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On saturated formations whose

projectors are complemented

A.R. Makan

It is shown that a saturated formation F has the property that
in each group G each F-projector of G is complemented if
and only if F is the formation of finite soluble T-groups for

some set 7T of primes.

All groups considered here are finite and soluble. A formation is a
class of groups which is closed under taking homomorphisms and subdirect
products. A formation F 1is said to be saturated if a group G € F
whenever G/®(G) € F , where ¢(G) denotes the Frattini subgroup of G .
A subgroup F of a group G is called an F-projector of G if

(1) F €F ana
(2) FN =H wvhenever F<H <G, NAH and H/N € F .

Gaschutz showed in [5] that if F is saturated, then the F-projectors of
G always exist and constitute a single conjugacy class of subgroups of

G . Corresponding to a saturated formation F , G also has another
canonical conjugacy class of subgroups called the F-normalizers of G
(see Carter and Hawkes [1]).

In [2] the authors have shown that if F is a saturated formation,
then F has the property that in each group G each F-projector has a
single conjugacy class of complements if and only if F = Sn , the class of

all soluble T-groups, for some set T of primes. In Section 2 of the

present note we show that one can drop the assumption that each projector
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has a single conjugacy class of complements and assume only that each
projector is complemented. As will be seen, our methods yield the same
result if we assume that in each group G each F-normalizer of G is

complemented.

Throughout F will denote a saturated formation and {F(p)} the
family of full, integrated formations, one for each prime p , which
defines F 1locally (see Section 2 in Doerk [4]). Moreover, ™ will
always denote the set of all those primes p such that F(p) # @ , the
empty set. For convenience, F will be said to have the property C if

in each group G each F-projJector of G is complemented.

1. Some lemmas

In this section, we will prove four elementary lemmas which we require
in the next section for the proof of our main result. We begin with the

following
LEMMA 1.1. Let G be a growp with a wiique minimal normal subgroup

N which is complemented in G , and let |N| =p*, a >0, p a prime
number. Then there existe a faithful GF(p)[Gl-module W with the
properties:

(i) W has a wnique irreducible submodule U ;
(iZ) U <Ze trivial for G ; and
(ii1) U, , the restriction of U to N , is the wunique irred-

ucible submodule of WIV .

Proof. Let K Ye a complement of ¥ in G , U the trivial,
irreducible GF(p)[Gl-module and W = (UK)G . Since core,(K) =1, W is

clearly a faithful GF(p)[Gl-module. Also, by a result of Mackey (see Satz
V.16.9 in Huppert [61), Wy 1is the regular GF(p)[N¥]-module. Hence, W,

has a unique irreducible submodule V , say. In faect, V= UIV . For, by

a result of Nakayama (see Satz V.16.6 (a) in Huppert [é]) and the
irreducibility of U , U is a submodule of W . Thus, since V 1is the

unique irreducible submodule of WN ,» we have UIV = V¥V . The rest of the
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lemma now follows.
Next, we show

LEMMA 1.2. Swppose F has the property C and let H € F . If V
is a fatthful, irreducible GF(r)[H]-module for some r € m and if
(r, |#]) = 1, then the semidirect product K = [VIH of V by H belongs
to F.

Proof. Suppose to the contrary that X § F . Then, since V is a

minimal normal subgroup of K , clearly H 1is an F—projector of K .

Also, H f F(r) . Let L LACO N

is the unique minimal normal subgroup of X which is complemented in X

and has order rB s B>0, K has, by Lemma 1.1, a faithful GF(r)[K]-

the F(r)-residual of H . Since V

module ¥ with the properties:
(i) W has & unique irreducible submodule U ;
(i1) U is triviel for X ; and

(iii) U, is-the unique irreducible submodule of W

14 /28

Thus, if M = [W]X and C = CW(L) , then clearly C=2U>1 and U is

the socle of WV . Moreover, by Hilfssatz 2.6 in Doerk [4] and by Theorem
5.6 of Carter and Hawkes [1], F = CH is an F-projector as well as an
F-normalizer of M . Hence, also C < W since otherwise

H X M/WV € F(r) , WV being the intersection of the centralizers of the
r-chief factors of M , and we have a contradiction. Let X be a
complement of F in M . Since X is an r-subgroup of M and since WV
is the normal Sylow »r-subgroup of M , X =WV . Therefore, since F
avoids WV/W , X covers the latter. Also, since C < W , we have

|x|] > |v| , and so, XNnW>1. But then X nW =2U since U is the
wique minimal normal subgroup of WV and X n W 1is V-invariant. Hence
XnF # 1, contrary to X being a complement of F . With this

contradiction the lemma is proved.

The following lemma is & consequence of Lemms 3.2 in [7], but for the

sake of completeness we will prove it here.

LEMMA 1.3. Let G be a group whose Fitting subgroup F 18 an
elementary abelian p-grouwp and let S be an elementary abelian

https://doi.org/10.1017/50004972700043136 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700043136

242 A.R. Makan

g-subgrow of G of order ", n>0, vhere s # p . Then

|F CF(S)l >p™ , where m is the smallest positive integer such that

P o= 1(s) .

Proof. We will prove this lemma by induction on #n . Since

CG(F) = F , we cbserve first that CF(S) <F . Thus if n =1, the lemma

is certa:inly true in view of Maschke's Theorem and Satz II.3.10 in Huppert

[6]. Hence assume 7n > 1 and let T be a maximal element in the set

{s# | 5% <5 ana Ch(5) < (s} .
By Lemma 3.2 in [7), S/T is cyclic of order & . Hence, |T| = ™1,

and so, by the induction hypothesis, ]F : CF(T)I > p(n-l)m . But then,

since ICF(T) : CF(S)I > p" as before, we already have
|F : CF(S)I = p™ , as required.
Finally, we show

LEMMA 1.4. Let G be a group, M I G, M=2Z(G), the centre of
G, and H a permutation group on the finite set Q . Let W=GVH,
the wreath product of G by H according to the given permutation
representation of H , and let D be the subgroup of the base group B of

W generated by all elements (f, 1) such that f(i) = (f(i-l-l))_l €M
for some i €Q and flk) =1 if k €Q and i #k £ i+l . Then D AW
and B/D is isomorphic to the central product with respect to M of |9|
copies of G .

Proof. Let £ = {1, 2, ..., n} and, foreach ©Z =1, 2, ..., n=1 ,
let Di be the subgroup of B consisting of all elements (_f', 1),

where f(£) = (f(i+1))™! ana fF(k) =1 if k €Q and i # k # i+l .
Then D =D

iR

xsz... an_ , and, for each ¢ =1, ..., n-1, D. =M.

1 1 1

l)(e’h)

Let (f, 1) € D, , (e, h) ¢ H<W , and (f, = (g, 1) , vhere

-1
gld) = f[jh ] for each J € 8 . Clearly,
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(g, 1) = (fl’ l)(fl"'l’ l) .o (fk_l: l) s

where 1 = min{ih, @), k= max{ih, (4+1)"} ana (£, 1) € D~ for

)

m= 1, 1+1, ..., k=1 . Moreover, fZ(Z) = f(2) or f(i+l) according as

h

l=1 or 1= (11+1) , and f (m) = ( m*l)) for

fm+l
1, 1+1, ..., k-1 . Thus, D is normalized by H . Since also
Z(B) , it follows now that D 9 W . Finally, one can easily check that

o 3
[

Gi o GiD/D for each 7 € § , and, furthermore, if MQ is the direct

product of n copies of M in B then MQ = DM, for each 1 €Q and
GiD n GJ.D =D for each pair %, J €2, % # J.. This final remark

completes the proof.

2. The main result

In this last section we will prove our main result of this -paper,

namely:

THEOREM. F has the property C if and only if F=3S_.

Proof. Assume first that F has the property C . In order to show

F = S,’r it will suffice to show that F(p) = F for each p € T ., Suppose

to the contrary that F(p) € F for some p € ™ and let G € F\F(p) be of

minimal order. Since F(p) is a formation, G has a unique minimal

normal subgroup ¥ , say. Let |[N]| = qa , & >0 . Since F(p) is full,

certainly q # p . We consider now two cases:
Case (a). m is not the set of all primes.
Let 8 be a prime nunber not in T and let S1 be a cyclic group of

order 8 . Since 8 fT and G € F, ve have & | |G| and, in
particular, 8 #p . Let H = Sl X G , the direct product of Sl and G .

Then H has at most two distinct minimal normal subgroups. Also,
Op(H) =1 , where Op(H) is the largest normal p-subgroup of H . Hence,

by Hilfssatz 1.3 of Doerk [4], H has a faithful, irreducible GP(p)[#]-
module ¥ , say. Let X = [M]# . Clearly M is the unique minimal normal
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p-subgroup of XK which is complemented in K . Hence, by Lemma 1.1, there
exists a faithful GF(p){X]-module W with the properties:

(i) W has a unique irreducible submodule o

(ii) WO is trivial for X , and

(iii) [WO)M is the unique irreducible submodule of W, .

Next, let 52 be another cyclic group of order 8 and U a

faithful, irreducible GF(p)[S,]-module. Let 4 =5, x K and let

2
B=(V]JA, wvhere V=1U#W , the outer tensor product of U and ¥ ,
which is clearly a faithful GF(p)[A]-module (see Section 43 in Curtis and
Reiner [3]). Since

Ve=H@® ... ®W,
* dimgp ) (V) >

i i i 1% Ky =2W_>
the direct sum of dlmGF(p)(U) copies of , and since CW( ) b > 1o

we have C GF(p)) = CV(N) >1 ., Thus, E = CV(GF(p))G > G . Also, since

V(

(GF(p)) =1, it follows, by Hilfssatz 2.6 in Doerk [4], that G is an

u

F-projector of XK , and, hence, E is an F-projector of B . Let X be
a complement of E in B which contains S = Sl X 52 . We will show that
Y=XnVMG covers MV/V and Y NV #1.

Since VMG 94 B , clearly (Y, S] =Y . Moreover,
{v, S} = [¥Mv, S] <MV . Hence, (Y, S] =M/ nY , and so,

Y = (MVAY)Cy(S) . Thus VMG = YE = (MVAY)Cy(S)E . But Cp(5) = G xS .
For clearly CB(S) > (G xS . However, since

V, =U® ....... ®U

5, <

and CU(Se) =1 , we have CV(S2] = 1 and, therefore,

cA8) =¢,(5,)

NOETMCY

1l . Similarly, since C’M(Sl) = 1 , we have

1 . Thus, CB(S) =G %S , as claimed, and hence

VMG = (MVY)E . Since Y nE =1, an order argument now shows that
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M/ nY =Y ., Therefore, since £ avoids MV/V and EnV<V (the

latter since V = Op, p(VG) , the largest normal p-nilpotent subgroup of

VG , and G § F(p) ) it follows that Y covers MV/V and Y nV#1 ,
as required. In particular, Y nV is a non-trivial GF(p)[¥]-submodule

of VM

, and so,
YnlW . ®@..... @Wo]t{o}.
© dngp(py (@) >

But then Y nE # 1 since

F(p)
[Woe @Wo] cc,(eP)
and we have arrived at a contradiction. Thus, we must have F(p) = F in
this case.
Case (b). ™ is the set of all primes.
Let pB be the order of a Sylow p-subgroup of G . We observe first
that B > 0 . For, since Op(G) =1 and G has a unique miaimal normal

subgroup, it follows, by Hilfssatz 1.3 of Doerk [4], that G has a
faithful, irreducible GF(p)}[G)-module U . Thus, if B = 0 , then, by
Lemma 1.2, H = [U)G € F, and so, G =H/U = H/Op.p(H) €F(p) , a

contradiction. Therefore, 8 >0 , as claimed. Next, let r be a prime
such that

(1) (», ¢ =1,
(ii) » >2B and
(iii) the order m of p modulo r is greater than 28 .
Since Or(G) =1 and G has a unique minimal normal subgroup, it follows,

by Hilfssatz 1.3 of Doerk [4] that G has a faithful, irreducible
GF(r)[G)-module T . Let X = [T])G . By Lemma 1.2, K € F. Also, since
Op(K) =1 and K has a unique minimal normal subgroup, another
application of Hilfssatz 1.3 of Doerk [4] yields that X has a faithful,
irreducible GF(p)[X]-module V .
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Let L= [V]X . Since V is the unique minimal normal subgroup of L
which is complemented in L and is of p-power order, it follows, by
Lemna 1.1, that L has a faithful GF(p)[L]-module W with the

properties:
(i) W has a unique irreducible submodule ¥ ,
(ii) M is trivial for L , and

(iii) M, is the unique irreducible submodule of WV .

Let B

[W]L and let =11, 2, ..., n} , where n= |k : G| .
Then K 1is a primitive subgroup of SQ , the symmetric group on £ . Let

R =B K, the wreath product of B by X according to the given
permutation representation of X and let Y be the subgroup of the base

group B* of R generated by sll elements (f, 1) of R such that

flz) = (f('t:+l))_l €M for some Z €0 and f(k) =1 if k € Q and
1 #k #1+1 . By Lemma 1.4, Y 9 R and B*/Y is iscmorphic to the
central product with respect to M of n copies of B . Let

W*=Wlx ansB* , let V*=V1x... ansB* and let
M"=Ml X ... XMnSB* . Let D be the diagonal subgroup of B* and let

AlY = (W*V*DK)/Y < R/Y .

Since (n, p) =1 , we have M*/Y = DY/Y , and so, M*/Y =< Z(4/Y) .
Thus, if F/Y = Y(KxK)/Y , where K is a subgroup of D isomorphic to
K , if E/Y 1is the F(p)-residual of F/Y and if C/Y = CW*/Y(E/‘Y) , then

C/Y = M*/Y , end hence, also F/Y = (C/Y)(F/Y) = M*/Y . On the other hand,
since T is the unique minimal normal subgroup of K which is non-central
and since K § F(p) , ve have E/Y = TY/Y , and therefore, since T is
transitive on Q , C/Y = DY/Y . Similarly, E/Y = TY/Y , where T is the
subgroup of X isomorphic to T in X , and so, CV*Y/Y(E/Y) =1 .
Hence, since F/Y € F , it follows, by Hilfssatz 2.6 in Doerk [4], that

F/Y is an F-projector of VAF/Y , and therefore, by the same result, F/Y
is an F-projector of A/Y .

Let X/Y ©bve a complement of F/Y in A/Y . Clearly X/Y is a

n-1l, n-1
/

p-subgroup of A/Y of order pGIV*I'IWI p , Wwhere

https://doi.org/10.1017/50004972700043136 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700043136

Saturated formations 247

pﬁ = |(W*DY)/Y : C/Y| . Since E/Y = TY/Y , it follows, by Lemma 1.3,

applied to (WAnDY)T/Y , that p‘s > p28 ;

avoid WiY/Y for each 7 =1, 2, ..., n . Moreover, since n > r > 28

Thus, certainly X/Y does not

and since |X/Yrw*/Y| = PﬁlWln-l/Pn-l

7J. = WAV, % .ox V) WA(v) x ...ox Vj-l]

Hence, if @ = [wJ.Y/y]Vj » then X/Y nW.¥/Y is a non-trivial '17J.-

, it follows that X/Y covers

for some J , 1=5J=<n.

invariant subgroup of @ , and so, X/Y n WJ.Y/.Y Ed MJ.Y/Y = M*/Y since
MJ.Y/.Y is the unique minimal normal subgroup of @ . But M*/Y = F/Y ,

whence F/Y n X/Y > 1 and we have arrived at a contradiction. Hence,

F(p) = F in this case too.

Finally, since, by the well-known results of P. Hall, F has the
property C if F = s1r , the proof of the theorem is complete.
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