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The Large Sieve Inequality for the

Exponential Sequence λ[O(n15/14+o(1))]

Modulo Primes

M. Z. Garaev

Abstract. Let λ be a fixed integer exceeding 1 and sn any strictly increasing sequence of positive integers

satisfying sn ≤ n15/14+o(1). In this paper we give a version of the large sieve inequality for the sequence

λsn . In particular, we obtain nontrivial estimates of the associated trigonometric sums “on average”

and establish equidistribution properties of the numbers λsn , n ≤ p(log p)2+ε, modulo p for most

primes p.

1 Introduction

Studying trigonometric sums with exponential functions is a traditional question
with a variety of results and numerous applications, for a detailed description see the

Introduction of [10] and extensive references therein. Recently, in a series of works,

spectacular results in this area have been obtained [3–5]. One such result, given
by Bourgain, Glibichuk, and Konyagin [4], states that there exist positive constants

C1,C2, and C3 such that for δ > 0, A ⊂ Z
∗
p with |A| ≥ pδ and any k ≥ δ−C3 the

following bound holds:

max
(a,p)=1

∣

∣

∣

∑

x1,...,xk∈A

e2πiax1...xk/p
∣

∣

∣
< |A|k p−γ, γ = exp(−C1/δC2 ).

Here p denotes a prime number, Z
∗
p is a multiplicative group of nonzero elements of

the field Zp, and |A| is the cardinality of A. Its direct consequence is the bound of the

type

(1.1) max
(a,p)=1

∣

∣

∣

t
∑

z=1

e2πiaλz/p
∣

∣

∣
< t p−γ

for t > pδ, where t denotes the multiplicative order of λ modulo p, (see also [4,

Corollary 1] for the estimate of incomplete sums). The best previously known result
gave a nontrivial estimate only for t > p1/4+δ , (see [14]).

Deep results in this spirit have been obtained by Bourgain [3] for double trigono-

metric sums with exponential functions over short intervals. Among many other
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applications, these results, in combination with the approach of [1], have been used
to obtain equidistribution properties of Mersenne numbers Mq = 2q − 1, q < N,

modulo p for most primes p, provided N > t2+ε, where t is the multiplicative order
of 2 modulo p, (see [3, Theorem 6, Corollaries 7, 8] for the precise statements).

An alternative approach has been suggested in [10], based on the large sieve in-
equality, to obtain nontrivial estimates of trigonometric sums with exponential func-

tions and to investigate the problem of distribution of λn (mod p), n ∈ S, for gen-
eral sets S, “on average” over primes p. From the result of Erdős and Murty [8] we

know that for a fixed λ the estimate tp > X1/2+o(1) holds for almost all primes p ≤ X,
where tp = tp(λ) denotes the multiplicative order of λ modulo p. This has been used
in [10] to obtain a nontrivial bound for the exponential sum

max
(a,p)=1

∣

∣

∣

∑

n∈SN

ep(aλn)
∣

∣

∣

for π(X) + o(π(X)) primes p ≤ X, provided that SN ⊂ [1, N] is sufficiently dense

(that is |SN | > N1+o(1)) and N is of the size X1+o(1).

The result in [10] does not apply to sparser sets SN , but it is shown that such re-

sults can be obtained conditionally; for example, assuming the truth of the Extended
Riemann Hypothesis one can get nontrivial results for sparse sets of cardinality as

small as |SN | ≥ N1/2+ε.

In this paper we provide a new argument which allows us to deal with sparse sets

SN unconditionally and which improves the corresponding result of [10] for dense
sets SN too. In particular, we obtain equidistribution properties of λn (mod p), n ∈
SN , with |SN | > N14/15−o(1). Furthermore, while the result of [10] only applies for

the set of primes p ≤ X with tp > X1/2(log X)c, c > 0, our results work when

tp > ∆, where, depending on how sparse the set SN is, ∆ varies in (X1/3+ε, X1/2+o(1)].
This is important in obtaining sharp estimates for the exceptional set of primes p in

the equidistribution problem of the sequence λn (mod p), n ∈ SN , and in obtaining

exponential cancellations in upper bound estimates for the associated trigonometric
sums. In particular, Theorem 3.1 with ∆ ≈ X1/2(log X)−10 has found its appliction

in [2], where equidistribution properties of sequences related to pseudoprimes have
been established.

The underlying idea of our approach is to tie our problem to the set of exponent
pairs for Gauss sums via the large sieve inequality, see Section 7 for the definition. The

results of this paper correspond to the pair due to Heath-Brown and Konyagin. We
show that further improvements can be obtained if one knows how to complement

in a specific way the set of exponent pairs for Gauss sums given by Konyagin [14].

In particular, we establish a connection between our problem and the conjecture of
Montgomery, Vaughan, and Wooley [15].

2 Notation

Throughout the paper the following notations will be used:

λ denotes a fixed positive integer, λ ≥ 2;
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X and T are large parameters, T is an integer;

∆ > X1/3 is a parameter;

sn, n = 1, 2, . . . , is a strictly increasing sequence of positive integers (which may

depend on the parameters X, T, ∆);

γn, n = 1, 2, . . . , are any complex coefficients (which may depend on the parame-

ters X, T, ∆) with |γn| ≤ 1;

p and q always denote prime numbers;

tp = tp(λ) denotes the multiplicative order of λ modulo p;

E = E(∆, X) = {p : p ≤ X, tp > ∆}; that is the set of all primes p, p ≤ X, with

tp > ∆;

For integers a and b, their greatest common divisor is denoted by (a, b).
Given a set X we use |X| to denote its cardinality. As usual, π(X) denotes the

number of primes not exceeding X, and τ(n) denotes the number of positive integer
divisors of n. We also follow the standard abbreviation em(z) = e2πiz/m.

In what follows, we use the Landau symbol ‘o’, as well as the Vinogradov symbols

‘≪’ and ‘≫’ with their usual meanings. The implied constants may depend on the
small positive quantity ε, λ, and other fixed constants, and also on the choice of the

function ν(n) (in Corollary 3.2 below, see also (3.1)).

3 Results

The following statement is the main result of our paper. We recall that s1, s2, . . . , is

any sequence of strictly increasing positive integers.

Theorem 3.1 For any L > 0 the following bound holds:

∑

p∈E

1

τ(p − 1)
max

(a,p)=1

∣

∣

∣

∑

n≤T

γnep(aλsn )
∣

∣

∣

2

≪ (X + sT X1/7
∆

−3/7L + TL−7/4)XT.

If we optimize the choice of L, then the estimate can be reformulated in the form

∑

p∈E

1

τ(p − 1)
max

(a,p)=1

∣

∣

∣

∑

n≤T

γnep(aλsn )
∣

∣

∣

2

≪ (1 + (s7
TT4X−10

∆
−3)1/11)X2T.

As we have already mentioned in the Introduction, the result of [8] implies that
for π(X)(1 + o(1)) primes p, p ≤ X, the inequality tp > X1/2+g(X) holds for any given

function g(x) = o(1). With this in mind, assume that the sequence sn satisfies the

condition

(3.1) sn ≤ n15/14+νn , lim
n→∞

νn = 0,

where νn is an absolutely fixed sequence (which, therefore, does not depend on the

parameters T, X, ∆). Set T = [X(log X)2+ε] and define L = T|νT |(log T)10, ∆ =
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T1/2L7. Obviously, L7
= Xo(1), ∆ = X1/2+o(1) as X → ∞. Therefore, |E| = π(X)(1 +

o(1)). Incorporating this choice of the parameters in Theorem 3.1, we obtain

∑

p∈E

1

τ(p − 1)
max

(a,p)=1

∣

∣

∣

∑

n≤T

γnep(aλsn )
∣

∣

∣

2

≪ X2T + XT2(log T)−10 ≪ XT2(log T)−2−ε.

Next, let E′ be the subset of E with τ(p − 1) < (log X)1+ε/2. From the Titchmarsh

bound

(3.2)
∑

p≤X

τ(p − 1) ≪ X

(see for example [11, Theorem 3.9] or [16, Chapter 5, Theorem 7.1]) it follows that
the inequality τ(p − 1) ≪ (log X)1+ε/2 holds for π(X)(1 + O((log X)−ε/2)) primes

p, p ≤ X. That is, we still have |E′| = π(X)(1 + o(1)). Now, we restrict the range of

summation over p in the above bound to E
′. Then

∑

p∈E ′

max
(a,p)=1

∣

∣

∣

∑

n≤T

γnep(aλsn )
∣

∣

∣

2

≪ π(X)T2(log T)−ε/2.

From this, by taking γn = 1, we deduce the following consequence.

Corollary 3.2 Let sn satisfy the condition (3.1) and let T = [X(log X)2+ε]. Then the

inequality

max
(a,p)=1

∣

∣

∣

∑

n≤T

e2πi aλsn

p

∣

∣

∣
≪ T(log T)−ε/5

holds for all primes p, p ≤ X, except at most o(π(X)) of them.

We recall that the discrepancy D of a sequence of N points (x j)
N
j=1 of the unit

interval [0, 1) is defined as

D = sup
0≤a,b≤1

∣

∣

∣

A(a, b)

N
− (b − a)

∣

∣

∣
,

where A(a, b) is the number of points of this sequence which belong to [a, b).
Now let D(p, X) denote the discrepancy of the fractional parts {λsn/p}, n ≤

X(log X)2+ε, where sn satisfies the condition (3.1). According to the well-known
Erdős–Turán relation between the discrepancy and the associated exponential sums

(see, for example, [7]), we derive from Corollary 3.2 that for π(X)(1 + o(1)) primes

p, p ≤ X, the following bound holds with some ε1 > 0: D(p, X) ≪ (log X)−ε1 . In
other words, the numbers λsn , n ≤ X(log X)2+ε are uniformly distributed modulo p

for any given ε > 0. In particular, one can take sn = [qc
n], where 1 ≤ c ≤ 15/14 and

qn denotes the n-th prime number.

The following statement is an analogy of Theorem 3.1, where the range of sum-

mation over n now depends on p.
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Theorem 3.3 Let Tp, p ∈ E, be any positive integers with Tp ≤ T and let E1 ⊂ E.
For any positive numbers L and K the following bound holds:

∑

p∈E1

1

τ(p − 1)
max

(a,p)=1

∣

∣

∣

∑

n≤Tp

γnep(aλsn )
∣

∣

∣

2

≪ (X + sTX1/7
∆

−3/7L + TL−7/4)XT(log K)2 +
T2

K2

∑

p∈E1

1

τ(p − 1)
.

Taking E1 = E and K = T and observing that the last term never dominates, we

see that Theorem 3.3 extends Theorem 3.1 to more general sums at the cost of the

slight factor (log T)2. In some applications one can further relax this factor by special
choices of E1 and K.

One may want to have an explicit estimate for |E|, where E = {p : p ≤ X, p 6∈ E}.

In this connection we remark that the argument given in [8] immediately yields the
bound

|E| ≪
∆

2

log ∆
.

Indeed
∏

p∈E

p |
∏

k≤∆

(λk − 1),

Therefore, if ω(n) denotes the number of prime divisors of n, then we have

|E| ≪ ω
(

∏

k≤∆

(λk − 1)
)

≪
∆

2

log ∆
,

where we have used the well-known estimate ω(n) ≪ (log n)(log log n)−1.

For ∆ = X1/2+o(1) one can use the results from [13] and [9].

4 Lemmas

We need the version of the large sieve inequality applied to our situation (recall that

|γn| ≤ 1).

Lemma 4.1 For any K ≥ 1 the following estimate holds:

∑

k≤K

∑

1≤c≤k
(c,k)=1

∣

∣

∣

∑

n≤T

γnek(csn)
∣

∣

∣

2

≪ (K2 + sT)T.

For the proof, see [6, pp. 153–154].

The following statement is due to Heath-Brown and Konyagin [12].
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Lemma 4.2 Let an integer θ be of multiplicative order t modulo p. Then the following

bound holds:

max
(a,p)=1

∣

∣

∣

t
∑

z=1

ep(aθz)
∣

∣

∣
≪ min{p1/2, p1/4t3/8, p1/8t5/8}.

Instead of Lemma 4.2 one can use the estimate (1.1), which however does not

improve our final results.

5 Proof of Theorem 3.1

For L ≤ 1 the estimate of Theorem 3.1 is trivial. Therefore, we will suppose that
L > 1.

Let

σp(a) =

∑

n≤T

γnep(aλsn ).

For each residue class x (mod tp) we first collect together the values of n for which

sn ≡ x (mod tp) and then express this condition by virtue of rational exponential
sums. Then

σp(a) =

tp
∑

x=1

∑

n≤T
tp |sn−x

γnep(aλsn ) =
1

tp

tp
∑

x=1

tp
∑

b=1

∑

n≤T

γnetp
(b(sn − x))ep(aλx).

For each divisor d|tp we collect together the values of b with (b, tp) = d. Thus

σp(a) =
1

tp

∑

d|tp

tp
∑

x=1

∑

c≤tp/d

(c,tp/d)=1

∑

n≤T

γnetp/d(c(sn − x))ep(aλx).

We treat the cases of big and small values of d separately. For big values of d we will

enjoy the summation over x in a proper way to get cancellations that are sufficient to
our purposes. The small values of d are treated in a different way. Thus, we define

vp = t
4/7
p p1/7 and set

R1 = max
(a,p)=1

∣

∣

∣

∣

∣

1

tp

∑

d|tp

d≥Lvp

tp
∑

x=1

∑

c≤tp/d

(c,tp/d)=1

∑

n≤T

γnetp/d(c(sn − x))ep(aλx)

∣

∣

∣

∣

∣

,(5.1)

R2 = max
(a,p)=1

∣

∣

∣

∣

∣

1

tp

∑

d|tp

d<Lvp

tp
∑

x=1

∑

c≤tp/d

(c,tp/d)=1

∑

n≤T

γnetp/d(c(sn − x))ep(aλx)

∣

∣

∣

∣

∣

.(5.2)
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Then max(a,p)=1 |σp(a)| ≤ R1 + R2. In particular,

(5.3)
∑

p∈E

1

τ(p − 1)
max

(a,p)=1
|σp(a)|2 ≤

∑

p∈E

R2
1

τ(p − 1)
+

∑

p∈E

R2
2

τ(p − 1)
.

Our aim is to estimate the sums on the right hand side of (5.3).

To estimate R1, we divide the interval of summation over x to progressions of the
form y + ztp/d, 1 ≤ y ≤ tp/d, 1 ≤ z ≤ d. Then

R1 = max
(a,p)=1

∣

∣

∣

1

tp

∑

d|tp

d≥Lvp

tp/d
∑

y=1

d
∑

z=1

∑

c≤tp/d

(c,tp/d)=1

∑

n≤T

γnetp/d(c(sn − y))ep(aλyλztp /d)
∣

∣

∣
,

whence

R1 ≪
1

tp

∑

d|tp

d≥Lvp

tp/d
∑

y=1

∣

∣

∣

∑

c≤tp/d

(c,tp/d)=1

∑

n≤T

γnetp/d(c(sn − y))
∣

∣

∣
max

(a,p)=1

∣

∣

∣

d
∑

z=1

ep(aλyλztp /d)
∣

∣

∣
.

The sum over z is estimated by Lemma 4.2. Since λtp/d is an element of multiplicative

order d, we derive the following from Lemma 4.2:

max
(a,p)=1

∣

∣

∣

d
∑

z=1

ep(aλyλztp /d)
∣

∣

∣
≪ p1/8d5/8.

Therefore,

(5.4) R1 ≪
∑

d|tp

d≥Lvp

p1/8d5/8R3,

where

R3 =
1

tp

tp/d
∑

y=1

∣

∣

∣

∣

∣

∑

c≤tp/d

(c,tp/d)=1

∑

n≤T

γnetp/d(c(sn − y))

∣

∣

∣

∣

∣

.

Next, applying the Cauchy inequality we obtain

R2
3 ≪

1

dtp

tp/d
∑

y=1

∣

∣

∣

∣

∣

∑

c≤tp/d

(c,tp/d)=1

∑

n≤T

γnetp/d(c(sn − y))

∣

∣

∣

∣

∣

2

=

1

dtp

tp/d
∑

y=1

∑

c1≤tp/d

(c1,tp/d)=1

∑

c2≤tp/d

(c2,tp/d)=1

∑

n1≤T

∑

n2≤T

γn1
γn2

etp/d(c1(sn1
− y) − c2(sn2

− y)).
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Observe that

tp/d
∑

y=1

etp/d(−c1y + c2 y) =

{

tp/d, if c1 ≡ c2 (mod tp/d),
0, if c1 6≡ c2 (mod tp/d).

Hence,

R2
3 ≪

1

d2

∑

c≤tp/d

(c,tp/d)=1

∑

n1≤T

∑

n2≤T

γn1
γn2

etp/d(c(sn1
− sn2

)).

Estimating trivially the sums over c, n1, and n2 we obtain R2
3 ≪

tp

d3 T2. Substituting

this in (5.4), we derive that

R2
1 ≪ τ(p − 1)T2

∑

d|tp

d≥Lvp

p1/4tp

d7/4
.

Since vp = t
4/7
p p1/7, we have

R2
1 ≪ τ(p − 1)2T2 p1/4tp

(Lvp)7/4
= τ(p − 1)2T2L−7/4,

whence
R2

1

τ(p − 1)
≪ τ(p − 1)T2L−7/4.

Application of the Titchmarsh estimate (3.2) yields

(5.5)
∑

p∈E

R2
1

τ(p − 1)
≪ XT2L−7/4.

Now we proceed to treat R2. From (5.2) we have

R2 ≤
1

tp

∑

d|tp

d<Lvp

tp
∑

x=1

∣

∣

∣

∑

c≤tp/d

(c,tp/d)=1

∑

n≤T

γnetp/d(c(sn − x))
∣

∣

∣
.

We apply the Cauchy inequality to the sums over d and x and then obtain

R2
2 ≪

τ(p − 1)

tp

∑

d|tp

d<Lvp

tp
∑

x=1

∣

∣

∣

∑

c≤tp/d

(c,tp/d)=1

∑

n≤T

γnetp/d(c(sn − x))
∣

∣

∣

2

,
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whence

R2
2

τ(p − 1)
≪

1

tp

∑

d|tp

d<Lvp

tp
∑

x=1

∑

c1≤tp/d

(c1,tp/d)=1

∑

c2≤tp/d

(c2,tp/d)=1

∑

n1≤T

∑

n2≤T

γn1
γn2

etp/d(c1(sn1
− x) − c2(sn2

− x)).

The summation over x guarantees that c1 = c2. Therefore,

R2
2

τ(p − 1)
≪

∑

d|tp

d<Lvp

∑

c≤tp/d

(c,tp/d)=1

∑

n1≤T

∑

n2≤T

γn1
γn2

etp/d(c(sn1
− sn2

)),

whence
R2

2

τ(p − 1)
≪

∑

d|tp

d<Lvp

∑

c≤tp/d

(c,tp/d)=1

∣

∣

∣

∑

n≤T

γnetp/d(csn)
∣

∣

∣

2

.

Summing up both sides of this bound over p ∈ E, we obtain

∑

p∈E

R2
2

τ(p − 1)
≪

∑

p∈E

∑

d|tp

d<Lvp

∑

c≤tp/d

(c,tp/d)=1

∣

∣

∣

∑

n≤T

γnetp/d(csn)
∣

∣

∣

2

.

We divide the interval (∆, X] into disjoint subintervals (X j , X j+1], where

X1 = ∆, X j+1 = min{2X j , X}.

Denote by E j the subset of E such that tp ∈ (X j , X j+1] for any p ∈ E j . Next, define

V j = 2X
4/7
j X1/7

and observe that V j does not depend on p, and V j ≥ vp for any p ∈ E j . Thus,

∑

p∈E

R2
2

τ(p − 1)
≪

∑

j

∑

p∈E j

∑

d|tp

d<LV j

∑

c≤tp/d

(c,tp/d)=1

∣

∣

∣

∑

n≤T

γnetp/d(csn)
∣

∣

∣

2

.

We remember that j ≪ log X, 2 jX1 ≪ X and ∆ ≤ X j < X j+1 ≤ 2X j ≤ 2X.
Note that for different primes p, p ∈ E j , the corresponding values of tp do not have

to be different. For a given r ∈ (X j , X j+1] denote by s(r) the number of all primes

p, p ∈ E j , for which tp = r. Since p − 1 ≡ 0 (mod r), we have s(r) ≤ X/r ≤ X/X j .
Therefore,

∑

p∈E

R2
2

τ(p − 1)
≪

∑

j

X

X j

∑

r∈(X j ,X j+1]

∑

d|r
d<LV j

∑

c≤r/d
(c,r/d)=1

∣

∣

∣

∑

n≤T

γner/d(csn)
∣

∣

∣

2

.
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Changing the order of summation over r and d we deduce

(5.6)
∑

p∈E

R2
2

τ(p − 1)
≪

∑

j

X

X j

∑

d<LV j

F j(d),

where

F j(d) =

∑

r∈(X j ,X j+1]
r≡0 (mod d)

∑

1≤c≤r/d
(c,r/d)=1

∣

∣

∣

∑

n≤T

γner/d(csn)
∣

∣

∣

2

=

∑

k∈(X j d−1,X j+1d−1]

∑

1≤c≤k
(c,k)=1

∣

∣

∣

∑

n≤T

γnek(csn)
∣

∣

∣

2

.

To estimate F j(d) we apply the large sieve inequality given in Lemma 4.1. Then

F j(d) ≪ (X2
j d

−2 + sT )T.

Inserting this bound into (5.6), we obtain

∑

p∈E

R2
2

τ(p − 1)
≪

∑

j

X

X j

∑

d<LV j

(X2
j d

−2 + sT)T,

whence
∑

p∈E

R2
2

τ(p − 1)
≪

∑

j

X(X j + sTV j LX−1
j )T.

Since V j = 2X
4/7
j X1/7, we have

∑

p∈E

R2
2

τ(p − 1)
≪ XT

(

∑

j

X j + sTLX1/7
∑

j

X
−3/7
j

)

.

Finally, from the definition of X j we know that

∑

j

X j ≪ X,
∑

j

X
−3/7
j ≪ ∆

−3/7.

Therefore,

(5.7)
∑

p∈E

R2
2

τ(p − 1)
≪ XT(X + sTX1/7

∆
−3/7L).

Theorem 3.1 now follows from (5.3), (5.5), and (5.7).
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6 Proof of Theorem 3.3

For K ≤ 10 the estimate of Theorem 3.3 is trivial. Therefore, we will suppose that
K > 10.

Set M = [T/K]. Without loss of generality we may assume that for n ≥ 1,

γT+n = 0, sT+n = sT + n.

Applying the shifting argument we obtain

(6.1)
∣

∣

∣

Tp
∑

n=1

γnep(aλsn )
∣

∣

∣

2

≪
1

(M + 1)2

∣

∣

∣

Tp
∑

n=1

M
∑

r=0

γn+rep(aλsn+r )
∣

∣

∣

2

+
T2

K2
.

Further, we have

(6.2)

Tp
∑

n=1

M
∑

r=0

γn+rep(aλsn+r ) =
1

2T + 1

T
∑

b=−T

2T
∑

m=1

M
∑

r=0

Tp
∑

n=1

γme2πi b(n+r−m)
2T+1 ep(aλsm ).

By the Cauchy inequality,

(

∑

0<|b|≤T

∣

∣

∣

Tp
∑

n=1

M
∑

r=0

e2πi b(n+r)
2T+1

∣

∣

∣

∣

∣

∣

2T
∑

m=1

γme2πi bm
2T+1 ep(aλsm )

∣

∣

∣

) 2

≪

(

∑

0<|b|≤T

∣

∣

∣

Tp
∑

n=1

M
∑

r=0

e2πi b(n+r)
2T+1

∣

∣

∣

)

×

(

∑

0<|b|≤T

∣

∣

∣

Tp
∑

n=1

M
∑

r=0

e2πi b(n+r)
2T+1

∣

∣

∣

∣

∣

∣

T
∑

m=1

γme2πi bm
2T+1 ep(aλsm )

∣

∣

∣

2)

.

Hence, using

∣

∣

∣

Tp
∑

n=1

e2πi bn
2T+1

∣

∣

∣
≪

T

|b|
,

we obtain the bound

(

∑

0<|b|≤T

∣

∣

∣

Tp
∑

n=1

M
∑

r=0

e2πi b(n+r)
2T+1

∣

∣

∣

∣

∣

∣

2T
∑

m=1

γme2πi bm
2T+1 ep(aλsm )

∣

∣

∣

) 2

≪

T2
(

∑

0<|b|≤T

|S(b)|

|b|

)(

T
∑

b=1

|S(b)|

|b|

∣

∣

∣

T
∑

m=1

γme2πi bm
2T+1 ep(aλsm )

∣

∣

∣

2)

,
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where

(6.3) S(b) =

M
∑

r=0

e2πi br
2T+1 .

Combining this with (6.1) and (6.2), we deduce

∣

∣

∣

Tp
∑

n=1

γnep(aλsn )
∣

∣

∣

2

≪
1

(M + 1)2

(

∑

0<|b|≤T

|S(b)|

|b|

)

(

∑

0<|b|≤T

|S(b)|

|b|

∣

∣

∣

T
∑

m=1

γme2πi bm
2T+1 ep(aλsm )

∣

∣

∣

2)

+
∣

∣

∣

T
∑

m=1

γmep(aλsm )
∣

∣

∣

2

+
T2

K2
.

Now we take the maximum over a, (a, p) = 1, and observe that the maximum of

sums is not greater than the sum of maximums. We then divide the estimate by

τ(p − 1) and perform the summation over p ∈ E1. This yields

∑

p∈E1

1

τ(p − 1)
max

(a,p)=1

∣

∣

∣

Tp
∑

n=1

γnep(aλsn )
∣

∣

∣

2

≪
1

(M + 1)2

(

∑

0<|b|≤T

|S(b)|

|b|

)

×

(

∑

0<|b|≤T

|S(b)|

|b|

∑

p∈E1

1

τ(p − 1)
max

(a,p)=1

∣

∣

∣

T
∑

m=1

γme2πi bm
2T+1 ep(aλsm )

∣

∣

∣

2)

+
∑

p∈E1

1

τ(p − 1)
max

(a,p)=1

∣

∣

∣

T
∑

m=1

γmep(aλsm )
∣

∣

∣

2

+
T2

K2

∑

p∈E1

1

τ(p − 1)
.

For each b, we apply Theorem 3.1 with γn substituted by γne2πi bn
2T+1 to the sum

∑

p∈E1

1

τ(p − 1)
max

(a,p)=1

∣

∣

∣

T
∑

m=1

γme2πi bm
2T+1 ep(aλsm )

∣

∣

∣

2

.

Thus,

∑

p∈E1

1

τ(p − 1)
max

(a,p)=1

∣

∣

∣

Tp
∑

n=1

γnep(aλsn )
∣

∣

∣

2

≪
( 1

(M + 1)2

(

T
∑

b=1

|S(b)|

b

) 2

+ 1
)

(

X + sTX1/7
∆

−3/7L + TL−7/4
)

XT +
T2

K2

∑

p∈E1

1

τ(p − 1)
.

Now it remains to prove that

T
∑

b=1

|S(b)|

b
≪ (M + 1) log K.
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To this end, choose ℓ = [log K] and use the Holder inequality to obtain

(6.4)

T
∑

b=1

|S(b)|

b
≤

(

2T+1
∑

b=1

1

b2ℓ/(2ℓ−1)

) 1−1/2ℓ( 2T+1
∑

b=1

|S(b)|2ℓ
) 1/2ℓ

.

Next, we have

(6.5)

2T+1
∑

b=1

1

b2ℓ/(2ℓ−1)
≪

∫ ∞

1

x−1−(2ℓ−1)−1

dx = 2ℓ − 1 ≪ log K.

Besides, from the definition of S(b), see (6.3), it follows

(6.6)

2T+1
∑

b=1

|S(b)|2ℓ
= (2T + 1) J,

where J denotes the number of solutions to the congruence

ℓ
∑

i=1

xi ≡

ℓ
∑

i=1

yi (mod (2T + 1)), 0 ≤ xi , y j ≤ M.

Since M < T, then the trivial estimate gives J ≤ (M +1)2ℓ−1. Besides, T < K(M +1).
Therefore,

2T+1
∑

b=1

|S(b)|2ℓ ≪ K(M + 1)2ℓ,

whence, in view of (6.4)–(6.6), we conclude that

T
∑

b=1

|S(b)|

b
≪ (log K)(M + 1)K1/(2ℓ) ≪ (M + 1) log K.

7 Exponent Pairs for Gauss Sums

We remark that if in Lemma 4.2 we have the bound

(7.1) max
(a,p)=1

∣

∣

∣

t
∑

z=1

ep(aθz)
∣

∣

∣
≪ pαtβ

with 0 ≤ α, β ≤ 1, then the right hand side of the estimate of Theorem 3.1 can be

substituted by

(X + sTX
2α

3−2β ∆
− 2−2β

3−2β L + TL−3+2β)XT.

In particular, Corollary 3.2 holds for the sequence sn satisfying

sT ≤ T1+ 1−2α−β
3−2β +o(1).
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Define K to be the set of all ordered pairs {α, β}, 0 ≤ α, β ≤ 1, satisfying prop-
erty (7.1). Konyagin [14] has proved that the set K contains the pairs {αn, βn} and

{α ′
n, β

′
n} defined as

αn =
1

2n2
, βn = 1 −

2

n2
+

1

2n−1n2
,

α ′
n =

1

2n(n + 1)
, β ′

n = 1 −
2

n(n + 1)
+

3

2n+1n(n + 1)

for any positive integer n. Next we define the function f : K → R by

f (x, y) = 1 +
1 − 2x − y

3 − 2y
.

The problem is to find the biggest possible value of f (x, y). The result of this pa-

per corresponds to the pair {α2, β2} (which is due to Heath-Brown and Konyagin).

Other pairs give less precise bounds. Next, we note that K is a convex set. That is, if

{α, β} ∈ K, {α ′, β ′} ∈ K,

then for any x, 0 ≤ x ≤ 1,

{xα + (1 − x)α ′, xβ + (1 − x)β ′} ∈ K.

However, this property applied to any two given pairs, in particular to the pairs due
to Konyagin, is not sufficient to get further improvements in our problem. It would

be very interesting, similar to the set of exponent pairs, to carry out a method which
would provide the nontrivial properties of K. The truth of the conjecture of Mont-

gomery, Vaughan, and Wooley [15] would imply {ε, 1/2 + ε} ∈ K, which can be

considered an analogy of the exponent pair hypothesis for Gauss sums.

Finally, we remark that the method we have applied leads to the following gener-

alization of our main result.

Theorem 7.1 For any L > 0, any pair {α, β} ∈ K and any complex coefficients

δn, 1 ≤ n ≤ T, the following bound holds:

∑

p∈E

1

τ(p − 1)
max

(a,p)=1

∣

∣

∣

∑

n≤T

δnep(aλsn )
∣

∣

∣

2

≪

X(X + sTX
2α

3−2β ∆
− 2−2β

3−2β L)
∑

n≤T

|δn|
2 + XL−3+2β

(

∑

n≤T

|δn|
) 2

,

where the implied constant depends only on the pair {α, β}.
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