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Summary

Emperical evidence for intraclonal genetic variation is described here for clonal systems using a

variety of molecular techniques and implicating a diversity of mechanisms. However, clonal

systems are still generally perceived as having strict genetic fidelity. As concepts of genetic

variability move from primary sequence data to include epigenetic and structural influences on

genetic expression, the ability to detect changes in the genome at short intervals allows precedence

to be given to inherent biological variation that is often analytically ignored. Therefore, the advent

of powerful molecular techniques, like genome mapping, mean that our concepts of genetic fidelity

within eukaryotic clones and the whole philosophy of the ‘clone’ needs to be re-evaluated and re-

defined to replace old unproven dogma in this aspect of science.

Introduction

A dichotomy exists in the perception of what a clone

is. To some it is merely a member of an asexual lineage

within a population. To others, it is associated with

strict genetic fidelity between members of the asexual

lineage (Abercrombie et al., 1990). It is often argued

that the whole issue is one of semantics. However,

since a clone is a scientific phenomenon, it is important

that definitions are precise. The proposition in this

article is that a clone is a biological improbability in

terms of exact genetic fidelity between other members

of that clone. Such lineages are typically produced

vertically, i.e. between generations as in aphids,

nematodes etc., or horizontally, i.e. within a gen-

eration. Examples of the latter are found in certain

polyembryonic insects such as the Hymenopteran

parasitic wasp, Copidosoma floridanum which

produces C 2000 embryos (Grbic et al., 1998), and

mammals such as armadillos which produce up to 12

‘ identical ’ siblings (Nowak, 1991), derived in both

cases respectively from a single egg.

Prior to the advent of molecular markers in the

1960s, in the first instance protein markers, and more
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recently a plethora of DNA markers, testing of

clonality in terms of genetic fidelity was solely based

on morphological characters. As the use of molecular

markers became widespread they were extensively

used for population genetic studies and began to

reveal the complexity of populations, i.e. genetic

variability. Sometimes these approaches showed un-

expected genetic variation in species (e.g. Hubby &

Lewontin, 1966; Lewontin & Hubby, 1966), including

those that had hitherto been assumed to be hom-

ogenous, e.g. asexual systems (Hebert et al., 1972).

Some of this heterogeneity was of course believed to

have adaptive significance.

Molecular Markers

Before discussing inter- and intraclonal variation,

some brief mention of the molecular markers used in

the study of these phenomena is pertinent here. The

nature and application of the molecular markers used

in variability studies, including DNA sequencing, has

been extensively reviewed, notably for insects (e.g. by

Hoy, 1994, Crampton et al., 1996; Loxdale et al.,

1996; Loxdale & Lushai, 1998, 1999). Recent dis-

cussion of mtDNA, RAPDs, microsatellites, AFLPs

and SSCP markers in insects and other organisms is

given by Zhang & Hewitt (1997), Harry et al. (1998),
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Goldstein & Schlo$ tterer, 1999, Vos et al. (1995) and

Sunnucks et al. (2000), respectively. Tu (2001)

discusses the potential use of transposons in popu-

lation genetic studies and Black et al. (2001) review

the important topic of population genomics, all aspects

that are pertinent to this article.

Some species, e.g. aphids, are also known to show

a significantly greater number of genotypes as a

function of the genetic resolving power of the

molecular marker used. In ascending order, this degree

of resolution may be generally taken as beginning

with whole chromosomes, then protein markers

through to DNA markers, namely karyotyping,

allozymes (mainly), random amplified polymorphic

DNA (RAPDs), restriction fragment length poly-

morphisms (RFLPs), minisatellites, microsatellites,

amplified fragment length polymorphisms (AFLPs)

and DNA sequencing. For example, in the peach-

potato aphid, Myzus persicae, the number of clones

(genotypes) detected has increased by an order of

magnitude using ribosomal DNA (rDNA) intergenic

spacer (IGS) markers (Fenton et al., 1998a) compared

with that found using allozymes 10 years before

(Brookes & Loxdale, 1987).

Inter and intraclonal variation

A brief overview of interclonal variation (clonal lines

of different genetic origin) observed across taxa is

detailed here. In nature, there are numerous clonal or

largely asexual animals and plants (Gill et al., 1995

and references therein). Recently studied examples

include: cottonwoods, Populus salicaceae (Kearsley &

Whitham 1998) ; dandelions, Taraxacum officinale

(King & Schaal, 1990) ; grasses, e.g. clonal prairie

grass, Spartina pectinata (Davelos et al., 1996) and

Red mangrove trees, Rhizophora mangle (Klekowski,

1998). Parallels in the animal kingdom include marine

bryozoa (Harvell, 1998) ; soft coral, Alcyonium rudyi

(McFadden, 1997) ; freshwater snails, Potamopyrgus

antipodarum (Fox et al., 1996) ; fish, Poecilia formosa

and Ri�ulus marmoratus (Turner et al., 1990; 1992)

and aphids, e.g. grain aphid, Sitobion a�enae

(Sunnucks et al., 1997; Simon et al., 1999) and the

rose-grain aphid, Metopolophium dirhodum (Nicol et

al., 1997). Irrespective of taxa, all these organisms

show abundant clonal diversity (genetically typed

variants) in the ecosystems that they inhabit.

In the same way that molecular markers have been

shown to be useful for interclonal studies, these

markers also detect intraclonal variation, genetic

variation within an asexual lineage, even in the case of

apomicts where no recombination is assumed. Since

these markers likewise show increased resolution, so

they will prove useful in elucidating and then defining

the nature of a ‘genotype’. The focus of this article is

exactly this point, but with reference to genetic fidelity

in a clonal lineage.

Rapid intraclonal changes have also been detected

in the ‘dynamic genome’ : phages, prokaryotes, and

the mitochondrial and nuclear genomes of eukaryotes

(Table 1a, b). As seen in the table, this variation is

generated by a multitude of molecular mechanisms,

including conventional DNA point mutations and

errors of replication, slippage-mediated changes in

hypervariable non-coding regions such as mini- and

microsatellites, and insertion and deletion of segments

of DNA, including inversion polymorphisms, some of

which are governed by transposons, e.g. mariner

elements (Hartl et al., 1997). It is now known that

various mutase enzyme mechanisms are involved in

such changes, certainly affecting prokaryotes and

perhaps so-called ‘hot spots ’ in the eukaryotic genome

(Radman, 1999). Commonly observed in cells and

plant studies, somatic mutations also contribute to

changes in phenotype (e.g. leaf colour in higher plants

Klekowski, 1998). In addition to these local changes

of the genome, there is also the category of gross

chromosomal changes, e.g. karyotype number, trans-

location, etc. (Blackman et al., 2000). Additionally

still to these ‘general ’ mechanisms, chimerism has

also been observed in some colonial animals, e.g.

ascidian zooids (Sommerfeldt & Bishop, 1999), whilst

horizontal gene transfer of operational genes appears

to occur occasionally in both pro- and eukaryotes

(Jain et al., 1999).

Besides viruses and prokaryotes, which are well

known as displaying rapid evolutionary changes,

much recent intraclonal work on eukaryotes has

concerned ciliates, crustaceans (e.g. especially

Daphnia), bdelloid rotifers and aphids. Certainly,

apomictic parthenogenetic aphids are one of the best-

documented taxa, although even here, work is as yet

limited. Aphids are amongst several groups of

organisms that display a range of life cycle strategies

within the same species, that is they have ‘multiple-

generation complex lifecycles ’ (Moran, 1994). Some

species appear to be totally obligate asexuals, with

about 20 asexual generations per annum, whilst others

have an alternating asexual-sexual strategy with c. 14

parthenogenetic generations during the spring–

summer field season, followed by a sexual phase. In

the parthenogenetically produced offspring, each clone

is assumed to be a genetic replica of the original

parthenogenetic founder (Blackman, 1979, 1981,

2000; Dixon, 1998; Hodgson, 2001). However, recent

investigations have thrown doubt on this definition by

indicating the presence of intraclonal variation. De

Barro et al. (1994), applied a synthetic oligonucleotide

DNA probe (GATA)
%
, and found DNA- fingerprint

differences (the appearance of a new band variant) in

the 12th generation of a laboratory clone of S. a�enae.

Using RAPD markers, Lushai et al. (1998) demon-
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strated a mutational change in the germ line of a

clonal lineage after 14 generations. The study revealed

14 mutations in total over the course of 32 generations

(number of individuals tested¯ 344), 13 being somatic

(cell line) mutations. Note that in both these studies,

clonal hygiene was monitored against contamination

by other aphid strains using RAPDs. Most recently,

Forneck et al. (2001a, b ) using AFLP markers in an

attempt to show genetic differences within and among

lineages on different hosts (natal and novel grape root

stocks) over several generations, have revealed inter-

clonal as well as intraclonal variation in the gall

forming grape aphid phylloxera, Daktulosphaira

�itifoliae. Thus for example, in one study (Forneck et

al., 2001b ), genetic variability was low among 40

individuals from the fifth (G
&
) generation of four

independent parthenogenetic lineages reared on dif-

ferent hosts, including the original natal host, whilst

one lineage tested showed intraclonal differences. In

this insect group, in which chromosomes appear to be

quickly evolving at the molecular organisational level

(Sunnucks et al., 1996; Wilson et al., 1999; Blackman

et al., 2000), presumably the use of additional

molecular markers of greater resolution would, as

suggested earlier, reveal DNA mutations at gener-

ations earlier than the 5–14 quoted above.

It is also possible that aphids and other cyclical

parthenogens show rapid changes in the genome over

a short relative time frame due to transposable

elements (however, in some exceptional cases this

trend is significantly different, cf. Arkhipova &

Meselson 2000). Such elements are known to occur

in the Drosophila genome with transposition rates

in the range 10−& to 10−# (Nuzhdin et al., 1996).

More recently, other families of miniature inverted

repeat transposable elements (e.g. MITEs) have been

found to be widespread (40–10% copies) in the

genomes of mosquitoes of several genera (Tu,

2001). It has also been recently shown that inversion

break points in Drosophila buzzatii are related to

transposable element ‘hotspots ’ along the genome

(Ca! ceres et al., 2000). It appears that natural selection

directly affects inversion length polymorphism, the

‘most extensive evidence [being] in favour of the

notion that the adaptive value of inversions stems

from their effect on recombination’ (Ca! ceres et al.,

1999). Lastly, it is now well established that various

cyclical eukaryotic protozoans have several mechan-

isms of large-scale nuclear genomic re-arrangements,

possibly resulting from the action of transposons (e.g.

Yao, 1996), and which are likely to have adaptive

consequences.

Besides these direct structural changes to the

genome leading to intraclonal variation, sometimes

rapidly produced variation arises due to epigenetic

influences (Wolfe & Matzke, 1999), which affect the

expression of DNA in clonal lineages, although as far

as is known, the DNA sequence per se is not altered.

This could perhaps be described as a form of ‘near-

Lamarckism’, since environmental ‘ feed-back’ gov-

erns gene expression. An excellent example of this is

found in Aphids. For the past 30 years or so, extensive

application of pesticides in both greenhouses and the

field has selected for resistance to these compounds. In

Britain, the peach-potato aphid, Myzus persicae, one

of four resistant species of aphid in the UK, now

displays a range of resistance genotypes, designated

‘S’ (susceptible) to R
$
. In the highly resistant

genotypes (R
#

and above), the conferment of re-

sistance is related to an autosomal (A1, 3) trans-

location,whilstmany genotypes are also cross resistant

to different classes of chemicals e.g. primarily carba-

mates and organophosphates. The basic mechanism

of resistance is related to amplification of two closely-

related carboxylesterases, E4 and FE4. The copy

number of the genes coding for these enzymes increases

with increasing resistance to pesticides (Field et al.,

1996, Field et al. 1999), although other resistance

mechanisms such as ‘kdr ’ (knockdown resistance)

and MACE (modified acetylcholinesterase) are also

known (Devonshire et al., 1998; Foster et al., 2000).

Of interest is the fact that in the absence of high

pesticide selective pressure, the highly resistant forms

spontaneously revert to lower levels of resistance,

although the copy number of E4}FE4 genes is

unchanged (Field et al., 1999). The loss of resistance

(but not its recovery on re-application of pesticide

pressure) is known to be controlled by methylation of

the DNA (Field et al., 1989; Field, 2000; Hick et al.,

1996). These highly resistant forms, however, appear

to carry a fitness cost, probably associated with a

pleiotropic association of E4}FE4 expression with

other resistance mechanisms, especially knockdown

resistance to pyrethroids. This concerns a mutation of

the sodium channel gating of the nervous system

(Devonshire et al., 1998; Foster et al., 2000). Since

the highly resistant forms are less responsive to

alarm pheromones, less likely to leave senescent leaves

and may be less aerially mobile (Foster et al., 1996),

i.e. less likely to produce winged forms, they tend to

decline in frequency in the field over the winter

months in the UK (Foster et al., 1996). Hence, a clone

is seen to change with time, showing yet again, that

genetically, here in a phenotypic sense, they are un-

stable and adapt and evolve in accordance with

environmental selection.

All these genomic changes or indicators of genomic

expression are testament to the inherent variability of

clones. Although difficult to verify, it can be assumed

that all such mutations and related phenotypic

expressions are under selection e.g. Mu$ ller’s ratchet

(Mu$ ller, 1964) and the accumulation of deleterious

mutations must continually be purged from the

environment over time (see Charlesworth &
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Table 1. (a) Studies indicating intraclonal genetic �ariation and (b) rates of genetic change (per gene per

generation) for �arious genomes

(a)
Phage
Whole genome sequence Between 12 and 26 substitutions occurred in each

of the 9 genome lines traced, i.e. 119
substitutions at 68 nucleotide sites. A deletion
event involving 27 bases occurred in one lineage

Bull et al., 1997 (see also
Yin, 1993; Hillis et al.,
1994; Cunningham et al.,
1997)

Escherichia coli
IS-elements and 1 kb sequencing 1500 days of ‘evolutionary’ time traced to detect

genetic changes around 2 K generations
Papadopoulos et al., 1999

Daktulosphaira �itifoliae (aphid)
AFLPs Mutant bands after 2–5 generations. (n¯ 40) Forneck et al., 2001a, b

Megoura �iciae (aphid)
NORs Intraclonal and intra-individual NOR

heteromorphism
Mandrioli et al., 1999

Myzus persicae (aphid)
rDNA Variation within individuals, indicating two ITS

haplotypes
Fenton et al., 1988b

Rhopalosiphum padi (aphid)
RAPDs Band variation between phenotypes of the same

clone
Lushai et al., 1997

Sitobion a�enae (aphid)
(GATA)

%
5 kb. Mutant band after 12th generation. De Barro et al., 1994

RAPDs 14 mutations over 32 generations, including 1

gametic mutation after the 14th generation (n¯
344)

Lushai et al., 1998

Band variation between phenotypes of the same
clone (winged, wingless, and sexual forms)

Lushai et al., 1997

Sitobian miscanthi (aphid)
Karyotype Clonal karyotypic variation linked to host

adaptation
Sunnucks et al., 1996

S. miscanthi & S. nr. fragariae
Karyotype
Microsatellites

Intraclonal karyotypic variation greater than
microsatellite evolution

Wilson et al., 1999

Tramini (aphids)
EF-1a & mtDNA Low levels of clonal sequence divergence,

indicative of possible sexual leakage in
predominantly parthenogenetic lines

Normark, 1999

Daphnia pulex (water flea)
rDNA Both intra- and inter-chromosomal exchanges

occur between rDNA arrays in the absence of
meiosis.

Crease, & Lynch, 1991 ;
Crease, 1995

Drosophila melanogaster (fruit fly)
mtDNA High genetic polymorphism in cytochrome-b and

ATPase 6 genes within 59 lines
Rand & Kann, 1996

D. Simulans High genetic polymorphism in cytochrome b and
ATPase 6 genes within 29 lines

Diplosoma listerianum (clonal marine ascidian)
RAPDs Here, chimeric colonies are composed of several

genotypes
Sommerfeldt & Bishop, 1999

Gracilaria chilensis (algae)
RAPDs As growth occurred and biomass accumulated,

intraclonal genetic changes were detected
Meneses et al., 1999
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Table 1 (cont.)

Glomus spp., Scutellospora castanea (asexual fungi)
rDNA Highly polymorphic for 18s and ITS in different

nuclei within the same multinucleate fungal spore
LloydMacgilp et al., 1996;
Hijri et al., 1999; Hosny et
al., 1999; Sanders et al.,
1995; Sanders, 1999

Horizontal gene transfer Another mechanism responsible for operational
genes in both prokaryotes and eukaryotes being
moved between genomes causing genetic
variability

Jain et al., 1999

Somatic variation
Extensive examples in the plant kingdom, e.g.
variegated leaves

see Gill et al., 1995;
Klelowski, 1998

Mammalian micro- and minisatellite variation Jeffreys et al., 1997; Sajantila
et al., 1999

Epigenetic variation e.g. methylation induced Wolfe & Matzke, 1999

Transposable elements Host genome variation see Kidwell & Lisch 2000

(b)
Coding genes, including

proteins/allozymes

C10−*–10−& Dobzhansky et al., 1977;
Jarne & Lagoda, 1996;
Kondrashov, 1998

Microsatellites C10−&–10−# Jarne & Lagoda, 1996;
Luikart & England, 1999;
Goldstein & Schlo$ tterer,
1999

Minisatellites Up to 10−# Bruford et al., 1996

Mitochondrial DNA

insects C10−% Rand, 1994; Zhang &
Hewitt, 1997

mammals Parsons et al., 1997

Transposons 10−&–10−# Dimitri & Junakovic, 1999;
Nuzhdin et al., 1996

Charlesworth, 1997; Lynch & Blanchard, 1998). That

is not to say that non-lethal changes do not occur and

persist within the environment for short periods.

Conclusion

Certainly in nature nothing is static and all living

organisms must, and are, responsive to selection

pressure and evolve in order to fill novel habitats and

ecological niches. Thereby this reduces interspecific

competition for resources, including mates, in the case

of members of the same species. Similarly, clones must

also be under selective pressure and they too must

undergo adaptive change, leading to a reduction of

intraclonal competition for resources (this is outside

the scope of the present article but we discuss it

elsewhere; Loxdale et al., 2002).

According to Dobzhansky (1973) ‘Nothing in

biology makes sense except in the light of evolution’,

and indeed, why should clones be any different in this

respect and not evolve like everything else? [Note. The

point here is not a comparison with the e�olutionary

success of sexually reproducing organisms and their

capacity for generation of adapti�e �ariation.] From

what has been said, it is clear that clones do mutate by

a variety of mechanisms. Sometimes this happens

quickly, in other instances, over very long periods of

time, such that the phenomenon of ‘genome freeze’

seems to be apparent, as in bdelloid rotifers, where the

animals have hardly changed over aeons and seem to

consist of relatively few asexual lineages (Welch &

Meselson, 2000). In more general cases of strictly

apomictic lineages where no meiosis or recombination

is assumed to occur, other factors affect genotype

including ‘sexual leakage’. For example, rare lifecycle

strategies sometimes allow recombination between

asexual and sexual lines (cf. Delmotte et al., 2001) as

does the similar phenomenon of rare recombination,

where an uncommon sexual morph influences the

population at large (Normark, 1999).

Accepting that certain mechanisms of clonal evol-

ution do occur in all asexual lineages, both vertical

and horizontal (the relative time scales of operation of

which are discussed in Loxdale et al., 2002), the
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existence of a ‘genotype’ is only presently assessed

following the testing of a relatively few genetic loci.

We do not know what variation exists at other parts

of the genome and hence, clones should more

accurately be described as ‘clonotypes ’, a term already

in use in immunology (Song et al., 1999). This

argument is strengthened by genotype assessment

where markers revealing a greater level of resolution

proportionally increase the number of genotypes

determined. Ultimately, sequencing parts of the clonal

eukaryote genome (Normark & Moran, 2000) or its

mapping (Black et al., 2001, Hawthorne & Via, 2001)

is likely to reveal much more genetic variation, even to

the point that each individual within a clonal lineage

is different from another.

If this is so, then concepts of genetic fidelity within

eukaryotic clones are untenable and the whole

philosophy of the ‘clone’ must be re-defined and the

topic re-visted, hopefully using the armoury of

advanced molecular markers now available. We

encourage people not to accept the old, unproven

dogma that clones are ‘genetically identical ’, not only

in terms of sequence fidelity but also DNA expression.

This point is duly exemplified by the recent develop-

ments in cloned mammals which show epigenetic

changes, potentially affecting fitness and ultimately

survival and reproduction (Humpherys et al., 2001).

We thank Dr Steve Foster for his helpful comments on
insecticide resistance in aphids and Drs Nicola von Mende
and Keith Davies for their intellectual support and
encouragement. Gugs Lushai was supported by a NSERC
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FoodandRuralAffairs (DEFRA)UK, for financial support.

References

Abercrombie, M., Hickman, M., Johnson, M. L. & Thain,

M. (1990). The New Penguin Dictionary of Biology, 8th

edition, Penguin Books, London, UK.

Arkhipova, I. & Meselson, M. (2000). Transposable

elements in sexual and ancient asexual taxa. Proceedings

of the National Academy of Sciences of the USA 97,

14473–14477.

Black, W. C., Baer, C. F., Antolin, M. F. & DuTeau, N. M.

(2001). Population genomics : genome-wide sampling of

insect populations. Annual Re�iew of Entomology 46,

441–469.

Blackman, R. L. (1979). Stability and variation in aphid

clonal lineages. Biological Journal of the Linnean Society

11, 259–277.

Blackman, R. L. (1981). Species, sex and parthenogenesis in

aphids. In The E�ol�ing Biosphere (ed. P. L. Forey), pp.

75–85, British Museum (Natural History) : Cambridge

University Press.

Blackman, R. L. (2000). The cloning experts. Antenna

(Bulletin of the Royal Entomological Society) 24, 206–

214.

Blackman, R. L., Spence, J. M. & Normark, B. B. (2000).
High diversity of structural heterozygous karyotypes and
rDNA arrays in parthenogenetic aphids of the genus
Trama (Aphididae: Lachninae). Heredity 84, 254–260.

Brookes, C. P. & Loxdale, H. D. (1987). Survey of enzyme
variation in British populations of Myzus persicae (Sulzer)
(Hemiptera: Aphididae) on crops and weed hosts. Bulletin
of Entomological Research 77, 83–89.

Bruford, M. W., Cheesman, D. J., Coote, T., Green,
H. A. A., Haines, S. A., O’Ryan, C. & Williams, T. R.
(1996). Microsatellites and their application to con-
servation genetics. In Molecular Genetic Approaches
in Conser�ation (ed. T. B. Smith & R. K. Wayne),
pp. 278–297. Oxford University Press : Oxford, UK.

Bull, J. J., Badgett, M. R., Wichman, H. A., Huelsenbeck,
J. P., Hillis, D. M., Gulati, A., Ho, C. & Molineux, I. J.
(1997). Exceptional convergent evolution in a virus.
Genetics 147, 1497–1507.

Ca! ceres, M., Barbadilla, A. & Ruiz, A. (1999). Recom-
bination rate predicts inversion size in Diptera. Genetics
153, 251–259.

Ca! ceres, M., Ranz, J. M., Barbadilla, A. & Ruiz, A. (2000).
Transposons are implicated in the generation of natural
chromosomal rearrangements in insects. Abstract [2213]
for invited lecture at XXI. Congress of Entomology,
Iguassu Falls, Brazil, 20–26 August, 2000. Abstract Book
1, p. 559.

Charlesworth, B. & Charlesworth, D. (1997). Rapid fixation
of deleterious alleles can be caused by Mu$ ller’s ratchet.
Genetical Research 70, 63–73.

Crampton, J. M., Beard., C. B. & Louis, C. (eds.) (1996).
The Molecular Biology of Insect Disease Vectors. Kluwer
Academic Publishers, pp. 604.

Crease, T. J. (1995). Ribosomal DNA evolution at the
population-level – nucleotide variation in intergenic
spacer arrays of Daphnia pulex. Genetics 141, 1327–1337.

Crease, T. J. & Lynch, M. (1991). Ribosomal DNAvariation
in Daphnia pulex. Molecular Biology and E�olution 8,
620–640.

Cunningham, C. W., Jeng, K., Husti, J., Badgett, M.,
Molineux, I. T., Hillis, D. M. & Bull, J. J. (1997). Parallel
molecular evolution of deletions and nonsense mutations
in bacteriophage T7. Molecular Biology & E�olution 14,
113–116.

Davelos, A. L., Alexander, H. M. & Slade, N. A. (1996).
Ecological genetic interactions between a clonal host
plant (Spartina pectinata) and associated rust fungi
(Puccinia seymouriana and Puccinia sparganioides). Oeco-
logia 105, 205–213.

DeBarro, P. J., Sherratt, T., Wratten, S. & Maclean, N.
(1994). DNA fingerprinting of cereal aphids using
(GATA)

%
. European Journal of Entomology 91, 109–114.

Delmotte, F., Leterme, N., Bonhomme, J., Rispe, C. &
Simon, J-C. (2001). Multiple routes to asexuality in an
aphid species. Proceedings of the Royal Society, London.
Series B 268, 2291–2299.

Devonshire, A. L., Field, L. M., Foster, S. P., Moores,
G. D., Williamson, M. S. & Blackman, R. L. (1998). The
evolution of insecticide resistance in the peach-potato
aphid, Myzus persicae. Philosophical Transactions of the
Royal Society of London, Series B 353, 1677–1684.

Dimitri, P. & Junakovic, N. (1999). Revising the selfish
DNA hypothesis. New evidence on accumulation of
transposable elements in heterochromatin. Trends in
Genetics 15, 123–124.

Dixon, A. F. G. (1998). Aphid Ecology, 2nd ed. Chapman &
Hall : London. pp. 300.

https://doi.org/10.1017/S0016672301009582 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672301009582


The biological improbability of a clone 7

Dobzhansky, T. (1973). Nothing in biology makes sense
except in the light of evolution. American Biology Teacher
35, 125–129.

Dobzhansky, T., Ayala, F. J., Stebbins, G. L. & Levine,
J. W. (1977). E�olution. W. H. Freeman & Company, San
Francisco.

Fenton, B., Woodford, J. A. T. & Malloch, G. (1998a).
Analysis of clonal diversity of the peach-potato aphid,
Myzus persicae (Sulzer), in Scotland, UK and evidence
for the existence of a predominant clone. Molecular
Ecology 7, 1475–1487.

Fenton, B., Malloch, G. & Germa, F. (1998b). A study of
variation in rDNA ITS regions shows that two haplotypes
coexist within a single aphid genome. Genome 41, 337–345.

Field, L. M. (2000). Methylation and expression of amplified
esterase genes in the aphid Myzus persicae (Sulzer).
Biochemical Journal 349, 863–868.

Field, L. M., Blackman, R. L., Tyler-Smith, C. & Devon-
shire, A. L. (1999). Relationship between amount of
esterase and gene copy number in insecticide resistant
Myzus persicae (Sulzer). Biochemical Journal 339, 737–
742.

Field, L. M., Devonshire, A. L., ffrench-Constant, R. H. &
Forde, B. G. (1989). Changes in DNA methylation are
associated with loss of insecticide resistance in the peach-
potato aphid Myzus persicae (Sulz.). FEBS Letters 243,
323–327.

Field, L. M., Devonshire, A. L. & Tyler-Smith, C. (1996).
Analysis of amplicons containing the esterase gene
responsible for insecticide resistance in the peach-potato
aphid Myzus persicae (Sulzer). Biochemical Journal 313,
543–547.

Forneck, A., Walker, M. A. & Blaich, R. (2001a). An in
�itro assessment of phylloxera (Daktulosphaira �itifoliae
Fitch) (Hom., Phylloxeridae) life cycle. Journal of Applied
Entomology 125, 443–447.

Forneck, A., Walker, M. A., Blaich, R. (2001b ). Ecological
and genetic aspects of grape phylloxera’s (Daktulosphaira
�itifoliae Fitch) performance on rootstock hosts. Bulletin
of Entomological Research 91, 445–452.

Foster, S. P., Denholm, I. & Devonshire, A. L. (2000). The
ups and downs of insecticide resistance in peach-potato
aphids (Myzus persicae) in the UK. Crop Protection 19,
873–879.

Foster, S. P., Harrington, R., Devonshire, A. L., Denholm,
I., Devine, G. L. & Kenward, M. G. (1996). Comparative
survival of insecticide- susceptible and resistant peach-
potato aphids, Myzus persicae (Sulzer) (Hemiptera:
Aphididae), in low temperature field trials. Bulletin of
Entomological Research 86, 17–27.

Fox, J. A., Dybdahl, M. F., Jokela, J. & Lively, C. M.
(1996). Genetic structure of coexisting sexual and clonal
subpopulations in a freshwater snail (Potamopyrgus
antipodarum). E�olution 50, 1541–1548.

Gill, D. E., Chao, L., Perkins, S. L. & Wolf, J. B. (1995).
Genetic mosaicism in plants and clonal animals. Annual
Re�iew of Ecology & Systematics 26, 423–444.

Goldstein, D. B. & Schlo$ tterer C. (1999). Microsatellites,
E�olution and Applications. Oxford University Press,
Oxford. 352 pp.

Grbic, M., Nagy, L. M. & Strand, M. R. (1998). De-
velopment of polyembryonic insects : a major departure
from typical insect embryogenesis. De�elopment Genes
and E�olution 208, 69–81.

Harry, M., Robin, S. & Lachaise, D. (1998). Use of
polymorphic markers (RAPDs) in evolutionary and
applied entomology. Annales de la SocieU teU Entomologique
de France 34, 9–32.

Hartl, D. L., Lohe, A. R. & Lozovskaya, E. R. (1997).
Modern thoughts on an ancyent marinere : function,
evolution, regulation. Annual Re�iew of Genetics 31,
337–358.

Harvell, C. D. (1998). Genetic variation and polymorphism
in the inducible spines of a marine bryozoan. E�olution
52, 80–86.

Hawthorne, D. J. & Via, S. (2001). Genetic linkage of
ecological specialization and reproductive isolation in pea
aphids. Nature 412, 904–907.

Hebert, P. D. N., Ward, R. D. & Gibson, J. B. (1972).
Natural selection for enzyme variance among partheno-
genetic Daphnia magna. Genetical Research 19,
173–176.

Hick, C. A., Field, L. M. & Devonshire, A. L. (1996).
Changes in methylation of amplified esterase DNA during
loss and reselection of insecticide resistance in peach-
potato aphids, Myzus persicae. Insect Biochemistry &
Molecular Biology 26, 41–47.

Hijri, M., Hosny, M, vanTuinen, D. & Dulieu, H. (1999).
Intraspecific ITS polymorphism in Scutellospora castanea
(Glomales, Zygomycota) is structured within multi-
nucleate spores. Fungal Genetics & Biology 26, 141–151.

Hillis, D. M., Huelsenbeck, J. P. & Cunningham, C. W.
(1994). Application and accuracy of molecular phylo-
genies. Science 255, 671–677.

Hodgson, D J. (2001). Monoclonal aphid colonies and the
measurement of clonal fitness. Ecological Entomology 26,
444–448.

Hosny, M., Hijri, M., Passerieux, E. & Dulieu, H. (1999).
rDNA units are highly polymorphic in Scutellospora
castanea (Glomales, Zygomycetes). Gene 226, 61–71.

Hoy, M. A. (1994). Insect Molecular Genetics. Academic
Press, London. pp. 288.

Hubby, J. L. & Lewontin, R. C. (1966). A molecular
approach to the study of genic heterozygosity in natural
populations. I. The number of alleles at different loci in
Drosophila pseudoobscura. Genetics 54, 577–594.

Humpherys, D., Eggan, K., Akutsu, H., Hochedlinger, K.,
Rideout, W. M., Biniszkiewicz, D., Yanagimachi, R. &
Jaenisch, R. (2001). Epigenetic instability in ES cells and
cloned mice. Science 293, 95–97.

Jain, R., Rivera, M. C. & Lake, J. A. (1999). Horizontal
gene transfer among genomes: the complexity hypothesis.
Proceedings of the National Academy of Sciences of the
USA 96, 3801–3806.

Jarne, P. & Lagoda, P. J. L. (1996). Microsatellites, from
molecules to populations and back. Trends in Ecology &
E�olution 11, 424–429.

Jeffreys, A. J. et al. (1997). Spontaneous and induced
minisatellite instability in the human genome. Clinical
Science 93, 383–390.

Kearsley, M. J. C. & Whitham, T. G. (1998). The de-
velopmental stream of cottonwoods affects ramet growth
and resistance to galling aphids. Ecology 79, 178–191.

Kidwell, M. G. & Lisch, D. R. (2000). Transposable
elements and host genome evolution. Trends in Ecology &
E�olution 15, 95–99.

King, L. M. & Schaal, B. A. (1990). Genotypic variation
within asexual lineages of Taraxacum officinale. Pro-
ceedings of the National Academy of Sciences, USA 87,
998–1002.

Klekowski, E. J. (1998). Mutation rates in mangroves and
other plants. Genetica 103, 325–331.

Kondrashov, A. S. (1998). Measuring spontaneous del-
eterious mutation process. Genetica 103, 183–197.

Lewontin, R. C. & Hubby, J. L. (1966). A molecular
approach to the study of genic heterozygosity in natural

https://doi.org/10.1017/S0016672301009582 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672301009582


G. Lushai and H. D. Loxdale 8

populations. II. The amount of variation and degree of
heterozygosity in natural populations of Drosophila
pseudoobscura. Genetics 54, 595–609.

LloydMacgilp, S. A., Chambers, S. M., Dodd, J. C., Fitter,
A. H., Walker, C. & Young, J. P. W. (1996). Diversity of
the ribosomal internal transcribed spacers within and
among isolates of Glomus mossae and related mycorrhizal
fungi. New Phytologist 133, 103–111.

Loxdale, H. D. & Lushai, G. (1998). Molecular markers in
entomology (Review). Bulletin of Entomological Research
88, 577–600.

Loxdale, H. D. & Lushai, G. (1999). Slaves of the
environment: the movement of insects in relation to their
ecology and genotype. Philosophical Transactions of the
Royal Society, Series B 354, 1479–1495.

Loxdale, H. D., Brookes, C. P. & De Barro, P. J. (1996).
Application of novel molecular markers (DNA) in
agricultural entomology. Chapter 7. In The Ecology of
Agricultural Pests : Biochemical Approaches (ed. W. O. C.
Symondson & J. E. Liddell), pp. 149–198. Systematics
Association Special Vol. no: 53, Chapman & Hall, UK,
pp. 517.

Loxdale,H. D., Lushai, G. & Allen, J. A. (2002). Adaptation
in clones: an overview with special reference to multi-
cellular organisms. Biological Re�iews (in preparation).

Lushai, G., De Barro, P. J., David, O., Sherratt, T. N. &
Maclean, N. (1998). Genetic variation within a par-
thenogenetic lineage. Insect Molecular Biology 7, 337–344.

Lushai, G., Loxdale, H. D., Brookes, C. P., von Mende, N.,
Harrington, R. & Hardie, J. (1997). Genotypic variation
among different phenotypes within aphid clones. Pro-
ceedings of the Royal Society of London, Series B 264,
725–730.

Luikart, G. & England, P. R. (1999). Statistical analysis of
microsatellite DNA data. Trends in Ecology & E�olution
14, 253–256.

Lynch, M. & Blanchard, J. L. (1998). Deleterious mutation
accumulation in organelle genomes. Genetica 103, 29–39.

Mandrioli, M., Manicardi, G. C., Bizzaro, D & Bianchi, U.
(1999). NOR heteromorphism within a parthenogenetic
lineageof the aphidMegoura �iciae.ChromosomeResearch
7, 157–162.

McFadden, C. S. (1997). Contributions of sexual and
asexual reproduction to population structure in the clonal
soft coral, Alyonium rudyi. E�olution 51, 112–126.

Meneses, I., Santelices, B. & Sanchez, P. (1999). Growth-
related intraclonal genetic changes in Gracilaria chilensis
(Gracilariales : Rhodophyta). Marine Biology 135, 391–
397.

Moran, N. A. (1994). Adaptation and constraint in the
complex life cycles of animals. Annual Re�iew of Ecology
& Systematics 25, 573–600.

Mu$ ller, H. J. (1964). The relation of recombination to
mutational advance. Mutation Research 1, 2–9.

Nicol, D., Armstrong, K. F., Wratten, S. D., Cameron,
C. M., Frampton, C. & Fenton, B. (1997). Genetic
variation in an introduced aphid pest (Metopolophium
dirhodum) in New Zealand and relation to individuals
from Europe. Molecular Ecology 6, 255–265.

Normark, B. B. (1999). Evolution in a putatively ancient
asexual aphid lineage: recombination and rapid karyotype
change. E�olution 53, 1458–1469.

Normark, B. B. & Moran, N. A. (2000). Testing for the
accumulation of deleterious mutations in asexual eukary-
ote genomes usingmolecular sequences. Journal of Natural
History 34, 1719–1729.

Nowak, R. M. (1991). Armadillos (Xenarthra: Family
Dasypodidae) (p. 526). Walker’s Mammals of the World.

Vol. I, 5th ed. The Johns Hopkins University Press,
Baltimore and London, pp. 657.

Nuzhdin, S. V., Pasyukova, E. G. & Mackay, T. F. (1996).
Positive association between copia transposition rate and
copy number in Drosophila melanogaster. Proceedings of
the Royal Society of London, Series B 263, 823–831.

Papadopoulos, D., Schneider, D., Meier-Eiss, J., Arber, W,
Lenski, R. E. & Blot, M. (1999). Genomic evolution
during a 10000-generation experiment with bacteria.
Proceedings of the National Academy of Sciences of the
USA 96, 3807–3812.

Parsons, T. J., Muniec, D. S., Sullivan, K., Woodyatt, N.,
AllistonGreiner, R., Wilson, M. R., Berry, D. L., Hol-
land, K. A., Weedn, V. W., Gill, P. & Holland, M. M.
(1997). A high observed substitution rate in the human
mitochondrial DNA control region. Nature Genetics 15,
363–368.

Radman, M. (1999). Enzymes of evolutionary change.
Nature 40, 866–869.

Rand, D. M. (1994). Concerted evolution and RAPping in
mitochondrial VNTRs and the molecular geography of
cricket populations.Molecular Ecology&E�olution, Series
Experientia Supplementum (EXS) 69, 227–245.

Rand, D. M & Kann, L. M. (1996). Excess amino acid
polymorphism in mitochondrial DNA: contrasts among
genes from Drosophila, mice, and humans. Molecular
Biology & E�olution 13, 735–748.

Sajantila, A., Lukka, M. & Syvanen, A. C. (1999). Ex-
perimentally observed germline mutations at human
micro- and minisatellite loci. European Journal of Human
Genetics 7, 263–266.

Sanders, I. R. (1999). No sex please, we’re fungi. Nature
399, 737–739.

Sanders, I. R., Alt, M., Groppe, K., Boller, T. & Wiemken,
A. (1995). Identification of ribosomal DNA poly-
morphisms among and within spores of the Glomales
Application to studies on the genetic diversity of
arbuscular mycorrhizal fungal communities. New Phy-
tologist 130, 419–427.

Simon, J. C., Baumann, S., Sunnucks, P., Hebert, P. D. N.,
Pierre, J. S., LeGallic, J. F. & Dedryver, C. A. (1999).
Reproductive mode and population genetic structure of
the cereal aphid Sitobion a�enae studied using phenotypic
and microsatellite markers. Molecular Ecology 8, 531–545.

Sommerfeldt, A. D. & Bishop, J. D. D. (1999). Random
amplified polymorphic DNA (RAPD) analysis reveals
extensive natural chimerism in a marine protochordate.
Molecular Ecology 8, 885–890.

Song, H., Nie, X., Basu, S., Singh, M. & Cerny, J. (1999).
Regulation of V-H gene repertoire and somatic mutation
in germinal centre B cells by passively administered
antibody. Immunology 98, 258–266.

Sunnucks, P., De Barro, P. J., Lushai, G., Maclean, N. &
Hales, D. (1997). Genetic structure of an aphid studied
using microsatellites : cyclic parthenogenesis, differ-
entiated lineages, and host specialisation. Molecular
Ecology 6, 1059–1073.

Sunnucks, P., England, P. E., Taylor, A. C. & Hales, D. F.
(1996). Microsatellite and chromosome evolution of
parthenogenetic Sitobion aphids in Australia. Genetics
144, 747–756.

Sunnucks, P., Wilson, A. C. C., Beheregaray, L. B., Zenger,
K., French, J. & Taylor, A. C. (2000). SSCP is not so
difficult : the application and utility of single-stranded
conformation polymorphism in evolutionary biology and
molecular ecology. Molecular Ecology 9, 1699–1710.

Tu, Z. (2001). Eight novel families of miniature inverted

https://doi.org/10.1017/S0016672301009582 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672301009582


The biological improbability of a clone 9

repeat transposable elements in the African malaria
mosquito, Anopheles gambiae. Proceedings of the National
Academy of Sciences of the USA 98, 1699–1704.

Turner, B. J., Elder, J. F. Jr., Laughlin, T. F. & Davis,
W. P. (1990). Genetic variation in clonal vertebrates
detected by simple-sequence DNA fingerprinting. Pro-
ceedings of the National Academy of Sciences of the USA
87, 5653–5657.

Turner, B. J., Elder, J. F. Jr., Laughlin, T. F., Davis, W. P.
& Taylor, D. S. (1992). Extreme clonal diversity and
divergence in populations of a selfing hermaphroditic fish.
Proceedings of the National Academy of Sciences of the
USA 89, 10643–10647.

Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee,
T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper,
M. & Zabeau, M. (1995). AFLP: a new technique for
DNA fingerprinting. Nucleic Acids Research 23, 4407–
4414.

Welch, D. & Meselson, M. (2000). Evidence for the evolution
of bdelloid rotifers without sexual reproduction or genetic
exchange. Science 288, 1211–1215.

Wilson, A. C., Sunnucks, P. & Hales, D. F. (1999).
Microevolution, low clonal diversity and genetic affinities
of parthenogenetic Sitobion aphids in New Zealand.
Molecular Ecology 8, 1655–1666.

Wolfe, A. P. & Matzke, M. A. (1999). Epigenetics : regu-
lation through repression. Science 286, 481–486.

Yao, M. C. (1996). Programmed DNA deletions in Tetra-
hymena: mechanisms and implications. Trends in Genetics
12, 26–30.

Yin, J. (1993). Evolution of bacteriophage T7 in a growing
plaque. Journal of Bacteriology 175, 1272–1277.

Zhang, D-X. & Hewitt, G. M. (1997). Insect mitochondrial
control region: a review of its structure, evolution and
usefulness in evolutionary studies. Biochemical System-
atics & Ecology 25, 99–120.

https://doi.org/10.1017/S0016672301009582 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672301009582

