ON SUPPLEMENTS IN FINITE GROUPS
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Let G be a finite group. If N denotes a normal subgroup of G, a subgroup S
of G is called a supplement of N if we have G = SN. For every normal sub-
group of G there is always the trivial supplement S = G. The existence of a
non-trivial supplement is important for the extension theory, i.e., for the
description of G by means of N and the factor group G/N. Generally, a
supplement S is the more useful the smaller the intersection S n N. If we
have even S n N = 1, then S is called a complement for NV in G. In this case
G is a splitting extension of N by S.

A number of theorems state that a given subgroup S of G is a complement
of a suitable normal subgroup N. A well known example is the following
theorem of Burnside: If S is a Sylow subgroup of G which is contained in the
centre of its normalizer then G contains a normal subgroup N of which S is
a complement, i.e. G = SN and S n N = 1. A paper by D. G. Higman 1],
for instance, contains a generalization of this theorem. Another generaliza-
tion of the theorem of Burnside has been obtained by the author [2] and
under much weaker conditions by G. Zappa [3].

The theorems in [2] and [3] are based upon a special property which a
system of coset representatives of a subgroup may have. Let H be a sub-
group of G and let

G= Y Hr
reR
denote the decomposition of G into cosets with respect to H. If the system R
of coset representatives has the property:

A 1Rh =R for any heH,

then R is called a distinguished system of coset representatives. The main
theorem in [3] deals with Hall subgroups H, i.e., subgroups H whose order
is prime to their index [G : H]. It states:

Let H be a nilpotent Hall subgroup of G possessing a distinguished system
of coset representatives. Then G contains a normal subgroup N such that
G=HN, HnN = 1.

In the present note, we shall generalize the theorem of Zappa by giving
a condition under which a subgroup H is a supplement of a suitable normal
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subgroup N and an upper bound for the intersection  n N.
Letr,, - -+, », denote a system of coset representatives of G with respect
to H. So we have n = [G : H] and

G = i Hry,.
y=1
Transforming r,, - - -, 7, by the elements of H we obtain
1 h7lr,h = ¢, 470 v=1,+--,nheH),
where the ¢, , are in H and 7y, - - -, 7,,, form a permutation of r,,-- -, 7,

depending on 4. The mappings
7, > cv,hrvh ('V = 1’ ] n)

yield an intransitive monomial representation of H, the coefficients of which
belong also to H. The subgroup C of H which is generated by allc, , (v = 1,
-+, n; he H) shall be called the coefficient group belonging to the system
71, ",7, of coset representatives. The distinguished systems of coset
representatives are exactly those for which the corresponding coefficient
group consists of the unit element alone.

It is easy to see that € is always a normal subgroup of H. For if ke H
we have

k7 R Yr, hk = k7lc, yRR7ir k= klc, wRCy 17 ume
and on the other hand

(hR) 17, (hE) = €\ m? o
Hence
k—lcv,hkcvh,k = Cv,hk:

k7lc, kb = c,,hkc;'hl.k eC.
This proves that C is a normal subgroup of H.

THEOREM. Let H be a subgroup of G and let C denote the coefficient group
belonging to a system R of coset representatives of G with respect to H. If
H|C s nilpotent and if [G : H] is prime to [H : C) then G contains a normal
subgroup N such that G = HN and H AN C C.

Using the terminology of [1], the proof of this theorem may be sketched
as follows: From our condition it follows that C is chained to H in G. So
Theorem 3.1 of [1] is valid, and Corollary 3.5 yields the theorem. We shall
give a detailed proof, however.

If V, W are subgroups of G and W C V, then (W, V)* shall denote the
subgroup of W generated by all those commutators

(w,v) =wvwlvi(we W,vel)
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which are contained in W. Obviously, (W, V)* contains the commutator
subgroup W’ of W, hence (W, V)* is a normal subgroup of W.

For a set z of prime numbers we shall denote by P(x) the subgroup of G
which is generated by all those elements of G whose orders are not divisible
by any prime in x. '

Let U be a subgroup of G and T a normal subgroup of U. We assume that
7 contains all prime divisors of [U : T'] and write

Pla)=P, PAnU=A4, PnT=B8.
LEmMmA 1.
#F 4 ¢ (4, P)*B for each we A.

Proor. The transfer of P into A is a homomorphism 7 of P into the factor
group A/A’. In order to compute the image " of an element z in P we may
use the formula

14
z7 = A’ ] ta2"2
A1
Here the ¢, are suitable elements in P, the f, are integers, and
La''tile A, fL+ -+ f=[P:4]
In particular, if x is in 4 we have
LAl = (¢, 2") e 4,
hence
Lt = (¢, 2'4)x* = 2’2 mod. (4, P)*.
So we find
a7 = 2"t = gP 4l mod. (4, P)*.
Now A’ is contained in (4, P)*B, for A’ is even a subgroup of (4, P)*.

There exists therefore a natural homomorphism » of A/A’ onto 4/(4, P)*B.
Then o = vv is a homomorphism of A into 4/(4, P)* B such that

(2) x” = z¥4 mod. (4, P)*B (xeA).

The order of the factor group 4/(A4, P)* B divides [4 : B], and [4 : B] =
[PnU:PnT] divides [U:T]. Since n contains all prime divisors of
[U : T}, all prime divisors of the order of 4/(A4, P)* B are in #. Hence, since
zeAC P, it follows from the definition of P that ¢ = 0. So (2) yields

1 =2%4 mod. (4, P)*B,

which proves the lemma.

The main step towards the proof of our theorem is the following lemma,
asserting that the divisibility theorem 3.1 of [1] holds, if the conditions of
our theorem are satisfied.
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LeMMA 2. Let the conditions of the theorem be satisfied and let # denote
the set of all prime divisors of [H : C]. Then every prime divisor of [P (=) nH:
P(n) n C] divides [P(x): P(n) n H].

Proor. Let H# denote the p-th term of the lower central series of H, i.e.
H® — H,
H®+) = the subgroup of H which is generated by all commutators
(A#, Ry with A# e HW heH (u=20,1,--).
Since H/C is nilpotent there exists an integer m such that H C C. Writing
H,=H®»C (p=0,1,---,m)
we obtain the series
H=H,DH,D---DH, =C.

Here every H, is a normal subgroup of H. The subgroup (H,, G)* is gener-
ated by all those commutators

h#gh;lg‘l (hyeH,, geG)

which are contained in H,. Writing g = 4»(h € H, r ¢ R) we have in view of
(1) and since C is a normal subgroup of H

hughiret = b hrk iy 1 h
= h, bk eyryrth
= h, il Bl cgrarst,

where ¢,, ¢, are in C and 7,, 7,, 73 in R. If the last product is contained in
H,, it follows that 7, = 7, and furthermore

hl,gh;lg—l = h,,hh;lh—lc2 e H#MVC =H,,,.
Hence we have
(3) (H,,G)* CH,,y.
We write P(n) = P,
PnH,=T, (u=0,1,--,m),

in particular Pn H = T,, Pn C = T,,. Then T ,, is a normal subgroup of
T, and, by (3),

(4) (T/u P)*QT/;+1 (/'L=Or 1eee,m—1).

Since 7 contains all prime divisors of [T, : T,,,], Lemma 1 can be applied
and yields in view of (4)
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(5) aP T e (T,, P)*T,,y, = T,y forevery zeT,.

Now we prove that every prime divisor of [P : T ,] also divides [P : T,] =
[P : P n H]. This proposition being true for 4 = 0 we may proceed by
induction. We have [P:T,,]=[P:T,)[T,:T,,]. By (5), the index
[T,:T,.] cannot be divisible by any prime different from those dividing
[P:T,). So [P:T,] contains only such prime divisors which divide
[P :T,]. Hence, if we assume that every prime divisor of [P : T,] divides
[P:PnH], the sameis true for [P : T ,,]. For u = m we obtain that every
prime divisor of [P : P n C] divides [P : P n H]. This proves Lemma 2.

Using Lemma 2 it is easy to prove our theorem.

Since z is the set of all primes dividing [H : C] and since, by hypothesis,
[G : H] is prime to [H : C], no prime divisor of [G : H] is contained in .
It follows that G = HP(x). For let ¢ be a prime which is not in #, then P(x)
contains the Sylow g-subgroups of &. On the other hand for a prime pen
the index [G : H] is not divisible by p, so the order of H must be divisible
by the same power of p as the order of G. Hence H P(x) has the same order
as G.

By Lemma 2, every prime divisor of [P(n) n H : P(x) n C] divides
[P(=) : P(m) n H]. On the other hand [P(n) n H: P(%x) n C] divides
[H : C] and hence is prime to

[G : H] = [HP(n) : H] = [P(x) : P(n) n H].

We have therefore [P{(n) nH :P(n)nC] =1, hence P(r)nHCC,
which proves the theorem.

The assumption that H/C is nilpotent can probably by replaced by a weaker
one (cf. [3]). The following example shows, however, that it would not be
sufficient to assume only that H/C is solvable. Let G be the symmetric group
of degree 5 on a,, «,, a3, a4, o5; H the subgroup which leaves «; unchanged,
and let R consist of 1, («;, a5), (%, ®5), (%3, a5), (o, %5). Then we have
C = 1, hence R is a distinguished system of coset representatives. However,
G contains no normal subgroup of order 5.

References

[1] Higman, D. G., Focal series in finite groups, Canad. J. Math. 5 (1953), 477—497.

[2] Kochendorffer, R., Ein Satz iiber Sylowgruppen, Math. Nachy. 17 (1959), 189—194.

[8] Zappa, G., Generalizzazione di un teorema di Kochendorffer, Matematiche, Catania,
13 (1959), 61—64.

University of Rostock,
Germany.

https://doi.org/10.1017/51446788700027634 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700027634

