y2 ® e2 + 1 ® e2, 

so that if A, JU e {0, 1}, then 

d3( (A + /xy2) ® e^) = Ml + Y2) ® ^ + 3 . 

</3( (A H- jiy2) ® ^ + 1 ) = (A + /x) ® e^+4, 

and higher differentials are trivial (notice that d2 is trivial in this case, by 
dimension argument). 

The preceding remarks, and use of the derivation property of the 
differentials with respect to the Er(pt, <£; Z/2) action and to the factors of 
Sv X X , have as a consequence the following proposition. 

4.10. PROPOSITION. ( [42, Lemma 1.1] ). In the spectral sequence 

Ef*(Sv X X2, (j>) =* K%(SV X X2; Z/2), v = 1, 2, 

the only non-trivial differential is dv + x and it acts as follows: 

a) d2(yx ® x®2 ® ej) = 1 ® x®2 ® e)+2 

b) d3(X + /xy2) ® x 0 2 ® <?•) 
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(ju(l + y2) 0 x 0 <?y+3, j = deg x mod 2 

(À + fi) 0 x®2 0 e- + 3, otherwise 

where fix = 0, x £ im /? m &o//z a a/7 J b. 

4.11. PROPOSITION. ( [42, Lemma 1.2] ). Dually, in 

El*(Sv X X2, <f>) => Kl(Sv X X2\ Z/2), v = 1, 2, 

//ze 0/7/y non-trivial differential is Jv + 1 tf/id 

a) rf2(l ® / 2 ® ^ 2 ) = yx 0 

b) </3(X + /xy2) 0 x®2 0 ey+3) 
*; 

- E 
f(\ + ju)y2 0 x*1 0 <?y,y ^ deg x mod 2 

U( l + y2) 0 x 0 2 0 e-9 otherwise 

where x e ker /? — im /}. 

c) £^(S V X X2; <f>) = 0 1/7 ^ v + 1 

d) / / 1 ë 7 ë v, 

ker £ 
£ 0 0 

with 

im/J 5 ^ ° ' 

ô(x) = 1 ® x®2 ® <?? 

e) p*:/C(S X X2; Z/2) -> A ^ * 2 ; Z/2) 

/s onto, where p collapses S to a point. 

The following proposition, proved in [41] using bundle theoretic 
constructions, will be essential for our computation in the rest of this 
section. 

4.12. PROPOSITION. ( [41, Proposition 4.10] ). 

i) Let zf2 0 e , G K\( (X, Y)2\ Z/2) 

be the element represented by this class in E^ ( (X, Y) . Then 

p(zf2 ® <?,) = u{B2(Z])®
2) e Kl((X, Y)2; Z/2). 

ii) Let 

z®2 ® e0 e /*(z®2) c j f t (X, Y)2; Z/2), 

where /* /s the forgetful map. Then 

P(z®2 ® e()) = fl2(z0)®
2 ® <?, G < ( (X Y)2; Z/2). 
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4.13. Remark. One can use the proposition above to investigate ker /? 
in K%(S2 X X2\ Z/2) and in Kl(S2 X X2\ Z/2) through the maps in­
duced by 

p:S2 X X2 -> X2, 

(see Proposition 4.11). This is indeed what we do in Proposition 4.24. 

In what follows we apply the results in the Rothenberg-Steenrod 
spectral sequences of 4.10 and 4.11 to define certain classes qx(x) in 
K\{SX X Y2; Z/2) and q2(x) in KQ(S2 X Y2; Z/2) where qx and q2 are 
functions to be defined. qx and g2

 w^ P^aY a major role in the 
computation of the Atiyah-Hirzebruch spectral sequences for £l2S3X and 
£2 S X, X a finite torsion free CW-complex. There will actually be an 
indeterminancy in defining the classes q2(x) of K0(S

2 X Y2; Z/2), which 
nevertheless will turn out to be harmless when we arrive to the analysis of 
the Atiyah-Hirzebruch spectral sequence in Section 5. The indeterminancy 
arising is a reflect of the properties of the Rothenberg-Steenrod spectral 
sequence, as will be discussed in 4.20. 

Both definitions of qx and q2 can be thought of as part of the program 
introduced by L. Hodgkin [26] of defining Dyer-Lashof operations in 
A^-theory mod p. In case of infinite loop spaces QX, p = 2, the project of 
constructing such operations has been accomplished by Snaith ( [41, 
Section 5] ). 

The technique used by Snaith involves the study of the Rothenberg-
Steenrod spectral sequence for K%(X ; Z/2) whose properties are con­
tained in [38], [39], [40], [41]. The last one of the sequel of papers above 
focuses on Kl(X ; Z/2). The content of the first 4 sections of [41] will be 
used in our analysis of the Rothenberg-Steenrod spectral sequence for 
K(S X X"\ Z/2) in the rest of this section, and the auxiliary results we 
need to define q2 are modelled, and rely on the corresponding ones of the 
sections of [41] mentioned above. Moreover, the application of q2 to 
the Atiyah-Hirzebruch spectral sequence for 12 S X is done by imitat­
ing the procedure followed in [42] to determine the graded group 
K*(a2S3X; Z/2). 

We define functions qx and q2 on 

k e r £ K*{Y\ Z/2) 

im ft im fi 

for Y a compact space, such that 

ker p 
Q\'--—T-

îm /3 
-> KX(S] X Y2; Z/2) 

ker $ 
a2-~ â " -> ^ 0 ( 5 2 X Y2; Z/2)/Ind 

im/3 
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with Ind a certain subspace to be determined, (see Proposition 4.22). 
These functions will be crucial in the determination of the Atiyah-

Hirzebruch spectral sequence for Q, SX. 

4.14. The function qv qx was defined by Snaith ([42, Section 2]) in 
the following way. First, the Rothenberg-Steenrod spectral sequence for 
S X Y (Proposition 4.10) implies the existence of a natural map 

im ft 

given by 

«ft* + im j8) = 1 0 x®1 0 ex e E™0 c Kl(S] X Y2; Z/2). 

Next, the transfer homomorphism (see 3.21) 

h:Kl(Sx X y2; Z/2) -> Kl
n(S

l X F2; Z/2) 

has kernel generated by 

{(1 + T*)(W), 1 0x (2>2 |£x = 0} 

c [K*(Sl; Z/2) 0 ^*(Y; Z/2)®2]1, 

[42, Section 1], and denoting by J such a kernel one defines the 
monomorphism 

_ K\Sl X y2; Z/2) i , 9 

/,:— ! -» ^ ( S 1 X y2; Z/2). 

The images of $ and /, generate K\Sl X y2; Z/2), [Ibid], so that 

o = 7, e «JHÀ:1 (s1 x y2
; z/2)// e - ^ - -» ^ ( s 1

 X y2; z/2) 
im /? 

is an isomorphism, and the duality of 3.5 allows one to define qx(x), 
x G ker p - im p c K*(Y, Z/2), as 

(0 0 f)Q~l:Kl(Sl X y2; Z/2) -» Z/2 

where 

f -> Z/2 
im^S 

is dual to x. 
In order to iterate the function qx it must be checked that (5qx(x) is zero, 

and an analysis of this situation is carried out in Section 2 of [42], the 
result being 

4.15. PROPOSITION. ( [42, Proposition 2.7] ). If x e Ka(Y\ Z/2), then 
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\U(B2(> 

(xf2) ifa = Q mod 2 

m X ) ) = { - - \ X r + X^) if a =lmod 2, 

where B2 is the second Bockstein, x e ker /?. 

A property of qx important for our objectives is 

4.16. PROPOSITION. ( [42, Proposition 2.8]). Let 

A*:(KZ(Sl X (Y X F)2; Z/2) 

-> Kl(Sl X 72; Z/2) 0 Kl(Sl X y2; Z/2) 

Z>£ the diagonal homomorphism. If x, y G ker /? c K*( Y; Z/2) /7ẑ /7 

A*(<7,(x ®y)) = q,{x) ® i*(y®2) + i*(x®2) 0 ?,(>;)• 

4.17. Definition. ([42, Definition 2.131). Let y be an i/,-space with 
structure map #:£ X Y —» y, (Definition 2.1). The composite 

^ , : ^ | - * i f , ( r ; Z / 2 ) 

im /* 

defines classes denoted 

ë,(jc) = 0*qxx, x <= ker £ - im fi c ^ ( 7 ; Z/2). 

It results from Proposition 4.15 the following: 
4.18. PROPOSITION. ([42, Theorem 2.15 iv] ). WzY/z the notation of 

Definition 4.17, 

v-zv-.-, )2 ' / d e S * = ° m o d 2 

I/o ^ 2̂ _L x2 z y d e g ^ _ j m o d 2 

p 2 « )2 

W*) )2 
As a consequence of Proposition 4.16 it holds: 

4.19. PROPOSITION. ( [42, Theorem 2.15 ii] ). Let 

x,y G ker fi c K*(Y\ Z/2), 

where Y is an Hx -space. Then 

Qi(xy) = &(*) Y + *2-(?1O0. 

4.20. TV function q2. Consider the Rothenberg-Steenrod spectral 
sequence for S2 X Y2 determined in 4.10 and 4.11. Its TcT-homology version 
implies the short exact sequence 

0 - ^ o , « - ^ 2 , « - ^ - > 0 , a G Z/2, 

and since the filtration F is zero for r < 0, we have in the usual way 
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0 - £ ~ - F2M -* EZ 0 E™a_, -» 0, 

after moding up by F _ ! and writing 

Now, from 4.11 b), E^i, E^% and E%°* constitute the whole of 

K%(S2 X y2\ Z/2), 

and as in [16, Chapter XV] one concludes that F2 = F3 = . . . . Moreover 
E™* is contained in the 77-coinvariants of 

K*(S2 x y2; z/2), 

and we obtain the exact sequence 

[KJS2 X y2; Z/2) 1 /* „ 1 1 A 
(4.5) 0 -* l-^ ^ -4 Kl(S2 X y2; Z/2) -^ £ -+ 0 

M 
where 

/ ~K*(Y\ Z/2)\ ^ / ^ #*(Y; Z/2)\ 
\ liiijS / \ mi j5 1 

Li the subspace isomorphic to the non-bounding subspace of 

K*(S2 X y2; Z/2) 0 et 

in 4.11 i = 1, 2, and where 

M = ( (7r-coinvariants which bound} ) 

deg x = 0, fix = 0} >. 

( {y2 ® x®2|deg JC = 1, j&c = 0} U { (1 + y2) ® x 0 2 | 

Notice that from 4.1 l.d, 

kerff ^ ( y ; Z/2) 

im /? im /? 

and that the map A is the direct sum of the restrictions on 8 of 4.8 
to Lt. 

Dual to (4.5) there is the following exact sequence 

(K*(S2 X y2; Z/2) V /* 9 9 A' 
(4.6) 0 <- i — - LL- <- À"*(S2 X y2 ; Z/2) <- £ ' ^ 0 

M' 
with groups and maps correspondingly defined. 

We will make considerable use of the exact sequences (4.5) and (4.6) in 
the rest of this section. Some remarks are necessary in order to express the 
way in which the exact sequences (4.5) and (4.6) determine the groups 
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Kl(S2 X y2; Z/2) 

and its dual 

K%(S2 X 72; Z/2). 

First, notice that in (4.6) the classes of Bf determine, through the 
monomorphism A', corresponding classes in 

K%(S2 X y2; Z/2), 

while a ^-invariant 

{K*(S2 X y2; Z/2) J77 

Af 

is such that a whole coset of 

K*(S2 X y2; Z/2) 

B' 

goes to it under /'*. The situation is interchanged in the exact sequence 
(4.5) for 

Kl(S2 X y2; Z/2), 

where now /*, is a monomorphism on 

[K*(S2 X y 2 ; Z / 2 ) ] , 

M 

while a whole coset of 

Kl(S2 X y2; Z/2) 

hits one element under A. Later in 4.23 we will define a class 

w G K%(S2 X y2; Z/2) 

determined by an element z of B\ and we will then consider the dual 
class 

w° e Kl(S2 X y2; Z/2) 

which we will identify as being determined by the dual to z in B. Thus 
there will possibly be a summand of the form i*(y) in the element 

w° G /C(S2 X y2; Z/2) 

so defined, which introduces an indeterminancy in the classes we will 
consider. This indeterminancy is an essential feature in the approach to 
equivariant K-Z/2 homology as derived from the Rothenberg-Steenrod 
spectral sequence, ([26], [41], and 4.1 above). In connection with the 
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problem of the indeterminancy, we will have to prove some technical 
results in 4.21 and 4.22, which are necessary in the sequel. 

In order to study the properties of the function q2 we are aiming to 
define, we require knowledge of the kernel and the image of the transfer 
homomorphism 

U\K\S2 X Y2; Z/2) -> Kl(S2 X Y2; Z/2). 

4.21. PROPOSITION. Let Q c K°(S2 X Y2; Z/2) be the subspace 
generated by 

{1 Q x ^ d e g x = 1, flx = 0} 

U { (1 + y2) 0 x02 |deg x = 0, £x = 0} 

U { ( 1 + T*)(W)}. 

A^(S2 X Y2; Z/2) 

Ô 

/Voo/! If x e ker /?, 

im /, c ker(a • - ) c K^S* X Yz; Z/2). 

i*/,^ ® x®2) = (1 + T*)(A ® x®2) = 0 

by the action of T*, SO that 

h(a ® x0 2) = A'(fl ® [x + im 0] ). 

Moreover 

o(U(a ® x®2) ) = /,/*'!(« ® ^ 2 ) 

= /,/*(A'(Û ® [-x + im 0] ) ) = 0, 

by (4.6). Then, for general i}(a ® Xj ® x2), we have 

a/,(a ® xx ® x2) = /,( (a 0 JC, ® x2)/*(a) ) = A'(x + [im /?] ) 

for some x, by (4.6), thus xx = x2 = x e ker /? and hence 

a/,(a ® xx ® x2) = 0 

by the previous case, and we have shown 

im /, c ker(d • — ). 

To prove that Q is the kernel of /,, consider the classes (1 + y2) ® x if 
deg(x) = 0 and 1 ® x®2 if deg x = 1, (/be = 0 for both types). From 
Proposition 4.10 we have that 

(1 + y2) ® x 0 2 ® ex and 1 ® x®2 ® eu 
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with deg x = 0 and deg x = 1, respectively, are permanent cycles in the 
Rothenberg-Steenrod spectral sequence. Use of the isomorphisms in 
Proposition 4.4 and of the characterization of the transfer in Proposition 
4.5 gives that both 

(1 + y2) 0 x®2 0 ex if deg x = 0, and 

1 0 x®2 0 <?j if deg * = 0, 

are in the image of j in the exact sequence 

K[( (S2 X Y2) X (£7T, 5°), Z/2) ^ ^ ( (S2 X F2) 

X (S1, 5°); Z/2) — ^ #°( (S2 X Y2) X (£77, S1); Z/2) 

thus implying that 

/,( (1 + y2) 0 x®2) = 0 if deg x = 0 and 

/,(1 0 x 0 2 ) = 0 if degx = 1, 

(fix = 0 in both cases). Similarly, since y2 ® x 2 0 ex is not in im(y') for 
both deg(jc) == 0 and deg(x) = 1 (by Theorem 4.10) we have that 

i,(Y2 0 x®2) *= 0, deg x = 0 or 1. 

That { (1 + r*)(w) } c ker(z'i) is seen as follows: 

/,((1 + T*)(W)) = i^h(w) = a(/,(w)) = 0 

as shown before. Thus Q c ker(/,) and to prove the converse contention 
suppose 

1,(2^-® JCJ0JC; ' ) = 0 

so that 

0 = i*/,(2 at ® x\ ® x'/) = (1 + T * ) ( 2 at 0 x\ 0 xf), 

which means that 2 ^ ® x- 0 x" is 77-invariant, i.e., 

2 ^ ® x; ® xf; = (i + T*)(W) + 2 af- ® xf2, 

with je, G ker /?. Hence 

0 = /,(2 at ® x; 0 o = /,(2 Û/ ® *f2) 
which by the arguments above is possible only if a = 1 + y2 ^o r 

deg Xj = 0 and if a = 1 for deg x, = 1, thus proving ker /, c Q. 

Use of the exact sequences (4.5) and (4.6) gives the following 
characterization of the dual of the even degree component of the image 
of /,. 
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4.22. P R O P O S I T I O N . Let Y be a compact space. Then 

im /, c Kl(S2 X 7 2 ; Z /2 ) 

is dual to 

KQ(S2 X y2 ; Z / 2 ) / I n d , 

where Ind w //*£ subspace generated by 

{i*(a 0 jc®2) |/3JC = 0, a = 1 z /deg x = 0, a = 1 + y2 

z / d e g x = 1} 

= {z*(l ®JC® 2 ) | )8JC = 0} . 

Proof. Let 

( ,> :A: 0 ( - ; Z /2 ) ® K°(-\ Z /2 ) -> Z / 2 

denote the nonsingular pairing (3.1). Suppose 

z G ATj(S2 X Y2; Z /2 ) 

is such that 

0 = <z, z,0v) > for all w G / ^ ( S 2 X y2 ; Z /2 ) , 

so that in particular 

0 = <z, /,(a ® x02) >, JC e ker 0, 

hence (4.6) and Proposition 4.5 imply 

/,(a 0 x®2) = A'JC, 

and so 

0 = <z, z,(a ® x®2) > = (z, A'(JC) > = <Az, x> 

for all JC, which by (4.5) gives z = i*(zf) for some z'. Now, by as­
sumption, 

0 = (z, /,(tf ® XX ® X2) > = (/*Z', Z,(tf ® JCj ® X2) ) 

- <z', i*i,(a ® X! ® JC2) > = <z', (1 + T*)(a ® JC, ® JC2) >, 

so that z' does not pair with any (1 -f T*)(W), forcing 

z' = 2 fl,- ® zf2. 

By assumption on z, for any /3 ® xx ® x2 we have 

0 = 2 < z > z 0 zj'®2, / ,(* ® JCj ® JC2) > 

= 2<a,- ® zj'®2, (1 + T*)(è 0 JC, ® x2) > 

= 2<fl,- ® < ® 2 , b®/3x2® J8JC,> 

= 2<a I ,6><z^i8 J :2><z;;i8x1> 

= 2(aé, b)(M xxXM x2) 
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which, taking b = ah xx = x2, implies that fiz" = 0. Then 

imO'j) c Kl(S2 X y2; Z/2) 

has the dual in the statement of the proposition since from the spectral 
sequence 4.1 l.b), the generators of Ind determine non-trivial elements in 

Kl(S2 X y2; Z/2). 

The other description of Ind comes from d) in Proposition 4.11, as a 0 x 
is equivalent to 1 0 x in the Rothenberg-Steenrod spectral sequence 
for 

Kl(S2 X y2; Z/2). 

4.23. Definition. Let 

x e ker 0 c K0(Y; Z/2) = Hom(K°(Y; Z/2), Z/2) 

denote the class 

x + [im fl e ^ 

and consider the functional 

1 ® / 2 E Hom<X°(S2 X y2\ Z/2), Z/2) 

if deg x = 0 mod 2, and 

(1 + y2) 0 x®2 e H o m ( ^ ( S 2 X y2; Z/2), Z/2) 

if deg x = 1 mod 2. For x as above, define g^C*) a s t n e functional making 
the following diagram commutative, in which a depends on deg x as 
above: 

K°(S2 X y2; Z/2) ^ - ^ ^ Z / 2 

Kl(S2 X y2; Z/2) 

Notice that since both 1 0 x®2 if deg x = 0 and (1 + y2) 0 x®2 if 
deg x = 1 are zero on Q = ker /,, the map g^C*) e x i s t s - Thus ^C*) ls m 

the dual of im z',, and from the description of the transfer /', given 
in Proposition 4.5 we see that, in terms of the spectral sequence of 
Propositions 4.11 and of 4.5, it has the form 

q2(x) = 1 0 x 0 2 0 e2 + /*( j®2), 

for some y e ker /?, deg y = 0. 
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We will be interested in the composite qxq2(x), deg x = 1, which to be 
defineable requires that fiq2(x) = 0. We now determine Pq2(x) and later 
we will see that for the space ti3S3X, with suitable X and x <= Q3S3X, we 
will have fiq2(x) = 0. 

4.24. PROPOSITION. ftq2(x) = qx(B2x), where deg x = 1 mod 2. 

Proof. Consider the odd dimensional class Pq2(x), for x as above, and 
suppose it pairs with a class 

h(w) + 1 ® j®2 0 ex + (1 + y2) ® z 0 2 ® e, 

in J^-cohomology; we then have 

1 = (Pq2(x)9 i,(w) + 1 ® y 0 2 ® ^ + (1 + y2) ® z 0 2 ® ex) 

= <<72(x), ijOSw) + UiB^yf1) 

+ )8[((1 + Y 2 )®*i ) - (*® 2 ®*o)]> 

= <<fe(x), (1 4- y2) ® £ 2 z 0 2 ® ^2> = <x, £2z> = <B2x, z>. 

Thus fiq2(x) is dual to 

(1 + y2) ® # 2 JC 0 2 ® ex 

and by 4.1 l.b we conclude that 

Pq2(x) = 1 ® B2x®2 ® ex. 

(In the equations above we made use of Proposition 4.12 and Remark 
4.13, as well as of the fact that neither ii(f}w)9 deg(w) = 1, nor iy{B2(y) 2), 
deg y = 1, pair with q2(x), deg(x) = 1). 

5. The Atiyah-Hirzebruch spectral sequence for £lvS X, V = 1,2. 

5.1. Definitions. The Atiyah-Hirzebruch spectral sequence for K-theory 
was set up in the paper [11] by M. Atiyah and F. Hirzebruch; it arises from 
the filtration 

Kn
p(X) = kev[K\X) -> Kn(Xp~l) ] 

of Kn(X) and it has the following properties. Let X be a finite 
CW-complex. Then 

(5.1) Ep{q = CP(X; Kq(pt) ), dx the ordinary coboundary. 

(5.2) Ep
2
q = ^(X; Kq(pt) ) . 

Kp+q(X) 
(5.3) E™ = GrKp+\X) 

m\w 
(5.4) dr\E

p;q -> Ep
r
+r«~r+x vanishes for r even. 

(5.5) It is natural on X. 
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(5.6) The spectral sequence is compatible with Bott periodicity so that the 
grading q can be disregarded, [Ibid]. 

5.2. The Multiplicativity of the Atiyah-Hirzebruch Spectral Sequence. 
Concerning the multiplicative structure of K*(X), the following is 
satisfied. Consider the spectral sequence above, Ep

r(X), r ^ 2, with dif­
ferentials dr The cup-product 

EP
2(X) ® E\(X) -> Ep

2
+q(X) 

induces pairings 

EP(X) ® E%X) -> Ep+q(X) 

which are maps of spectral sequences if EP(X) ® Eq(X) is endowed with 
the usual differential. Moreover the pairing 

EUX) ® EUX) -> EUX) 

so obtained coincides with the product induced by the ring structure of 
K*(X), [Ibid]. Notice that this means that the spectral sequence is 
multiplicative modulo lower filtration. 

5.3. K-homology. The filtration 

K?„(X) = lm[K„(XP) -> Kn(X) ] 

defines the Atiyah-Hirzebruch spectral sequence {E%{X) } for K*(X), with 
properties analogous to those for K*(X), though now the multiplicativity 
of the spectral sequence refers to the external product, giving 

Ef(X) ® E?(X) -> E?(X A X). 

[1, Part III] 
We will make use of the following well known result (see e.g. [11] ). 

5.4. PROPOSITION. Let X be a finite CW-complex for which H*(X; Z) is 
torsion free. Then the Atiyah-Hirzebruch spectral sequence collapses, i.e., 
El = E™ so that H*(X) = K*(X). 

Suppose a complex X is the direct limit of a certain family of 
subcomplexes {Xm}. Then: 

5.5. PROPOSITION. ( [1, Part III] ). K*(X) is canonically isomorphic to 

lim K*{Xm). 

m 

5.6. Remark. The results above on the Atiyah-Hirzebruch spectral 
sequence hold if coefficients are introduced, and we will be mainly 
concerned with the case of mod 2 coefficients. 
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5.7. Example. We will apply Proposition 5.5 to the space ÇlnSnX 
in Theorems 5.10 and 5.12. A filtration satisfying the condition of 
Proposition 5.5 has been given for QnS^X by J. P. May in [30]. The 
subspaces of this filtration are denoted by FkCnX, ( [Ibid] ). We will pursue 
this subject in Section 6. 

5.8. Remark. The first differential in the Atiyah-Hirzebruch spectral 
sequence 

/ /*(*; Z/2) => K*(X; Z/2) 

is known to be 

d3 = Sq\Sq\ 4- Sq\, 

where Scf£ is dual to the Steenrod square Sa™, ( [42], Section 3). 

We present the theorem of Snaith on the Atiyah-Hirzebruch spectral 
sequence 

H*(tt2S3X; Til) =» K*(ti2S3X; Z/2), 

for X a finite, torsion free CW-complex, a result we will use and whose 
proof we imitate in order to determine 

K*(tt3S3X; Z/2), 

X as above. 
First we state the following consequence of the Nishida relations, 

although we use the lower notation for the homology operations, (see 
Definition 2.2). 

5.9. PROPOSITION. ( [42], Lemma 3.4). Let 

x <= Hs(Sl2S3X\ Z/2), 

with X such that H*(X\ Z) is torsion free. Then, for p = 0 

t(Qp\(x))4 tfP > ° or s odd 

[O otherwise. 
(Sq\ + Sq\S<fo(Q?[+\x)) = J 

We notice that in proving the proposition the summands of the Nishida 
relations involving only Xx{ —, — ) play no role, by the assumption on 
H*(X, Z), (see Theorem 2.5.c). 

5.10. THEOREM. ([42], Theorem 3.6). Let X be a finite, torsion free 
CW-complex. Then, in the Atiyah-Hirzebruch spectral sequence 

H*(tt2S3X; Z/2) => K*(Q2S3X; Z/2), 

E* = E^ = A Q B, where A and B are 

A = ® \ " ̂ * lJ
d® ®E((Q\(Xl))

2) 
t^2 

z/deg(\) = 1 mod 2; Az 

denotes the Browder generators Xx(x, y), (2.2); 
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\ ( (Ôi\-)4, (fift,)4) U s KK* '}'\ 
//deg(A-) = 0 mod 2; \ ^ in A. 

In A and B, P means a polynomial algebra and E an exterior algebra. 

Proof. Notice first that by properties 2.4.f and 2.5.1 of the Browder 
operations, each A- equals 

\x(Xx,\x(xx,\x(...\x(xk9xx)))) 

with 

xt e H*(SX; Z/2) c H*(Q2S3X; Z/2); 

since Xis finite, torsion free, this observation and 5.4 implies that the À/s 
are infinite cycles. Now, E* = A ® B by Proposition 5.9; we must prove 
that any higher differential is trivial. Observe that the algebra 

H*(tt2S3X; Z/2) 

is primitively generated, which passes to all the i^-terms, r = 2 and that 
the multiplicative odd dimensional (primitive) generators are only \ (odd 
degree), ôi(\-)> a n d Q\(\)- If we show that these classes are infinite 
cycles which are not hit by any differential, we are done. For if there were 
a dr acting non-trivially (let us take the smallest r > 3 with this property) 
then dr should be non-trivial on some (<2i(\) ) , which is primitive, and 
hence dr[ ( (2i( \ ) )2] would be primitive, odd dimensional, hit by a 
differential, which is not possible under our assumption on these classes. 
It remains to show that the odd primitive multiplicative generators are 
infinite cycles which do not bound. Let 

X, G Ka(FkC2SX; Z/2) 

be a Browder generator, where EkC2X is a subspace of 12 S X in its 
filtration given in 5.7. Then 

'/*(•*) = K 

for x e (FkC2SX), the /-skeleton. Since Xt is in the image of p, (Definition 
3.1), so is x, and moreover p(y7) = \t with y- of infinite order. Now let 

Xl G Hl(^cC2SX'9 Z/2) 

represent A7 in the Atiyah-Hirzebruch spectral sequence 

H*(FkC2SX\ Z/2) => K*H*(FkC2SX; Z/2). 

Since x is in im(p) the class 

qx(x) e KÏ(Sl X (FkC2SX)1 X (FkC2SX)1; Z/2) 

is defined, (see 4.14), and 
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(y2/+i)*(<7i(*)) e K^(S\S°) X[(FkC2SX)',(FkC2SX)!-1]2; Z/2) 

= C2/+1(s' X (/£C2SX)2; Z/2), 

O2/+1 induced by the obvious projection), is a homology class determining 
the element 

Q^Xi) e H*(iï2S3X; Z/2). 

Moreover, if 

\ G ^0(Œ2S3X; Z/2) 

then 

/^.(X,) ) = i*B2(Xf2 

(by Proposition 4.15), is zero as Xt is in im(p), whence 

^ . (X , ) e * , ( $ ' X (s1 X [ ( / j^S* ) ' ] 2 ) ; Z/2) 

is defined and the canonical projection of it to the cycles 

C 4 / + 3 ( s ' X S1 X ([/£C2S*]2) ; Z/2) 

determines the homology class Q\Q\(Xt). The proof of the odd primitive 
multiplicative generators being infinite cycles is then complete. That they 
are not the target of any differential is seen by noting that if dr(z) = y is 
one of the classes in question, then the naturality of the Atiyah-
Hirzebruch spectral sequence implies that 

0 ^ dr(o*x) = o*y G H*(ttS3X; Z/2) 

which is impossible, as the stable splitting of SIS X involves only smashed 
copies of suspensions of X, ( [37] ). 

We now determine the Atiyah-Hirzebruch spectral sequence for 0, S X. 
The following proposition is established using the Nishida relations, 
(Theorems 2.3 to 2.5). 

5.11. PROPOSITION. Let X be a finite torsion free CW-complex and 
consider the Atiyah-Hirzebruch spectral sequence 

H*(tt3S3X; Z/2) =» K*(tt3S3X; Z/2). 

Then E% = A ® B, where 

\ (Af, (Qx\)\ (Ô1Ô2A/)
2, (Q2Xl)\ (Q2

2X{)
4 
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® E((QaOa^..(X,))2) 

z/deg Xi = 1 mod 2, and 

D „ Q Z / 2 [ A , Qx\, Q2\,] 

\ ( (ÔI \ ) 2 , ce2\-)
4) 

0 £( (ôŒlG„, • • • (\) )2) 

/ / deg A, = 0 mod 2. /« vï a«ûf B, E denotes exterior algebra, A, is as in 
Proposition 5.10. 

Proof. We analyze the effect of 

d3 = S4U42* + Sq\ 

on the generators of 

//*(fl3S3X; Z/2). 

This has been stated in case of Q\(\) in Proposition 5.1. Consider now 
Q'2(X,) and let m = deg ^ ' ( X , . ) . 

Then by the Nishida relations 

(5.6) S ^ ( \ . ) = \fyQmQÏ\\) + ô m + 1 ^ l ô r V \ ) 

+ S - ad 2 (S^( jc) ) (^(x) ) , 

'l + '2 3, /, < /2, 

where whenever a subindex appears we are using the lower notation for 
the operations, while if no subindex is present, Q denotes the 
Dyer-Lashof operation in upper notation, (Definition 2.2). Notice that 
the \ / s are all torsion free by our assumption on X, so that the last 
summation in (5.6) is zero, a fact which holds for all the rest of the paper. 
We proceed to our computations, considering now 

(5.7) Sq\{Q'2{\)) = \^Qm+xQ'1-\\i) 

(5.8) SqliQ'^A,) ) = ( m
 3

 1)em-'ôr'(\) 

m 
1 ^QmsèQ2~\\)-

Combining (5.6) and (5.7) we get 
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(5.9) SqW*{Qi(k)) = (m ! l)\^Qm~xQi~\\) 

+ (7)ôm^iô2"'(\) 

If m is even, (5.9) gives 

Sq\s£Q'2(\t) = 0. 

In (5.8) 

ô m - , e r , ( \ ) = o, 
by degree (Theorems 2.3 and 2.5) while 

im — 2 \ 

(5.io) ^ler'cA,) = " T " ô<m-2/2>+1e'2 
\ i / 

Together (5.9) and (5.10) imply 

(5.11) (Sql + SqiSql)Q'2(X,) 

= rr~ + 1ke (w-2 /2 )+1er2(\-) 

Im — 2 \ 

per'(\). 
Clearly (5.11) is zero if and only if 

m — 2 
= 1, mod 2. 

2 
Now, 

deg Q2(Xi) = 2 deg(Az) + 2 and 

deg Q\(\) = 2(2 deg(\ ) + 2) + 2, 

(Section 2.1), and so 

m ~ 2 ! ^ o = 1 mod 2 
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is satisfied only if 

deg(X/) = 1 mod 2 and t = 2. 

Observe from (5.11) that </3Ô2(\-) = 0, all \ . 
Thus we have established 

(5.12) </3(G'2(\.) ) 

f ô iÔ2~ 2 ( \ ) if * > 2, or if f = 2 and deg(Az) = 0 mod 2 

[0 if t = 1, or if r = 2 and deg(Az) = 1 mod 2. 

Similarly, analysis of the action of d3 on Q\Q*2(\) gives 

r<2,Ô2_l(\) i f ^ 2 
io if r < 2. 

(5.13) J3(G,G2(\-)) 

Clearly squares are all d3-cycles, and the À/s are all infinite cycles by the 
torsion-freeness of X, (see proof of Theorem 5.10). 

Thus the primitive generators of A and B are determined. 
One then checks that the powers in the denominators of A and B in the 

statement of the proposition are ^-boundaries. For example, the ex­
terior classes of A and B in the proposition are so since ( (? r ( \ ) )4 

is a d3-boundary for / > 1 if deg(Az) = 1 mod 2 and for t > 2 and 
deg(X7) == 0 mod 2; this follows from Proposition 5.9. Thus El has the 
asserted form, since 

H*(ti3S3X; Z/2) = £ i 

and then all £*, are primitively generated Hopf algebras, ( [5], [8] ). 

In analogy to Snaith's result, Theorem 5.10, on the Atiyah-Hirzebruch 
spectral sequence for £1 S X we prove 

5.12. THEOREM. For a finite, torsion free CW-complex X, the Atiyah-
Hirzebruch spectral sequence for K*(23S3X; Z/2) is such that E$ = E™. 

Proof. As in the proof of Theorem 5.10 it suffices to show that the odd 
degree primitive generators are infinite cycles which do not bound. \ and 
Q\(ki) are infinite cycles, as seen in Theorem 5.10, and to check that they 
do not bound we apply the homology suspension to them, getting classes 
a*Az and (a*Az)

2 in 

H*(tt2S3X; Z/2), 

which we know not to be boundaries from that theorem. It remains to 
consider only the classes of type QlQ2Xi, deg A7 = 1. Proceeding as in 
Definition 4.23 we construct classes 

qxq2{\) e Kl(SX X (S2 X [ (FkC3SX)1]2)2; Z/2). 
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Since 

Pq2(Xi) = 1 0 B2Xj*2 ®ex =0, 

(Proposition 4.24), by torsion freeness, the composite q\q2(\) is defined. 
Projecting qxq20^i) to the chains 

CAl+5(s
x X [s1 X [FkC3SX]l]j ; Z/2) 

we obtain a cycle 

(A, 0 \ . ® e2) ® (A, ® A, ® e2) ®ex + (y®y)®(y®y)®ex, 

(Definition 4.23), which gives rise to the homology class 

Q\Qi\ + G i ( / ) = ôiÔ2(\-), 

since ( ? ! ( / ) = 0 by Theorem 23A. Now 

0*qM\) = »*( [ ( \ ® \ ® e2) ® ( \ ® \ ® £>2) ] ® ex) 

+ 0 * ( [ ( J ® J O ® ( ^ ® J O ] ® ^ I ) 

in K%Q3S3X\ Z/2) and 

0 * ( [ O > ® j O ® O ' ® . ) ' ) ] ® e i ) = Qx(y
2) = 0 

by Proposition 4.19, since fi(y2) = 0, and so QXQ2\ is an infinite cycle. 
Finally, Q\Q2\ is not a boundary since 

**ÔiÔ2\ = (ÔA))2 G ^(fi253JT; Z/2) 

is not a boundary by Theorem 5.10 and the proof of the theorem is 
complete. 

6. K*(Sl2S2n + ]; Z/2) as an algebra. Araki and Toda [7] defined an 
admissible multiplication for mod 2 A^-theory 

v2:K*(X\ Z/2) ® K*(Y; Z/2) -» K*(X A Y); Z/2), 

and the dual notion is a multiplication 

H2:K*(X\ Z/2) ® ^ ( y ; Z/2) -> K*(X A y; Z/2). 

v2 and jit2 are not commutative, the effect of 

T:X A y - > y A X 

being given by 

v2T*(x ® >0 = v 2 ( j 0 x) + v2(#y 0 #x) and 

fi2n(x ®y) = ix2(y 0 x) + ^(jSy 0 j8x), 
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( [7], [41] ). All the expected relations between the multiplication v in 
integral A^-theory and v2 are satisfied, v becomes v2 after reduction mod 2, 
i.e., 

pv(x ® y) = v2(px 0 py), 

and the Bockstein homomorphism /? acts as a derivation, 

pv2(x 0 y) = v2(/3x®y) + v2(x 0 £y). 

Details on these facts are given in [7] and we recorded some results on this 
subject in Section 3. 

If X is a CW-complex which is an associative //-space with unit e let 

i:{e} —» X and p\X —* e 

denote the inclusion and constant maps, and 

h:XXX-^X, A:X^>XXX 

the /z-space product and the diagonal maps. Define a product and a 
coproduct in K*(X\ Z/2) as the composites, ( [5] ),: 

<t> = h^'.K+iX', Z/2) 0 K*(X\ Z/2) -> # * ( * A X\ Z/2) 

-> #*(*; Z/2) 

* = /i^-1 A* :#*(*; Z/2) -> ^*(X A X; Z/2) 

-» ^*(X; Z/2) 0 ^*(X; Z/2). 

From [5] we have the following result. 

6.1. PROPOSITION. Suppose 

V2:K*(X; Z/2) 0 K*(X; Z/2) -» # * ( * A X; Z/2) 

w commutative. Then K*(X; Z/2) zs « Hopf algebra with multiplication <£>, 
comultiplication ^ , t/mï 17 = z* <2/7<i counit e = p*. (We will show later that 
if X = Çl S n , then \i2 ^ commutative and so Proposition 6.1 holds for 
K*(tt2S2n + ]; Z/2.) 

Roughly speaking we proceed as follows. The stable splitting of 
£2 S n , [37], will allow us to express both the homology and A^-homology 
of a2S,2w + 1 as direct sums of the homology and ^-homology of the 
pieces of the splitting. Moreover the naturality of the Atiyah-Hirzebruch 
spectral sequence and the stability of its differentials imply that the ho­
mology of a piece of the splitting determines, in the E°° term, the 
^-homology of that piece. These observations and F. R. Cohen's result, 
[Proposition 2.11], on the torsion of 

H*(tt2S3X; Z/2) 

will give the commutativity of 
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K+itfs2"*1; Z/2) 

as an algebra, (Sections 6.11, 6.12). Although the spectral sequence above 
is multiplicative, we observe that it is so only modulo lower filtration and 
that this fact reflects itself in the formula 

KT*to(x ®y) = h+foiy 0 x) + /z2(£y ® /3x) ), 

so that we dp need the proof of commutativity in order to know that we 
are dealing with a commutative Z/2-graded Hopf-algebra, ( [5], [8] ). 
Granted this, a possible method of determining the algebra relations in 

^*(fi2S2'7 + 1; Z/2) 

consists in showing that the primitive generators for it exhibited 
in Theorem 5.10 have the height suggested by the expression of A in 
this theorem. One is encouraged to expect this when simple inspection of 
filtration, plus the properties of the stable splitting of £22S2" + 1, (see 
Theorem 6.4), show that the classes i and Qx(i) have height 4, (Theorem 
6.13). This conjecture turns out to hold for all the primitive generators of 
AT*(£22S2" + 1; Z/2). 

6.2. The Stable Splitting of Q!lSnX. An important result we will require 
in order to determine the algebra 

K*(Q2S2n + l\ Z/2) 

is the stable splitting of finite iterated loop spaces due to V. P. Snaith and 
further studied in [21]. In order to state the properties of the splitting of 
£2 S n + ' we shall use, the following notions are necessary. 

6.3. Definitions. Let ^k{q) denote the space of ordered ^-tuples of little 
cubes disjointly embedded in / , ( [13], [30] ), on which the symmetric 
group 2 acts freely. For a based space X, CkX is defined by 

CkX = V %(q) X X«/~ 

where 

[ ( q , . . . , ^ ) , (xl9...,xq_l9 *)] 

- [ (c,, — , c^_i), ( x h . . . , x ^ ) ] 

determines an equivalence relation on 

V %(q) X Xq, 

[30]. The spaces CkX are approximations to fi S X in the sense that 
there are natural maps 

ak:CkX-»QkSkX 
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which are homotopy equivalences when X is connected [Ibid]. CkX is 
filtered by closed subspaces 

FnCkX c F„ + lCkX, FnCkX = V %(q) X XV~ 

and there are maps 

FnCkX X FmCkX —> Fn+mCkX 

obtained from the operad action defined by May [Ibid]. These maps define 
a product on CkX and the approximation ak sends products in CkX to loop 
products in £lkSkX. The quotients of successive filtrations in CkX, 

FfkXIFq_,CkX = D^X 

are called the reduced extended power spaces, and 

where Y+ is the union of Y with a disjoint base point and A™ is the g-fold 
smash product, [30]. With the notation above, the stable splitting oîSl S X 
can now be stated. 

6.4. THEOREM. ([37], Theorem 1.1). Let 2°°Y denote the suspension 
spectrum of a space Y. Then there is a weak homotopy equivalence for X a 
connected space: 

^°°^kskx = v 2°°z>* jr. 
w q^\ 

The maps 

FnCkX X FmCkX -> Fn+mCkX 

are such that the composite 

FnCkX X FmCkX ^ Fn+mCkX —» Dn+mX 

factors through the projection 

FnCkX X FmCkX -* D^X A DkjmX 

thus giving maps 

[30]. Projection on each component ^°°Dk X of V 2°° Dk X gives the 
components of the stable splitting of Theorem 6.4, which we denote j 
The following refined version of Snaith's stable splitting of QkSkX 
will be useful for our purposes. 

6.5. THEOREM. ( [17], Theorem H). For n = 1 and connected spaces X, 
the following is a natural commutative diagram in the stable category, in 
which the horizontal arrows are equivalences: 
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n°°(Qkskx x orskX). 

2 ° ° ^ * -

2 2 J 
r= 1 p + q = r 

A , 

2;r 

-•y,+t,2 ( v A v 

t 

Here the map on the left is loop addition and the one on the right is 
induced by the maps 77 mentioned above. The stable equivalence 2 jr 

is said to be exponential, in the sense that it sends sums in 2°°£2 S X 
to products in 

V ^°(DkrX). 

We now specialize to the case X = Sr, r odd, in the discussion above, so 
that we are dealing with &2S2Sr, r odd. We suppress the index 2 in the 
symbols D2qS

r, and denote this last space simply by Dr With these 
conventions we state a result of F. Cohen, Mahowald, and Milgram on 
Dr

r q > 1. 

6.6. THEOREM. ( [20] ). 

D: S«{r •DD\ 

Thus Snaith's splitting, Theorem 6.4, becomes: 

6.7. PROPOSITION. 

2°°Œ2Sr+2 = 
oo 

V 2° 'S
q{r \)D\ r odd. 

Let 

//*(ft2S3; Z/2) 

be the fundamental class, and Q\ (i) the j — 1 iteration of the 
homology operation Ql (Section 2). Define a weight function wt on 
H*(22S3; Z/2) by 

wt(Q\-\t)) = V~\ 

and extend it to decomposables by 

wt(x • y) = wt(x) + wt(j^). 

The image of H*(D}, Z/2) in H*(iï2S3; Z/2) under the map induced by the 
stable splitting of 6.4 has been characterized in terms of the function wt 
above. We quote the result, stated in [15]. 
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6.8. PROPOSITION. ([15]). //*(£>*; Z/2) c H*(tt2S3; Z/2) is generated 
by all monomials of weight q. Due to Proposition 6.7 the proposition holds 
also for 

H*(Dr
q\ Z/2) c //*(fi2S r + 2 , Z/2), r odd, 

if wt is defined on indécomposables by 

wt(e7r'w) = v~x 

and then extended to decomposables as above. 

We are now prepared to compute the algebra 

K+itfS2"*1', Z/2); 

first we show that it is commutative, and to do so we need the following 
considerations. 

6.9. Notation. Denote 

G = { (ÔÏ(0)2k ^ 2} c / / e v e n ( f l 2 ^ + 1; Z/2). 

Since /?<2i+1(0 = (Q\(i) )2 we have that g G i m p for all g e G, where 

p : ^ (Q 2 5 2 , , + 1; Z) -> 7/*(a2S2,, + 1; Z/2) 

is the mod 2 reduction. So from the exact couple for mod 2 homology (see 
(2.4) ): 

i/*(S22S2'2 + 1; Z) — = *»H*(Q2S2n + x; Z) 

« | t(Q2S2w + 1; Z/2) 

we conclude that G c ker ô. 
Consider now the Atiyah-Hirzebruch spectral sequences for both 

integral and mod 2 /^-homology. They are multiplicative and thanks to the 
//-space map there is a pairing (for Z and Z/2) 

2??ta2s2 , l+1) 0 E™(V2s2n+]) -> £j°(fi2s2'z+1). 
The naturality of these spectral sequences implies the following "diagram 
convergence" modulo lower filtration shown on the next page. The top 
and bottom triangles are respectively the mod 2 homology and mod 2 
AT-homology exact couples [32], [1, P. 3]. Recall the set G defined in 6.9, 
and notice from Theorem 5.10 that G consists of infinite cycles of the 
spectral sequence for K*Z/2. 
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2- -
H*(ti2S2n + ]; Z)-

(6.1) 

«|t(S22S2w + 1; Z/2) 

+H*(ttzS' 2c2w + l. 

A:*(Î22S'2'I + 1; Z) . 
2- -

i 2 c 2w+ l . H*(ttzSZn^1; Z/2) 

6.10. THEOREM. G = {K^L/2-classes determined by G}. Then G c imp, 
(in K*Z/2). 

Proof. Recall from Proposition 2.9 that 

p~~\im /?) = {order 2 elements} + {2-divisible elements} 

c H*(Sl2S2n + x\ Z). 

Choose for each g e G a 2-torsion element^ such that p( y) = g. We claim 
that y is an infinite cycle in the integral spectral sequence 

H*(Q2S2n + l; Z) =» K*(iï2S2" + ]; Z). 

For suppose there is a differential d2r+\ in this spectral sequence for which 
d2r+\(y) ^ 0. Then the naturality of the spectral sequence implies that 

P(d2r+\(y) ) = d2r+\(P(y) ) + {terms in (im d3) } 

c H*(Q2S2n + l; Z/2). 

This is so by Theorem 5.10, which also implies that 

rf2r+i(PO0) = 0 if r > 1, 

thus giving 

^2r+i(pO ;)) G (imrf3). 

We next show that this forces p(d2r+\(y) ) = 0. For if 

0 * p</2r+1(.y) = d3(z) 

for some z, then Theorem 5.10 implies that 

2 
./A 

where them's are distinct and bigger than 1, and wk is a square. Moreover, 
notice that there must be an even number of factors QJ{(i\ jk > 1 in 
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each summand, at least two of them as comes from the fact that deg(z) is 
even and 

a3z Œ D2t+\ , 

the component of g, (by Proposition 6.8). Then 

o * d3(z) = 2 \®Ql((0 
k u 

since d3 is a derivation, where now there are an odd number of factors 
Q{(t) in each summand, and wk is a square. Since 

H*$L2S2n + x\ Z/2) 

is a polynomial algebra, one can show by a Borel basis argument that 

Pd3(z) = 0 2 (00^(0 0 HJ 
A: V A: / 

is non-zero, which contradicts that d3(z) = pd2r+\(y), thus proving that 

Pd2r+\(y) = °-
This implies that d2r+x(y) is 2-divisible, say 2JC, and d2,.+ 1(>0 ls a^ s o 

2-torsion by the linearity of the differentials (recall the choice of y). 
Then 

0 = 2d2r+x(y) = 2(2x), 

which, however, contradicts F. R. Cohen's result, (Proposition 2.11), on 
the torsion of 

H*$l2S2n + x\ Z/2). 

So we have that d2r+\(y) = 0 for all r = 1, and y is a permanent cycle 
in 

H*(Q2S2n + l', Z) => #*(£22S2" + 1; Z). 

Looking at diagram (6.1) we see that the naturality of the spectral 
sequence implies that G c imp, which proves the theorem. 

Theorem 6.11 together with 

#2 , (0 = t2 in K*(Q2S2n + l\ Z/2), 

(see 4.18) have the following consequence. 

6.12. COROLLARY. K*(Çl2S2n + x\ Z/2) is commutative. 

As a further step in our computation of K*(Çl2S2n~*~l; Z/2) as an algebra 
we will now determine the height of the multiplicative generators for this 
algebra, which are exhibited in the computation of K*(Q2S2n^x; Z/2) as a 
vector space in Snaith's Theorem 5.2. This theorem takes the following 
form for X = S2n~x\ 
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GrK*(tt2S2n+]; Z/2) = Z!2[l' Q{1)} ® (®E(Q\(i)A 

the fundamental class, deg (i) = 1 mod 2. 

6.13. THEOREM. In the algebra K*(Çl2S2n + X\ Z/2), the classes i, Qx(i) 
have height 4, while classes (Q\(i) ) , t = 2, /z#v£ height 2. 

Proof, â is a <i3-boundary by Proposition 5.9, so if â ^ 0 in ATZ/2 
multiplication, then it is a combination of classes in filtration lower than 
that of i . Inspection of filtrations shows that 

â = \l 0 g , (0 + lit2, \ , /X G {0, 1}. 

However, we see from Proposition 6.8 that the right members of the 
above equality do not fall in the component determined by D4"~ ac­
cording to Theorem 6.5, while â e l9f~x. Thus X = a = 0 and 
i = 0. 

Similarly, using t4 = 0, we have as the only possibility the following 
equation 

(6.2) (Qx(i)f = \AQ\(0)3 + *AQI(0)2 + V ô i t o 

+ *4(Ôi(0)2 + Vôi(0 + V2> \ G {o, 0-
Once again we see by Proposition 6.8 and Theorem 6.5 that (Q\(L) ) lies in 
the component determined by D%n~ in Proposition 6.7, while none of the 
right member summands of (6.2) does so. Thus (Q\(i) )4 = 0. 

We consider now (Q\(i) ) , / = 2. If this class is non-trivial in 

K*(tt2S2n + ]; Z/2), 

then 

(6.3) (Q\(i) f = 2 ik- ® (0,(0 )'< ® (®(0<O )2) 

where 

0 S *,-, /, < 4, A:,- + /,• = 0 mod 2, tJt â 2 

and with each /'th summand at the right of filtration lower than that 
°f (C?i(0 ) • We prove by induction on / =ï 2 that (6.3) is impossible. For 
/ = 2, 

(Q](i)f G Z # - ' 

by Proposition 6.8, and one checks that no values of kh li and /,-. satisfying 
the conditions above are such that any summand at the right of (6.3) is 
in the component determined by D^~ . Suppose that 
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(Q\(L) )4 = 0 for s < t - 1, f > 2. 

Then in the expression (6.3) for ((?i(0)4 w e n a v e t n a t i f 2 = ^ < t 

then /• appears at most once in each right summand. Also, by filtration, 
((? i(0 )2 appears at most once in each right term. Again use of Proposition 
6.8 allows us to see that no values of kh lt and ty are such that the 
monomial 

lies in the component of ^*(fi2S2 ' î + 1; Z/2) 

determined by D^+i\ which is the component of (Q\(t) )4- Thus 

(Q\(L) )4 = 0 in K*(Q2S2n + x; Z/2) 

and the proof of the theorem is complete. 

We are ready to prove our result on the algebra structure of 

K*(Q2S2n+l; Z/2). 

6.14. THEOREM. AS an algebra 

K^2S2»^; Z/2) = Z f ^ g } ^ ] 0 (®E(Q\m2) 

where i is a K*Z/2 representative for the fundamental class of 

H*(Sl2S2n + x\ Z/2), 

and similarly for the other generators at the right. 

Proof. Recall from 5.2 that the Atiyah-Hirzebruch spectral sequence is 
multiplicative, but care must be taken of the fact that it converges to the 
graded group defined by the quotients of successive filtrations. Due to this 
last fact, we have that, in E% — E^ of the Atiyah-Hirzebruch spectral 
sequence 

J/#(S22S2w + 1; Z/2) =» K*$L2S2n + x\ Z/2), 

there are two possible sources of algebra relations, namely: 
a) those arising from the identity in K*Z/2-theory 

x - y + y x = fix • fry, 

(see (3.2) ), and 
b) those given by <i3-boundaries which are non-trivial as elements of 

K*(Q2S2nJtX', Z/2). 

From Theorem 6.10 we have that if x is a multiplicative generator, 
x ^ Q\(t), then fix = 0, while by Theorem 6.13 
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<4 = (0 , (0 )4 = o, 

so that x y + y - x = 0 for all x and y. Moreover Theorem 6.13 also 
shows that 

(Gi(0) 4 = 0 for/ ^ 2. 

Thus neither a) nor b) produce new relations among the multiplicative 
generators of K*(Q S w + 1; Z/2), other than those derived from the 
Atiyah-Hirzebruch spectral sequence, which proves the theorem. 
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