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Let G be a finite group. If AT denotes a normal subgroup of G, a subgroup S
of G is called a supplement of N if we have G = SN. For every normal sub-
group of G there is always the trivial supplement S = G. The existence of a
non-trivial supplement is important for the extension theory, i.e., for the
description of G by means of N and the factor group G/N. Generally, a
supplement S is the more useful the smaller the intersection S n N. If we
have even S r\N = 1, then S is called a complement for N in G. In this case
G is a splitting extension of N by S.

A number of theorems state that a given subgroup S of G is a complement
of a suitable normal subgroup N. A well known example is the following
theorem of Burnside: If S is a Sylow subgroup of G which is contained in the
centre of its normalizer then G contains a normal subgroup N of which S is
a complement, i.e. G = SN and S n N = 1. A paper by D. G. Higman [1],
for instance, contains a generalization of this theorem. Another generaliza-
tion of the theorem of Burnside has been obtained by the author [2] and
under much weaker conditions by G. Zappa [3].

The theorems in [2] and [3] are based upon a special property which a
system of coset representatives of a subgroup may have. Let H be a sub-
group of G and let

G= 2 Hr
reR

denote the decomposition of G into cosets with respect to H. If the system R
of coset representatives has the property:

A-i Rh = R for any heH,

then R is called a distinguished system of coset representatives. The main
theorem in [3] deals with Hall subgroups H, i.e., subgroups H whose order
is prime to their index [G : H~\. It states:

Let H be a nilpotent Hall subgroup of G possessing a distinguished system
of coset representatives. Then G contains a normal subgroup N such that
G = HN.H nN = 1.

In the present note, we shall generalize the theorem of Zappa by giving
a condition under which a subgroup H is a supplement of a suitable normal
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subgroup N and an upper bound for the intersection H nN.
Let r1, • " ,rn denote a system of coset representatives of G with respect

to H. So we have n = [G : H] and

G = £ Hrv.

T r a n s f o r m i n g rx ,••• ,rn b y t h e e l e m e n t s of H w e o b t a i n

(1) h~xrvh == cv>hrvh (v = 1, • • • , « ; h eH),

where the cvh are in H and ru, • • •, rnh form a permutation of r1( • • •, rB,
depending on h. The mappings

rv-^c
v,^vh ( r = 1, • • • , « )

yield an intransitive monomial representation of H, the coefficients of which
belong also to H. The subgroup C of H which is generated by all cvh(v = 1,
• • •, n; h e H) shall be called the coefficient group belonging to the system
ri > ' ' ' > rn °f coset representatives. The distinguished systems of coset
representatives are exactly those for which the corresponding coefficient
group consists of the unit element alone.

It is easy to see that C is always a normal subgroup of H. For if k e H
we have

and on the other hand

{hk)-lrv{hk) = cy>hkrvhk.
Hence

« CVlhkCvh,k = cv,Kk>

& Cv,h'i = Cv,KkCvh,k e k-

This proves that C is a normal subgroup of H.

THEOREM. Let H be a subgroup of G and let C denote the coefficient group
belonging to a system R of coset representatives of G with respect to H. If
H/C is nilpotent and if [G : H] is prime to [H : C] then G contains a normal
subgroup N such that G = HN and H nN QC.

Using the terminology of [1], the proof of this theorem may be sketched
as follows: From our condition it follows that C is chained to H in G. So
Theorem 3.1 of [1] is valid, and Corollary 3.5 yields the theorem. We shall
give a detailed proof, however.

If V, W are subgroups of G and W Q V, then {W, V)* shall denote the
subgroup of W generated by all those commutators

(w, v) = wuw~1v~1(w e W, v eV)
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which are contained in W. Obviously, (W, V)* contains the commutator
subgroup W of W, hence (W, V)* is a normal subgroup of W.

For a set n of prime numbers we shall denote by P{n) the subgroup of G
which is generated by all those elements of G whose orders are not divisible
by any prime in n.

Let U be a subgroup of G and T a normal subgroup of U. We assume that
n contains all prime divisors of \U : T] and write

P(n) = P, PnU = A, Pr\T = B.

LEMMA 1.

xlP:A] e (A,P)*B for each xc A.

PROOF. The transfer of P into A is a homomorphism r of P into the factor
group AI A'. In order to compute the image xT of an element x in P we may
use the formula

Here the tx are suitable elements in P, the /A are integers, and

tk*if?€A, / , + ••• + / , = [ P : A].

In particular, if x is in A we have

hence

^a^X1 = ('A. x'x)xn = ^ m o d - G4. p ) * -
So we find

zT = ^1+"•+'• = a;[P:X] mod. (4, P)*.

Now ^4' is contained in (A, P)*B, for .4' is even a subgroup of (A, P)*.
There exists therefore a natural homomorphism v of A/A' onto ^4/(-4, P)*B.
Then a = TV is a homomorphism of .4 into A /(A, P)* B such that

(2) x" = x[P:A] mod. {A, P)*B (xeA).

The order of the factor group A/{A, P)*B divides [A : B], and [A : B] =
[P r\U : P n T] divides [U : T]. Since n contains all prime divisors of
[U : T], all prime divisors of the order of A/(A, P)* B are in n. Hence, since
x € A Q P, it follows from the definition of P that a = 0. So (2) yields

1 = 2 ^ ] m o d . (A,P)*B,

which proves the lemma.
The main step towards the proof of our theorem is the following lemma,

asserting that the divisibility theorem 3.1 of [1] holds, if the conditions of
our theorem are satisfied.
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LEMMA 2. Let the conditions of the theorem be satisfied and let n denote
the set of all prime divisors of [H : C]. Then every prime divisor of [P(n) r\H:
P{n) n C] divides [P{n) : P{n) n H].

PROOF. Let /7</0 denote the /*-th term of the lower central series of H, i.e.

#<°> = H,

jji/i+1) = the subgroup of H which is generated by all commutators

(hM, h) w i t h A<>" c H W , h e H (JJ, = 0, 1, • • •).

Since HjC is nilpotent there exists an integer m such that H(m> Q C. Writing

H/l = H^C (A* = 0 , 1 , • • • , » )
we obtain the series

Here every H^ is a normal subgroup of H. The subgroup (i?^, G)* is gener-
ated by all those commutators

which are contained in Hfl. Writing g = hr(h e H, r e R) we have in view of
(1) and since C is a normal subgroup of H

where clt c2 are in C and r1( rz, r3 in R. If the last product is contained in
Hp, it follows that r2 = r3 and furthermore

Hence we have

(3)

We write P(n) = P,

in particular P n H = To, P n C = Tm. Then TA+1 is a normal subgroup of
T , and, by (3),

(4) (T,, P)* Q TA+1 ( / 1 = = 0 , l , - - - , f « - l ) .

Since TT contains all prime divisors of [7^ : Tp+1], Lemma 1 can be apphed
and yields in view of (4)
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(5) ^P:T"^{Tlt,P)*T^1=T^1 for every xtT,.

Now we prove that every prime divisor of [P : T^ also divides [P : To~\ =
[P : P n H]. This proposition being true for fi = 0 we may proceed by
induction. We have [P : TM+1] = [P : TJ[T„ : 7 ^ ] . By (5), the index
[7^ : Tp+j] cannot be divisible by any prime different from those dividing
[P : T,,]. So [P : T^] contains only such prime divisors which divide
[P : Tj,]. Hence, if we assume that every prime divisor of [P : T^\ divides
[P:Pr\H], the same is true for [P : TA+1]. For p = mwe obtain that every
prime divisor of [P : P n C] divides [P : P n H]. This proves Lemma 2.

Using Lemma 2 it is easy to prove our theorem.
Since n is the set of all primes dividing [H : C] and since, by hypothesis,

[G : H] is prime to [H : C], no prime divisor of [G : H] is contained in n.
It follows that G = HP(n). For let g be a prime which is not in n, then P(n)
contains the Sylow ^-subgroups of G. On the other hand for a prime ft e TC
the index [G : H] is not divisible by p, so the order of H must be divisible
by the same power of p as the order of G. Hence HP{n) has the same order
as G.

By Lemma 2, every prime divisor of [P{n) n H : P(rc) n C] divides
: P(TT) n H]. On the other hand [P(^) n f f : P ( ^ ) n C ] divides

: C] and hence is prime to

[G:H] = [HP(n) : H] = [P(») : P(w) n H].

We have therefore [P(rc) n # : P(TT) n C] = 1, hence P(n) nHQC,
which proves the theorem.

The assumption that H/C is nilpotent can probably by replaced by a weaker
one (cf. [3]). The following example shows, however, that it would not be
sufficient to assume only that HjC is solvable. Let G be the symmetric group
of degree 5 on a1( a2, a3, a4, a5; H the subgroup which leaves a5 unchanged,
and let R consist of 1, (a1( a5), (a2, as), (<x3, a6), (a4, a8). Then we have
C = 1, hence R is a distinguished system of coset representatives. However,
G contains no normal subgroup of order 5.
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