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For small-shear helical-axis stellarators, linear ideal-magnetohydrodynamic (MHD) sta-
bility calculations and full-torus, nonlinear, electromagnetic gyrokinetic (GK) simula-
tions (the latter with this unprecedented combination of objectives in stellarator GKs) in
their linear phase are shown to yield well agreeing spatio-temporal structures of unstable,
globally extended perturbations. Likewise, good agreement is found for their depen-
dence on the plasma pressure and the vacuum-field magnetic well in plasma equilibria
with identical gradient lengths of the temperature and density profiles. In the nonlinear
phase, these perturbations with MHD signatures entail deformations of the magnetic sur-
faces, growing magnetic islands which rotate in the electron diamagnetic direction and,
eventually, lead to ergodisation of a larger part of the magnetic surfaces.
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1. Introduction

Stellarator optimisation traditionally used (Niithrenberg ef al. 1993) and still uses
(Drevlak et al. 2018) ideal magnetohydrodynamic (MHD) proxies such as the
vacuum-field magnetic well to ensure stability of the plasma equilibria. This prop-
erty prevails in an ideal-MHD equilibrium if the toroidal magnetic flux, Fr, enclosed
by a sequence of magnetic surfaces between the magnetic axis and plasma edge
increases more strongly than the corresponding enclosed volume, i.e. d*V /dF* < 0.
Already in Bernstein er al. (1958), on the energy principle of MHD stability, this
quantity appears as a sufficient condition for the instability of an axisymmetric sys-
tem. Deepening the vacuum-field magnetic well comes at the expense of the plasma
shape, resulting in more complex magnet systems. Since, on the one hand, the sta-
bility of a fusion plasma is indispensable for good confinement and, on the other
hand, economical coil design is a key ingredient for the success of future stellarator
devices, the importance of the concept of a vacuum-field magnetic well is assessed
in the present work.
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The work presented here studied helical-axis stellarator configurations that lack
stabilisation by a vacuum-field magnetic well. In addition, unlike other studies,
a broader physical picture was chosen to highlight the differences and similari-
ties between linear ideal-MHD and gyrokinetics (GK). It is well known that the
reduced-MHD equations can be derived from gyrofluid equations (Brizard 1992)
and, furthermore, that there is a significant correlation between reduced MHD and
nonlinear GK (Brizard & Hahm 2007). Moreover, in nonlinear GK, turbulent and
large-scale structures regulate each other. This indicates that it is crucial to master the
MHD-limit scenario as a prerequisite for high-fidelity GK turbulence simulations.
Furthermore, it is still an open question if the stability limit given by ideal-MHD is
decisively influenced by GK effects.

Examples of stellarator MHD stability studies have earlier been published by
Ramasamy et al. (2024) and Zhou et al (2024). In the former global, nonlin-
ear, reduced-MHD and linear-MHD calculations were done using the JOREK and
CASTORSD codes in applications studying the W7-AS stellarator. The latter dis-
cusses nonlinear resistive MHD calculations done with the M3D — C1 code focusing
on the optimised stellarator Wendelstein 7-X (W7-X).

In tokamak research, many authors discuss the relationship of the fields of MHD
and GK. An example is the work of Brochard et al (2022) who describe a linear
verification of the GK GTC code against kinetic-MHD codes in the ideal-MHD
limit studying internal kink modes in the DIII-D tokamak. An equivalent study for
pressure-driven modes in stellarators has not yet been provided and is therefore one
of the aims of the present work.

Currently, only a few codes are able to perform the complex task of global, GK
simulations in stellarator scenarios, among them GENE — 3D (Wilms ez al. 2024),
XGC — S (Cole et al. 2019) and EUTERPE (Kleiber ef al. 2024). The latter two
fall in the category of Lagrangian particle-in-cell (PIC) codes, while GENE — 3D is
grid-based and uses an Eulerian description.

Given that low-mode-number perturbations have the potential to impact a large
plasma volume, they are the subject of this study. Therefore, the simulations need
to be full radius (magnetic axis to plasma boundary) and full torus (including all
field periods of the configuration). The nonlinear, electromagnetic EUTERPE sim-
ulations presented below combine this geometrical set-up and the usage of kinetic
ions and electrons at a realistic mass ratio. To the authors’ best knowledge, it is the
first time that this combination of objectives was achieved in GK simulations for a
stellarator scenario.

The paper is structured as follows. The description of the plasma equilibria is
followed by brief overviews on the models and methods used in the MHD-stability
and GK calculations. Details of the numerical set-up are given in § 5. In the first part
of §6, a comparison of linear-ideal-MHD stability and linear-phase nonlinear GK
simulations is given, followed, in the second part, by a discussion of points specific to
the GK simulations such as zonal components and the evolution of islands. Finally,
a summary with conclusions and an outlook are given.

2. Description of equilibria

The Wendelstein 7-X configuration space was developed on the basis of the
so-called HELIAS concept (Nihrenberg & Zille 1986; Beidler ez al. 1990). In the
present work, the object of study are sequences of HELIAS configurations, i.e.
helical-axis stellarators, with either the vacuum-field magnetic well or the volume-
averaged plasma-8 chosen as scan parameter. (Throughout this paper, § denotes
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FIGURE 1. Cross-sections of helical-axis stellarators shown at the beginning, at a quarter and at
the middle of a field period. Left: turning-ellipse plasma boundary, right: HELIAS configuration
with indentation and triangularity. Only five of the total of 800 magnetic surfaces are shown.
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FIGURE 2. Overview of the equilibrium sequences and their dependency on the vacuum-field
magnetic anti-well (W,r) and the volume-averaged plasma-f. Only the ¢ = 0° cross-sections
are shown for five of the in total eleven equilibria. Compare figure 1 for more cross-sections.

the ratio of the flux-surface averages of the plasma and the magnetic pressures;
(B) stands for the respective volume average.) Figure 1 shows the variation of the
plasma cross-sections in half a field period for the simplest and for the geometrically
most demanding cases, while figure 2 gives an overview of the equilibrium sequences
by showing the ¢ = 0° cross-sections of five exemplary cases. The simplest case is a
so-called £ =1, 2 stellarator with turning-ellipse cross-sections. It is used to study the
influence of an increasing plasma pressure. Keeping the plasma pressure fixed, the
second sequence of equilibria allows us to study the effect of boundary shaping and
the vacuum-field magnetic well. Going to the more strongly shaped configurations,
the plasma boundaries exhibit simultaneously increasing indentation, ellipticity and
triangularity. The description of the plasma boundaries for all of the cases is given
in Appendix A. For the £ =1, 2 case, the helical excursion of the magnetic axis is
roughly the size of the minor radius (denoted by a) vertically and 1.5 a horizontally.
Therefore, even the £ =1, 2 case has, on the one hand, enough geometrical and,
hence, magnetic-field complexity to be a meaningful object of study, but is, on the
other hand, simple enough as a test bed.

In the following, the normalised toroidal flux, s, is used as flux label with s =0
at the magnetic axis and s =1 at the plasma boundary. Primes denote derivatives
with respect to s for functions that are constant on magnetic surfaces. With V
the contained volume of a magnetic surface with flux label s, V" <0 prevails in
an equilibrium with a magnetic well, because then the enclosed volume increases
less strongly than the enclosed toroidal flux. On the other hand, a magnetic hill,
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V” > 0, implies that the contained volume increases faster than the flux, i.e. that
the magnetic field weakens in the outer regions (Greene 1997). The magnetic well
present in a vacuum field is further deepened by the plasma pressure in the case
of finite plasma-S. Therefore, the vacuum-field magnetic well is an important proxy
for ideal-MHD stability (Mercier 1962) in low-shear, net-current-free stellarators.
Obviously, the pressure profile and the equilibrium must be consistent. For the
series of equilibria with fixed plasma pressure and varying relative vacuum-field
magnetic-well depth Wi,
V'(1) —V'(0)

Wit 0 (2.1)
ranges from a marginal magnetic well, W,y = —0.002, to a moderate magnetic anti-
well or hill, W,; = 0.03.

The £ =1, 2 equilibria have a constant high vacuum-field magnetic-field anti-well
(W, =0.08), so are more unstable to MHD; these are used for a stability scan in
plasma-g. In stellarators the variation of the magnetic-field strength on the magnetic
axis (with the minimum B,,;, and the maximum B,,,,, here given as a relative mirror
ratio)

Bmax - Bmin

MB - B Bav ) (22)
may be more or less pronounced; in ideal axisymmetric tokamaks it is zero. The
strength of the magnetic mirror is also seen in the respective Fourier component of
the magnetic-field strength, e.g. By; in the right panel of figure 3. For the HELIAS
cases, the magnetic mirror ratio increases with increasing vacuum-field magnetic hill
from My =0.014 to ~ 0.07. To put these numbers into context, it is useful to recall
that, as a consequence of the optimisation, nearly all W7-X configurations have a
vacuum-field magnetic well, e.g. W~ —0.01 for the W7-X standard case, which
has a mirror ratio of Mg =20.05 (Dinklage et al. 2018). An exception is the low-t
very-high-mirror W7-X with W, & 0.0044 and My =~ 0.25.

Without much loss of generality, the so-called stellarator symmetry (Dewar &
Hudson 1998) is employed, which is analogous to the consideration of an up-down
symmetric tokamak. Furthermore, the plasma domain is chosen to have a fourfold
discrete symmetry, i.e. to consist of four identical field periods, N, =4. Further
equilibrium parameters are the major and minor radii of Ry=8 m and of a =1 m,
and, hence, an aspect ratio of A = Ry/a = 8. The equilibria are calculated using the
VMEC code (Hirshman et al. 1986), which relies on the assumption of nested flux
surfaces and determines a general-geometry ideal-MHD equilibrium by minimisa-
tion of the total energy of the static plasma. All the equilibria studied in this work
were calculated with 800 flux surfaces. In this way sufficient resolution is supplied,
especially near the magnetic axis, which otherwise is poorly resolved because VMEC
uses the normalised toroidal flux as the radial coordinate. A vanishing net toroidal
current is prescribed for the equilibrium calculations, as is characteristic of stellara-
tors without a boot-strap current. This, in turn, determines the magnetic-field-line
twist or rotational transform, ¢. Fixed-boundary equilibria are used, so that the total
enclosed toroidal flux determines the magnetic-field strength. The stellarator nature
of the equilibrium is also obvious from the dominant Fourier harmonics of the
magnetic-field strength B, shown by way of example for the £ = 1, 2 case in the right
panel of figure 3. The surface-average B, shown with its value on axis subtracted,
is approximately unity with a variation of &~ £ 0.003 for (8) = 0.006. For this case,
the main helical component is stronger than the term describing the axisymmetric
toroidicity, and the magnetic mirror field stronger than the tokamak ellipticity term.
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FIGURE 3. Left: equilibrium profiles versus normalised effective minor radius, r/a, for the
£=1, 2 case (left panel of figure 1): temperatures, densities (black dashed), pressure (black
solid), all normalised to their axis value; rotational-transform profiles for 0.003 < (8) < 0.021
(red to blue, right-side axis). Right: Fourier spectrum of B in magnetic coordinates versus r/a.
Only the dominant harmonics are shown, they are: (m, n) = (0, 0) (dashed black, with its value
on axis subtracted), (1, —1) (main helical term, black), (1, 0) (axisymmetric torus term, red),
(2, —1) (orange), (0, 1) (mirror field, blue) and (2, 0) (axisymmetric ellipticity, cyan).

Finite-pressure equilibria are obtained with the normalised pressure profile shown
in the left panel of figure 3. Identical profiles are used for the normalised ion
and electron temperature (7)) and normalised density (n) profiles (defining the
normalised equilibrium pressure pg)

Ti,e/ Ti,e,axis = ni,e/ni,e,axis = pO/pO,axis- (23)

Furthermore, T; s = T axis 1S chosen, and it 1S 7 ayis = Me.axis 1N consequence of the
assumed quasi-neutrality. With this setting the ratio of the logarithmic derivatives is

unity for all species, i.e.
T n L,
== —)=—=1, 2.4
=(7)/ ()1 e

with L, and Ly the normalised gradient scale lengths of unperturbed density and
temperature. In § 6, additionally, an equilibrium is studied with identical pressure
profile, but composed of a steeper temperature and a flat-density profile. The
normalised profiles, f(s), are defined by a hat function, g(s), viz.

_ ls — pil 1df
g(s)=ps Orgsaj(l <1 — P 0) , and ?a_g(s). (2.5)

For the dashed profile in the left panel of figure 3, the parameters are p; = 0.6,
which is the location of the maximum gradient, p, = 0.85, the width of the gradient
region, p; = —2.9, the maximum of the logarithmic derivative, and f(0) =1 for the
normalisation. The normalised pressure is f2, shown by the solid, black line in the
left panel of figure 3. A sequence of equilibria with the volume-averaged plasma-8
as scan parameter is established by a factor of +/(8)/0.021 for the densities and
temperatures and a factor of (8) for the pressure applied to the on-axis values given
in table 2, with (8) the needed value of the volume-averaged plasma-8. Without
a plasma pressure, the rotational transform varies as 4/6 <0.73 <:<0.79 <4/5
in all equilibria, thus avoiding the low-order natural resonances of four-period
stellarators which are in general connected to magnetic islands (Grad 1967; Boozer
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1984; Waelbroeck 2009). Depending on the local steepness of the pressure pro-
file the rotational transform locally decreases in the region of the pressure gradient
(Freidberg 2014). Using the £ = 1, 2 case as an example, the dependence of ¢ on the
plasma-g is also shown in the left panel of figure 3.

The Alfvén time is often used to normalise growth rates. Defining it with the
minor radius a and the average field strength at the magnetic axis B, as

TA:i:a—Vuopo’ (2.6)
VA Bo
a value of &2 0.27 s is obtained for the £ =1, 2 and the HELIAS cases, all equilibria
at (8) =0.021.

3. Magnetohydrodynamic stability

In the following sections, perturbed quantities are indicated by a §, e.g. the per-
turbed magnetic field, § B, whereas B stands for the unperturbed field. In the model
of linearised ideal MHD, the time evolution of the Lagrangian displacement vector,
&, describes the perturbation of the equilibrium state. The linearisation of, e.g. the
ideal induction equation, determines the perturbed magnetic field

SB=V x (£ x B). (3.1)

The work of Bernstein er al. (1958) and Hain et al (1957), in which the time
evolution of & is formulated in weak form

[&-Fmiavee [ megav=o (3.2)

laid the basis of the field. In equation (3.2), the volume integrals extend over the
plasma and, potentially, over a surrounding vacuum domain. The equilibrium mass
density is pg. An asterisk superscript stands for the complex conjugate. The ideal-
MHD force operator F has time-independent coefficients, therefore allowing the
separation of time and space dependences. Furthermore, it is Hermitian and is
bounded from below. Correa-Restrepo (1978), e.g. gives an intuitive, coordinate-free
formulation of the first term of equation (3.2). For ease of reading, it is repeated
in Appendix B. The Hermiticity of the force operator is obvious in this representa-
tion, equation (B.1). Field-line bending and the two compression terms, namely field
and fluid compression, stabilise perturbations, while the combination of equilibrium
pressure gradient and curvature and the equilibrium parallel-current density are the
source of pressure and current-driven instabilities.

The two MHD codes used in the present study are CAS3D (Schwab 1993) and
CKA (Slaby et al. 2024). While the former is based on (3.2) and uses the full for-
malism of linearised ideal MHD, the CKA code employs the picture of reduced
MHD.

4. Gyrokinetic model

In this work, the EUTERPE code is used to perform spatially global, nonlinear,
electromagnetic, GK simulations with electrons and ions as kinetic species at physi-
cal mass ratio. Collision operators are available in EUTERPE, but are not included
in the present study. An in-depth description of the GK model used and of the code
itself are given in Kleiber ef al. (2024), of which only a few basics are summarised

https://doi.org/10.1017/50022377825000492 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377825000492

Journal of Plasma Physics 7

here and in Appendices C, D and E. Problems inherent to PIC techniques are
addressed by means of the §f-ansatz (i.e. the distribution function f is split into a
time-independent part f, and a time-dependent part §f) and a pull-back transforma-
tion for the mitigation of the cancellation problem (Mishchenko ef al. 2014, 2021).
For the ions/electrons, f; is chosen as an unshifted/shifted Maxwellian distribution,
so that a potentially existing equilibrium current is carried by the electrons only. For
ease of reference, the equations of motion of the PIC marker particles are included in
Appendix C, the field equations for the perturbation quantities §®, §A, and 6 B are
summarised in Appendix D. The EUTERPE code implements a splitting technique
for the scalar perturbed parallel vector potential, § A, employing a symplectic and a
Hamiltonian part, see equation (C.1). The perturbed magnetic field is defined as

SBO* =V x (8A,b)+ 8B b, (4.1)

1.e.using b-V x A, ~6B. Dong et al. (2017), for example, describe the inclusion
of the §B) term in the GTC code and its importance for internal current-driven
perturbation in DIII-D scenarios. Joiner et al. (2010) discuss the role of the
compressional §B; for various micro-turbulence modes employing results from
the flux-tube-based GK code GS2. In local linear micro-stability calculations for
the spherical-tokamak fusion power plant (Kennedy et al. 2023), inclusion of 8B,
proved essential for instability of the dominant hybrid-kinetic-ballooning modes.
This is now understood to be due to strong stabilisation by dB/dp, taking the
equilibrium close to marginal stability (Kennedy et al 2024). Consequently, the
latter work found that including 8 B is not required for local instability in tokamak
equilibria at lower values of dB/dp. In an analysis that adopts a ballooning-space
approximation, Zocco et al. (2015) highlight the significance of § B for the stability
of ion-temperature-gradient-driven modes. The role of the § B term for the scenario
studied here is discussed in §6.1.

For the comparison of ideal-MHD and GK results, equations are derived con-
necting the displacement &, more specifically its component normal to flux surfaces,
and the perturbed potentials §® and §A through their directional derivatives along
the unperturbed field-line orthogonals. In the following, §A =8A b is adopted for
the perturbed vector potential as it is done in the reduced-MHD model and, often,
in the GK approach. Furthermore, a purely exponential growth in time with growth
rate y, o exp (y t), is assumed. Then, from the ideal Ohm’s law, E + v x B =0, and
the representation of the perturbed electric field,

SE=—-V§d —9,6A, (4.2)
an equation for the perturbed electrostatic potential, §®, is obtained
Vsx B-V6®d=y B*§.Vs, (4.3)

with Vs/|Vs| the outer unit normal of an equilibrium flux surface. Analogously, the
equation for the scalar perturbed vector potential, §A, reads as

SA,
stB-V(F)z—B-V(E-Vs). (4.4)

This relation is obtained by dotting  BM'® =V x (§ x B) and §B°* =V x (§A,b)
with Vs. Anticipating the results shown in figure 6, the component parallel to
the background magnetic field is neglected in the GK perturbed magnetic field.
Equation (4.4) is then derived using vector calculus and the fact that Vs is normal
to the equilibrium magnetic field and the equilibrium current density.
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5. Numerical set-up

An inspection of the ideallMHD energy functional, equation (B.1), shows that
the stabilising contributions are minimised by perturbations fulfilling the resonance
condition k; ~ 0 or m t +n ~ 0, with m and n the poloidal and toroidal perturbation
mode numbers. For the equilibria described in § 2 and figure 3, the low-order rational
t=13/4 is located at approximately mid-radius. Hence, perturbations that are domi-
nated by harmonics (m, n) = k(4, —3), with integer k, are near resonant. Owing to
the small shear of the rotational transform (left panel of figure 3), side bands of the
dominant harmonic are resonant only for large multiples k. For example, tokamak-
type side bands with (m, n) = (4k = 1, —3k) are resonant only for k = 5, given the
variation of the rotational transform, 0.7 < ¢ < 0.8. This is different for stellarator-
type couplings, which lead to resonant side bands even for k =1. Examples are
the resonant harmonics (m, n) = (4, —3) and (9, —7), which are coupled by the
m =5 equilibrium helicity. Although, in the model of linear ideal MHD, pertur-
bations with low-k have smaller growth rates than those with high-k, the present
study focuses on the former, because they are spatially large scale and, therefore,
can potentially harm a larger part of the plasma. With their dominant toroidal node
number not a multiple of the number of field periods, N, =4, these perturbations,
however, break the fourfold periodicity of the equilibrium. According to the con-
cept of the so-called mode families (Schwab 1993) (decoupled sets of toroidal node
numbers being the stellarator analogue to the fully decoupled n in the treatment
of axisymmetric equilibria), the periodicity-breaking modes do not belong to the
N =0 mode family. This mode family is otherwise used in EUTERPE as it allows
simulations to be performed on only one field period. Therefore here, regarding
the toroidal direction, the entire torus is used, technically treating it as one field
period.

Radial boundary conditions must be specified at the magnetic axis and at the
plasma boundary. Dirichlet conditions at the plasma edge model so-called fixed-
boundary modes, which leave the plasma edge unchanged. This is imposed by
enforcing vanishing harmonics of the ideal-MHD normal displacement as well as
of the GK potentials, §& and §A, at the plasma edge. At the magnetic axis, regu-
larity conditions have to be fulfilled, in particular to ensure that physical quantities
(e.g. the perturbed electrostatic potential and the perturbed radial electric field) are
single valued. In linear ideal-MHD stability, using the normalised toroidal flux s as
radial coordinate, all normal displacement harmonics have to vanish at the mag-
netic axis: (§ - Vs),,, = 0. In the GK model, analogously, §®,,, = 0 at the magnetic
axis for non-zero m. For harmonics with m = 0, however, a homogeneous Neumann
condition applies, dd P, /dp = 0, at the magnetic axis if p is used as the radial coor-
dinate. In the present work these boundary conditions are used. This is in contrast
to other GK studies which omit the direct neighbourhood of the radial boundaries
or use so-called buffer zones, as described e.g. in the work of Wilms ef al. (2021), or
simulate only one field period (Wilms et al. 2024).

The Fourier expansions that approximate the scalar components of the displace-
ment vector in CAS3D and the field quantities in EUTERPE use identical Fourier
tables, which were applied in all MHD and GK simulations presented in this work.
For each toroidal n, |n| <25, a maximum of 19 poloidal side bands are centred
around the poloidal m for which n/m ~1=3/4. This Fourier filter is used for the
potentials on each of the 128 flux surfaces. Together with this resonance-condition
aligned diagonal filter the Fourier solver implemented in EUTERPE is used.
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FIGURE 4. The B-sequence for the £ = 1, 2 case (left panel of figure 1). Left: time evolution of
the volume-averaged perturbed ion energy flux, (§ Qg), in normalised units, colours for plasma-
B, 10~* < (B) < 0.021 (black to red). Top right: growth rates, y, versus (8): GK linear phase x,
linearised ideal MHD e, with compressible (y, = 5/3, red) and nearly incompressible modes
(yn = 107%, cyan) and incompressible reduced-MHD modes (y, =0, orange o). The shading
shows the range of the MHD growth rates. Bottom right: frequencies, w, versus (8): GK x,
diamagnetic-drift frequency e (red).

The GK simulations use 150 million ion markers, twice as many electron markers
and Maxwellian equilibrium distribution functions for each species. The electron
distribution function is shifted by a bulk velocity depending on all three position-
space coordinates, in this way allowing for an equilibrium current. Realistic electron
mass is used throughout this work. The equilibrium quantities are available on a
cylindrical grid with sizes 300 x 300 x N, in (R, Z, ¢) directions. With N, up to
2048, the aspect ratio of the mesh cells (the ratio of a cell’s longest to its shortest
length) is N,/ N S 2. If not indicated otherwise, the GK simulations include the § B,
term, equation (4.1).

Random initial conditions for §f are the standard choice. As a second option
available in the EUTERPE code, §® is initialised as a superposition of two Fourier
components with a Gaussian radial dependence. Since the present work focuses on
specific low-m MHD modes, the latter option is used with one exception, which
is discussed in §6.2.1. If not stated otherwise, (4, —3) and its tokamak-type side
band (3, —3) with half the amplitude were used with the Gaussians centred around
0 =0.75.

6. Results
6.1. Comparison of linear-phase gyrokinetic and linear ideal-MHD stability results
In this section, the linear-phase properties of the nonlinear EUTERPE simulations,
i.e. growth rates, frequencies and spatial structures, are compared with linear-ideal-
MHD stability results. In the figures, the full time traces of the GK simulations are
shown. The discussion of the nonlinear phase is given in § 6.2.
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The GK growth rates are obtained from the volume-averaged perturbed ion energy
flux (with m,, the proton mass)

1 BR Vs gy
<5QE>_V/ 25f & |V|dxdv. (6.1)

Being quadratic with respect to the perturbation, this quantity grows with twice
the growth rate y (Mishchenko et al. 2021). In equation (6.1), V is the toroidal
simulation volume.

Since the ideal-MHD force operator, equation (3.2), is Hermitian, its spectrum is
real and corresponds to either pure oscillations, w? > 0, or unstable, growing modes,
w? < 0. Hence, the ideal-MHD model does not provide frequencies for unstable
perturbations. This fact again illustrates that ideal MHD is physically less complete
than GK. However, as shown below in §§ 6.1.1 and 6.1.2, the electron diamagnetic-
drift frequency (where e the elementary charge and p the radius)

1 T.m

S, = 6.2
2T B L, p 62)

Wy e =

proved to be in excellent agreement to the frequencies found in the GK simulations.
In contrast to the general case, here w, . =1/2w, ., because the normalised profiles
coincide.

6.1.1. Plasma-B sequence in £ =1, 2 cases

The left panel of figure 4 shows the existence of a clear linear phase in the evolution
of (6Qg) and the dependence of this quantity on the volume-averaged plasma-8
for the B-scan of £ =1, 2 equilibria described in §2. In the top right panel, the
GK growth rates are compared with reduced-MHD CKA and ideal MHD CAS3D
stability results. The latter are calculated in two ways differing in the value of the
ratio of the specific heats, j4, in the fluid compression, see equation (B.1): with the
usual y, =5/3 and with 3, = 10™* as an approximation of reduced MHD. Since
fluid compression always acts as stabilising, the growth rates calculated with non-
zero y, are smaller than those of the reduced MHD. The GK growth rates are
found within the interval created by the MHD growth rates. For (8) < 0.01, the
GK simulations yield growth rates that are in very good agreement with nearly
incompressible ideal MHD and reduced MHD. Only if the plasma-g is large enough,
i.e. for (8) > 0.01, the GK growth rates agree very well with those obtained from
the ideal- MHD calculations with y, = 5/3. In units of inverse Alfvén time, equation
(2.6), the growth rates increase to Y15 ~ 0.054 at (8) =0.021. As is shown in the
bottom right panel of figure 4, the electron diamagnetic-drift frequency, equation
(6.2), and the frequencies determined from the EUTERPE data compare well, so
that the dependence on the plasma-8 is correctly captured.

For a comparison of the spatial structures a point in time is chosen in the
fully developed linear phase of the GK simulation, e.g. t ~ 23.7 us for the £ =1, 2
equilibrium at (8) =0.016. As is evident from equations (4.3) and (4.4), only the
component of the ideal MHD displacement which is normal to the unperturbed
magnetic surfaces is needed for the link to GK. As shown in figure 5, very good
agreement is found for the Fourier harmonics of 6® and 6A,. In addition to the
treatments in MHD and GK, the small deviations may also stem from the usage
of different straight-field-line coordinates. In EUTERPE the so-called PEST coordi-
nates (Grimm et al. 1976) are employed, which keep the angle ¢ of the cylindrical
coordinates with planar toroidal cuts of the simulation domain. With the coordinates
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FIGURE 5. Dominant Fourier harmonics of §® (left) and A (right) at r ~23.7 us for the
£ =1, 2 equilibrium at (8) =0.016. The ideal-MHD results (solid lines, y, =5/3), are com-
pared with the GK results (dashed). Colour legend: resonant (4, —3) harmonic (cyan),
toroidicity- (red) and helicity-induced side bands (orange, yellow). The m =n = 0 (zonal) and
other m =0, n # 0 components are only included in the GK simulation; (0, 0) (black dashed),
(0, 5) (black dotted) and (0, 2) (black dash-dotted).

used in CAS3D, however, the field lines and their orthogonals are straight and,
hence, toroidal cuts are non-planar (Boozer 1982). Usually, the resulting differences
are small. For clarity in the figure, only the strongest seven out of 597 harmonics
are included. In §®, the resonant harmonic, (m, n) = (4, —3), is dominant being
followed in amplitude by toroidal, tokamak-type side bands, A(m, n) = £(1, 0), and
helical side bands, A(m, n) = +(1, —4) for the four-period stellarator. Due to the
discrete, fourfold symmetry of the stellarator, the eigenmodes belonging to dif-
ferent mode families decouple in the MHD stability calculations (Schwab 1993).
Therefore, the zonal component, m =n = 0, does not contribute to the dominantly
(4, —3) ideal-MHD perturbation. In contrast to the Fourier structure of §®, the
resonant harmonic of §A, i.e. (m, n) = (4, —3), is smaller than the toroidicity- and
helicity-induced couplings, i.e. (4, —3) (1, 0) and (4, —3) &= (1, —N,). This can be
understood by a closer look on equations (4.3) and (4.4) employing magnetic coor-
dinates, because then the directional derivatives (B -V and Vs x B - V) are linear
differential operators in the magnetic angles with coefficients constant on flux sur-
faces. Therefore, additionally, this is conveniently done in Fourier space. It is seen
that, firstly, the Fourier harmonics of §& only differ from the ones of the MHD
normal displacement by a factor depending on the flux label. Secondly, ignoring
the variations of B for a moment, the harmonics of §A; are analogously obtained
from the Fourier harmonics of & - Vs, however, multiplied by a factor mt 4+ n, which
approximately vanishes for resonant harmonics.

As described in §2, throughout the present work identical normalised equilib-
rium temperature and density profiles were used. However, the decomposition
of the equilibrium pressure profile into temperature and density profiles is arbi-
trary. Therefore, in addition to the n;. =1 equilibrium profiles, simulations were
also done for an £ =1, 2 equilibrium with the pressure of the n;. =1 case being
split into steep equilibrium temperature profiles, 7, = T;, and flat, but non-uniform
equilibrium density profiles, n. =n;, as shown in the left panel of figure 6. As
illustrated in the middle panel, the linear-phase growth rate is lower for the flat-
density simulation, y = 0.16 (us)~!, as compared with the one employing the 7. ; = 1
profiles, y = 0.2 (us)~!. The ideal- MHD stability calculations employing y, = 5/3,
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FIGURE 6. Left: normalised temperature (solid black), density (dashed black) and pressure
(dashed red) equilibrium profiles of a flat-density scenario; compare figure 3 for the n; . =1
profiles. Time evolution of the volume-averaged perturbed ion energy flux in normalised units
for the £ =1, 2 case at () = 0.02 (middle) and 0.01 (right). Middle panel: n; . = 1 (black), flat-
density simulation with quad-tree smoothing (red), and without smoothing (cyan). Right panel:
simulations including the § B|-terms (black) and omitting them (red).

however, find a slightly higher growth rate, y = 0.22 (jus)~! for the flat-density case
as compared with the ;. =1 case with y =0.2 (us)~!. One reason for this may
lie in a structural difference between ideal MHD and GK. The MHD force oper-
ator includes the equilibrium pressure and its gradient, and the equilibrium density
only appears in the kinetic energy acting as a normalisation. Conversely, in GK the
density and temperature gradients are both sources of free energy.

Comparative EUTERPE simulations including and omitting § B are presented in
the right panel of figure 6. With practically identical time traces, coincidence as well
in the linear-phase growth rate as in the saturation level is found. Therefore, this term
plays a subordinate role only, suggesting that it may be neglected in GK simulations
in the regime of MHD proper. Here, the latter is understood as a scenario in which
low-m and, therefore, spatially large-scale, modes are dominant. This finding is in
line with Kennedy et al. (2024), where it was demonstrated that §B; has a large
impact on hybrid-kinetic-ballooning mode (hybrid-KBM) stability at high 8’ (e.g.
B’ '=dB/dp ~ —0.5 in their local GK simulations), and a negligible impact at lower
B'. The latter case appears to apply in the simulations presented here, since f’
is roughly five times smaller, 8’ ~ —0.1 at the location of the strongest pressure
gradient, p ~ 0.7 (figure 3).

6.1.2. Vacuum-field magnetic-well sequence in HELIAS cases

The set of HELIAS equilibria described in §2 is even more important because
the geometry of the cases is more like W7-X, and information can be obtained on
the vacuum-field magnetic well which is used as a series parameter. As shown in
figure 7, the linear-ideal-MHD results and the linear-phase findings of the nonlinear
GK simulations agree equally well. Both models find that a vacuum-field anti-well
corresponds to instability. In units of inverse Alfvén time, equation (2.6), the growth
rates increase from 0.015 to 0.033 for an increase of W from 0.006 to 0.03. As seen
before, the electron diamagnetic-drift frequency, equation (6.2), is a good approxi-
mation to the frequencies determined by the GK simulations. During a EUTERPE
simulation the relative magnetic-field perturbation normal to the unperturbed flux
surfaces, hence § B, is monitored at selected times as illustrated by black bullets in
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FIGURE 7. Sequence of HELIAS equilibria (right panel of figure 1) with variation of the
vacuum-field magnetic anti-well, Wy, at fixed (8) = 0.02. Left: time evolution of the volume-
averaged perturbed ion energy flux, (8§ Og), and of the magnetic-field perturbation, § B*, both
in normalised units. Colours indicate Wr=0.0057, 0.01, 0.017, 0.03 (blue, green, cyan,
orange). Except for the latter case, the field perturbation is shown by e with the dashed lines
meant to guide the eye. Top right: growth rates, y, versus vacuum-field magnetic anti-well, W.
From the GK linear phase x and from linearised ideal MHD e, with compressible (y, =5/3,
red) and nearly incompressible modes (3, = 10™*, cyan). The shading shows the range of
the MHD growth rates. Bottom right: frequencies, w, versus Wyr: GK x, diamagnetic-drift
frequency e.

the left panel of figure 7. It is defined by

Vs
| Vs |

ma;( 83‘ / B, (6.3)

5,0

with (s, 8, ¢) extending over the total simulation domain, i.e. the torus in the present
work. The EUTERPE code uses dimensionless quantities, B, normalises the mag-
netic field (Appendix E and table 2). For (8) =0.02 and W,;=0.017 (cyan time
traces), the relative field perturbation increases to 0.013 at the end of the linear
phase, t = 76 s, and saturates at &~ 0.025 near the end of the simulation, ¢ = 86 ps.
It should be noted that the magnetic-field perturbation saturates with a time delay
as compared with (§ Q).

6.2. Analysis of the gyrokinetic results

6.2.1. Time evolution of energy fluxes, power spectra and profiles

In addition to the perturbed ion energy flux used in figure 4, figure 8 shows the time
evolution of the volume-averaged total ion energy flux ({Qg,) is the unperturbed
flux, which ideally should be zero, but can fluctuate due to particle noise in the PIC
method) (Qg) = (Qko) + (6 OF), for the plasma-8 scan of £ = 1, 2 stellarators. In all
EUTERPE simulations discussed in this paper, in equilibrium 7, (¢, = 0) = T;(t, = 0)
and n.(t, = 0) = n;(t, = 0), as described in § 2. Although they are independent quan-
tities and independently evolving during the GK simulation, each type of profile
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FIGURE 8. Time evolution of the volume-averaged total ion energy flux, (Qg) = (Qg o) +
(6 Og), in SI (left) and gyro-Bohm units (right) in the £ =1, 2 case of figure 4; colours for
plasma-g3, 0.002 < (8) < 0.021.

(temperature and density) was found to evolve identically for ions and electrons
in the scenarios studied here. Therefore, the energy fluxes are the same for elec-
trons and ions (protons) in SI units. Given in gyro-Bohm units, they differ by a
factor of \/m,/m.. For (B)=0.02, the maximum of (Qg) is reached at ~ 32 ps.
For lower plasma pressures the maxima occur at slightly later points in time. Using
SI units, it is seen that the saturation levels scale with the plasma pressure. They
are comparatively high, e.g. &~ 300 in gyro-Bohm units, due to the strongly unstable
nature of the £ =1, 2 configuration.

Test simulations confirmed the necessity of keeping terms quadratic in the per-
turbed quantities in the equation of motion for u;, equation (C.6). Without these
so-called magnetic-flutter terms saturation was not reached. The quadratic terms
appear where derivatives along directions involving the magnetic field, B + § BJ¥,
are applied to perturbation quantities.

Furthermore, the influence of the so-called quad-tree smoothing for noise control
(Sonnendriicker et al. 2015) was studied. For the flat-density £ =1, 2 case at (8) =
0.02, GK simulations were performed with and without the smoothing option. As
seen in the middle panel of figure 6, the smoothing procedure leads to an only
slightly prolonged saturation phase in this specific case.

As described in §6.1, modes detected in the GK simulations are said to have
MHD signatures, if they are unstable with dominantly low-m partial modes and,
hence, spatially global structures. Furthermore, they have negative GK frequen-
cies, in good agreement with the electron diamagnetic-drift frequency and rotate
in the electron diamagnetic direction. An important point of this work was to
check how sub-dominant these MHD-like modes are compared with other modes
present in the GK simulations. To this end, the initial conditions of §® employed for
the EUTERPE simulations were varied. The GK results were then analysed using
the time traces of the radially averaged power spectra for the Fourier harmonics
of 6®

1
P = [ 5000 dp. (6.4)
0

(The EUTERPE code uses normalised quantities which are derived from equilib-
rium quantities, Appendix E and table 2. A typical normalisation value for §& is
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FIGURE 9. Time evolution of selected components of the §® power spectrum in normalised
units, &, = (§ <I>*)2, shown for HELIAS equilibria at (8) = 0.02, W,r=0.017 (left, right) and
Wyt = 0.01 (middle). Left (middle): initialisation of §&® with resonant mode m =4, n = —3 and
an admixture of (28, —21) at a relative amplitude of 0.001 (0.005); right: initialisation with
noise. Colour legend: low-m component (4, —3) (red), high-m (28, —21) (black), zonal com-
ponent (0, 0) (cyan). Vertical dashed lines indicate time intervals in which growth rates of the
(0, 0) component are determined by regression as shown by the diagonal dashed lines.

3®, ~ 1500 V.) By way of example, the four-period HELIAS case at () = 0.02 and
W, =0.017 and 0.01 is studied. The respective GK results are summarised in figure
9. In a GK simulation started from noise, i.e. from a randomly set small initial per-
turbation, the linear phase is dominated by a high-m perturbation, m = 28, n = —21,
its side bands, a toroidicity-coupled side band, (27, —21), being the most important
one. Other high-m resonant partial modes, e.g. (24, —18) and (22, —17), also con-
tribute, with smaller, but comparable, amplitudes. The respective selected time traces
of the total ion energy flux are shown in the right panel of figure 9. With positive
frequency, i.e. rotation in the ion-diamagnetic direction and strong amplitudes on
the outside of the torus, the high-m mode has characteristics of a KBM (Aleynikova
et al. 2018; Ishizawa et al. 2019). If, as the second choice, the simulation is explicitly
initialised at low mode numbers, in this case the resonant (4, —3), together with a
small high-m content, here (28, —21) at a relative amplitude of 0.001, then the MHD-
type low-m mode is dominant in the simulation. The high-m component also grows
(even at a slightly larger growth rate), but stays subdominant during the entire simu-
lation, because of the much lower initial level. The respective selected time traces are
shown in the left panel of figure 9. For these two simulations (left and right panels of
figure 9), the time traces of the total ion energy flux are shown in figure 10. The low-
m MHD-type mode (left panel of figure 9) reaches an ~ 7.5 times higher maximum
of (§Q¢g) than the high-m KBM (right panel of figure 9). A third choice of initial
conditions is illustrated in the middle panel of figure 9. Compared with the low-m
partial mode, (4, —3), the relative amplitude of the high-m partial mode, (28, —21),
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FIGURE 10. Time evolution of the volume-averaged total ion energy flux, (Qg) = (QE.0) +
(6 QE), in SI (left) and gyro-Bohm units (right) for the simulations shown in the left (low-m)
and right (high-m) panels of figure 9; HELIAS case at Wyr = 0.017 and () = 0.02. The values

for the high-m results (black) are magnified by a factor 10.
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FIGURE 11. Time evolution of the §&® contours in normalised units on the bean-shaped cross-
section of the HELIAS equilibrium with Wyf=0.01 and (8) = 0.02. Initialisation of §® with
resonant mode m =4, n = —3 and an admixture of m = 28, n = —21 with a relative amplitude
of 0.005 (see middle panel of figure 9). Time points from left to right: 7 /(us) = 14, 21, 29, 36.

is 0.005 at the start of the simulation, i.e. initially five times larger than in the simu-
lation depicted in the left panel of figure 9. With this choice, however, the (28, —21)
KBM share outweighs the (4, —3) MHD one at & 25 us towards the end of the lin-
ear phase. This third scenario is also illustrated in figure 11. A sequence of snapshots
of §® contours on the bean-shaped cross-section shows how the initially MHD-type
low-m mode transforms into a high-m KBM after an intermediate phase, in which
the mode is a superposition of both contributions with practically no rotation. The
KBM structures get sheared and eventually (while decaying in the saturation phase)
become subdominant to zonal structures that dominate the simulation at later times
(the latter not shown in figure 11).

Figure 12 shows the temporal evolution of the temperature and density pro-
files during the EUTERPE simulation for the HELIAS equilibrium at W,; =0.017
and (B) =0.02, more specifically for a scenario with an unstable, low-m, spatially
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FIGURE 12. Time evolution of the profiles: ion temperature (coloured dashed) and ion density
(coloured solid) in the HELIAS equilibrium at W,¢=0.017 and (8) =0.02. The respective
electron profiles are shown as black dotted lines. The corresponding changes in the magnetic-
field structure are shown in figure 14. Time ranges from ¢ = 0 s (black) to # & 82 s (cyan).
Intermediate time instances are shown in red to orange colours, t = 61, 71, 78 us.

global and, hence, MHD-type mode. Initially, all normalised profiles are identical,
Nie = 1. During the GK simulation, the temperatures and the densities evolve sep-
arately, however, identically for ions and electrons, i.e. for all times 7, = T; and
n. = n;. Likewise, the ion and electron heat fluxes evolve identically in this scenario.
The changes seen in the profiles are rather weak, mostly occurring in the early sat-
uration phase, ¢ < 78 ws. Flattening is seen inside, and, hence, a steepening outside
the radial location of the strongest pressure gradient, p ~0.7.

6.2.2. Properties of the zonal flow

The role of m =0 or zonal components is not yet clear and remains under inves-
tigation. They immediately appeared in all GK simulations for the MHD-unstable
equilibria studied here. The time traces of (§Qg), e.g. in figures 4 and 7, show
that these simulations could not be continued deep into the saturation phase.
A possible reason is seen in the eventual excessive growth of the zonal compo-
nents during the saturation phase of the other modes, which leads to numerical
problems and, consequently, the termination of the simulation. All computational
parameters of the GK simulations were carefully checked, e.g. a smaller time step
did not solve the problem. The various time traces only cover simulation phases
with well-resolved and well-behaved Fourier harmonics of the perturbed potentials,
8P and 6A,. By way of example, the time traces of the power spectrum of §®, , are
additionally shown in figure 9. In the simulations initialised with noise (right panel),
and the low-m MHD-type perturbation (left panel), the (0, 0) component oscillates
and on average grows at the rate of the dominant mode as indicated by dashed lines.
Towards the end of the linear phase, however, the (0, 0) growth rate changes by a
factor of approximately three in the MHD-type regime. In the KBM regime that
developed from initial noise, a growth rate twice as high as for the KBM is found.
Through this continuing increase of the zonal component the saturation phase ends
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FIGURE 13. Field-line tracing for the GK magnetic field, B + BBGK(I), of the £ =1, 2 stel-
larator, figure 1, with (8) = 0.006, at ¢/(s) =0, 32, 35.6, and 40 (left to right). Selected field
lines in islands are highlighted (right): m = 4 (cyan and magenta) and m =9 (red). The ¢ =0°
cross-section is shown.

early, even though the dominant non-zonal modes decrease in amplitude. In the
third scenario (middle panel), on the other hand, in which the KBM overtakes the
MHD mode, a prolonged saturation phase develops, in which the high-m content
decreases, and the zonal component only slightly increases.

6.2.3. Spatial structures of gyrokinetic perturbation and field-line tracing

The GK simulations proceed from equilibrium calculations assuming nested mag-
netic surfaces. While an unstable perturbation develops in time, it perturbs the
initially intact magnetic geometry too.

For the £ =1, 2 equilibrium with (8) =0.006, figure 13 shows the upright-ellipse
cross-section at four instances in time, starting with the unperturbed magnetic field.
For this simulation the time trace of the perturbed ion energy flux is shown in the
left panel of figure 4 (cyan). In the linear phase, r =32 s, high-m islands develop
in the outer half of the plasma domain. In the late linear phase, r =35.6 us, an
m =4 island develops and the outer magnetic surfaces begin to ergodise. In the
saturation phase, at t =40 us, the m =4 island is seen to act in a shielding way, it
encloses intact surfaces. Outside the m = 4 island, ergodisation leaves only remnants
of m =9 island near the plasma edge.

Figure 14 shows the intact flux surfaces of the HELIAS equilibrium with (8) =
0.02 and W,; =0.017, and the evolution of the m =4 island by two snapshots, at
t =61 s and 71 ps. It should be noted here that the equilibrium configuration was
deliberately chosen such that no low-order islands exist and the assumption of nested
surfaces made by the VMEC code is well justified. With a relative magnetic-field per-
turbation, equation (6.3), of 0.003 at r =61 ws, a thin m =4 island exists and the
magnetic surfaces near the plasma boundary wiggle slightly. Near the end of the
linear phase, at t =71 s and a relative field perturbation of 0.008, the surfaces
inside the m = 4 island are still intact, the island width has increased, and ergodised
surfaces fill the outer part of the domain. The ergodisation is, however, not com-
plete, as shown by colouring the distinct field lines. Similar findings are reported
for simulations using the nonlinear MHD codes JOREK (Ramasamy et al. 2024)
and M3D — C1 (Zhou et al. 2024). In figure 10, it is seen that the total ion energy
flux strongly increases from ¢ =~ 70 ws. Interestingly, this coincides with the phase of
increasing ergodisation of the magnetic field. Future work will continue the study
of the magnetic-field structures seen GK simulations in more detail. In addition
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FIGURE 14. Field-line tracing for the GK magnetic field, B +BBGK(I), of the HELIAS
stellarator with Wyr=10.017, and (8)=0.02, at 7/(ns) =0, 61,and 71 (top to bottom).
The ¢ = 0° (left) and 45° (right) cross-section are shown. Colours differentiate the field lines.
Empty regions near the boundary indicate an island region.

to the magnetic islands, magnetic surfaces with highly irrational rotational trans-
form (equivalent to Kolmogorov-Arnold-Moser (KAM) surfaces) and near-intact
remnants of magnetic surfaces (so-called cantori) are of strong interest (Meiss 1992;
Hudson & Breslau 2008). While the former are ‘immune’ against field perturbations
and prevent complete ergodisation, the latter at least form partial barriers for field
lines.

7. Summary and outlook

This work brings together GK and linear-ideal-MHD studies for helical-axis
¢=1,2 and HELIAS stellarators, the latter being the class of stellarators that
also includes the W7-X configuration space. Electromagnetic, nonlinear simulations
employing kinetic ions and kinetic electrons with physical mass ratio were performed
with the EUTERPE GK code studying periodicity-breaking perturbations in the full
toroidal plasma domain. Such simulations are the first of their kind, to the best
knowledge of the authors. The linear-phase GK and the linear-ideal-MHD results
were found to be in very good agreement: the growth rates and their dependence
on the volume-averaged plasma-8 and the vacuum-field magnetic well, as well as the
Fourier structure of the perturbed electrostatic and parallel vector potentials of the
modes. In particular, this means that both models find that a vacuum-field magnetic
anti-well drives instability. It was shown that the parallel magnetic-field perturbation
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plays no role in the GK simulation of the ideal-MHD-unstable equilibria that were
studied in the present work. The inclusion of the magnetic-flutter term was found to
be critical for reaching saturation in the GK simulation of the ideal-MHD-unstable
equilibria. The sub-dominance of unstable low-mode-number MHD-type modes as
compared with KBMs was confirmed in this type of low-shear stellarator. However,
as shown by field-line-tracing, low-order island chains driven by the magnetic-field
perturbation are expected. The islands enclose intact surfaces and are surrounded
by ergodised surfaces in the outer plasma domain. Indications of increasing parti-
cle and energy fluxes seen in the present simulations after the onset of ergodisation
(potentially leading to a loss of volume of good plasma confinement) will be studied
in more detail in future work. In the saturation phase of the GK simulation, a slight
flattening of temperature and density profiles was observed. It remains to be investi-
gated whether the turbulent transport or the development of the island and ergodic
regions is the cause of this flattening. The continued growth of the zonal-flow com-
ponent in the saturation phase of the GK simulation will be the focus of future work
as well as detailed studies of the magnetic-field structures arising in GK simulations.
Similar simulations will evaluate the results of experiments conducted for a configu-
ration with small vacuum-field magnetic anti-well in the OP2.3 operation campaign
of W7-X.
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Appendix A. Boundary of HELIAS configurations

In the VMEC equilibrium code, cylindrical coordinates, R, ¢, Z, are employed
with Fourier approximations for R and Z. The plasma boundary Fourier coefficients
of the HELIAS configuration with marginal vacuum-field well are given in table 1.
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Ron 0 1 2 Zonn 0 1 2

-2 —0.01 -2 —0.01

-1 —0.001 -1 —0.001
0 8 0.9734  0.01 0 0 1.0266 0.01
1 0.856 0336 0.2 1 —0.69 0.336 0.2
2 0.11977  —0.0413  0.06 2 —0.11977 0.0413  —0.06

TABLE 1. Boundary coefficients of the HELIAS configuration with marginal vacuum-field
magnetic well. In the rows, the poloidal index m increases, in the columns the toroidal
index n.

In the boundary description for the case with W,;=0.03 several coefficients are
different, namely Ry ; = 1.23, Z;,; = —1.08 and R, | = —Z,; = —0.185. The series of
equilibria described in § 2 is obtained by interpolation of the boundary Fourier tables
of these two limiting cases. For the £ =1, 2 case, all m =2 coefficients (indentation
and triangularity) are set to zero, the excursion of the magnetic axis strengthened
by setting Ryp; =1.49 and Z,, = —1.3434. The turning-ellipse coefficients remain
at —R; = Z;; =0.185. Small adjustments of the rotational-transform profile were
achieved by e.g. an increase in —R;; = Z;; resulting in a positive shift of « and a
decrease in R,y = Z, which yields stronger shear.

Appendix B. Plasma potential energy of ideal MHD stability

A multitude of formulations were developed for the energy brought about by the
ideal-MHD displacement & in the plasma, this energy being the most important part
in the left-hand side of equation (3.2). The following representation, used e.g. by
Correa-Restrepo (1978), explicitly separates stabilising and potentially destabilising
terms

1
Wi =3 [ BB <SBP+ 57 B-5B —§ - Vol +ppIV 8P
Vp

+HIE-Vp) K -E)+(E - V) -§)]
_
2B

where §B is as in equation (3.1), the integration extends over the plasma domain
and y; is the ratio of the specific heats. The field-line bending, the field compression
and the plasma or fluid compression, in the order of the first line of equation (B.1),
always contribute in favour of stability. The curvature, k = —b x (V x b) = (b- V)b,
in combination with the equilibrium pressure gradient, and the equilibrium parallel-
current density, j, = j - b, may, however, give rise to pressure- and current-driven
instabilities and may, therefore, have a detrimental effect on plasma stability.

[(£* x B) -8B + (&£ x B)- aB*]}dv, (B.1)

Appendix C. Gyrokinetic equations of motion

For reference, the GK equations of motion are given here in the so-called mixed
formulation used in the EUTERPE code. For each kinetic marker species, equations
of motion are formulated. In this section the subscript for the marker species is
omitted for clarity of notation. The scalar perturbed parallel vector potential A is
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split into a symplectic and a Hamiltonian part
SA =8A} 4+ 8A].

The Hamiltonian part, A", is used to define

I

U= + ((SAh)

(C.1)

(C.2)

with (-) denoting the gyro-average in the Appendices C and D. The phase-space

Jacobian is
Br=B+ [q u —|—<8As)i| b- (V x b).

(C.3)

With the magnetic moment being a constant of motion, jL = 0, the evolution equation

for v, 1is

. vy
=—R-.-VB.
DY

The equations of motion are

2

; mo| p uj 9 /¢ 4n

R=ub+—|—bxVB+—bxk|— —(5A)b

o | poxvns o)< Loy
m

1
+ B_ﬁ‘b X V(8@ —uy(8A] +3A})) + — s — b x V8B,

+—((8A) (8A1) b x K

By
LAY [b < V (547) + (34) — (547 x ]
and
14'||=—MVB-|: ug* ]

+ L2 b x V(pal)- V(saj)+ (543) - (541) b x & - V(saD)]

m BII

m o (aAs)
- |:b X VB - V{3A;)+ -t

VB.(V x B)l}
I

4y b- m_ 2L . — uySAD
+—uy b V(sA}) Bﬁﬁb X k- V(8D —u 8A})
q 1

=L [bx V(6®) V(543) + (s4;) b x k- V30)] -

mB||
- [b+ﬂu—*b X K:|-V(SB - M—‘Lb X Kk + Vd,
q Bj B

g1 s :
+ EB_;([I’ X V(343) — (543} x x| - Vb,
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(B) Po(0) Te,i(O) ne,i(o) Ny [ Ux B, 5D, 8/—\”*
/kPa /keV /102°m—3 s /ms™! /T N /tm
0.021 25973 1516 0.5346 0.3605 0.0082 377465 12736 1487 0.004

TABLE 2. Magnetic-axis values of equilibrium profiles and normalisations used in the CAS3D
and EUTERPE simulations for the £ = 1, 2 stellarator of figure 1 with the maximum volume-
averaged plasma-g used in the calculations.

In the above equations, (C.5) and (C.6), an externally given electrostatic potential
®,, describes the influence of a radial electric field.

Note that in the equations of motion terms quadratic in the perturbed field are
retained because they are important for the nonlinear saturation of the modes.

Appendix D. Gyrokinetic weight and field equations in mixed formulation

In the following, the subscript s =1, ¢ denotes the marker species. The masses are
normalised to the proton mass, the charges to the unsigned elementary charge
and g, = B (D.1)
np le]

The weights w, of the PIC marker particles evolve according to

3f0,s . afO,s
aUH +Ul avl ’

nie
mg =

W, =—Q,S, with S,=R-Vfy, +1i (D.2)

with €, the marker phase-space volume. The unperturbed distribution functions are
2 2
Mo L PR
Jos= 3, XP (_ 2 - ) ’ (D.3)
(2m)2 vy 2 vy

with the thermal velocities given by vfh’s =T,/m,. The perturbed electrostatic
potential follows from the quasi-neutrality equation

dan=0,  n=(n)+= V- (ZEW00). (D4)
s qs 32

Ohm’s law determines the symplectic part of §A;

S

8 A;
— b Vse=0. (D.5)

For a given symplectic § A}, the Hamiltonian part of A is determined by Ampére’s
law

! 4 . ;
—EV-VL(SA‘IH—ZnOS m—yaA‘FZ(J..,X) aRAALT (D.6)

s

A pressure balance equation is employed to calculate § B,

B
—— 8By =) 8p.,. (D.7)
EU s
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with the perpendicular perturbed pressure given by
5pis =m; / MB 8f3 B‘T dl/tH d,u dO[, (DS)

and the quantity Bgy = (io kg 1, T..)/B?. The normalisations, indicated by the sub-
script *, are explained in the Appendix E. The phase-space Jacobian B, is defined
in equation (C.3). The angle o determines the direction of the gyro-radius vector on
the gyro-disc.

Appendix E. Normalised units in the EUTERPE code

The EUTERPE code employs normalised units. The internal units are 2, = 1/t, =
le|B./m,, with B, the average value of the equilibrium magnetic field on the mag-
netic axis, v, = p, 2, for velocities, with p, = ,/kg T.m,/(le|B,). The temperature
T, is the electron temperature at mid minor radius. The densities are normalised
to the volume-averaged ion number density, n, = N,/ V, with V the volume of the
toroidal plasma domain. Derived normalisation parameters are §&®, = kg T, /|e| for
the perturbed electrostatic potential and §A,, = p, B, for the perturbed parallel vec-
tor potential. The normalisation of the energy fluxes is done via Qg, =m, n, v}. The
transformation to gyro-Bohm units is obtained from QF® =m, n, v} (p,/a)*, with a
the effective minor radius of the toroidal plasma, and the subscript s =eori indi-
cating the particle species. Typical values for the £ =1, 2 equilibrium of figure 1 are
summarised in table 2.
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