
Adv. Appl. Prob. 38, 792–803 (2006)
Printed in Northern Ireland

© Applied Probability Trust 2006

ON THE EXACT ASYMPTOTICS OF
THE BUSY PERIOD IN GI/G/1 QUEUES

ZBIGNIEW PALMOWSKI,∗ ∗∗ Wrocław University and Utrecht University

TOMASZ ROLSKI,∗ Wrocław University

Abstract

In this paper we study the busy period in GI/G/1 work-conserving queues. We give the
exact asymptotics of the tail distribution of the busy period under the light tail assumptions.
We also study the workload process in the M/G/1 system conditioned to stay positive.
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1. Introduction

The main object studied in this paper is the busy period, τ , in single-server queues operating
under a work-conserving discipline (e.g. first-come–first-served). Throughout the paper we
assume that the traffic intensity, ρ, is less than 1, which implies that τ is finite almost surely,
and that the initial workload is x. Recall that the busy period is greater than t if and only if the
workload process in the interval [0, t] is strictly positive.

The case of the M/G/1 queue was considered by Kyprianou (1971), who studied the asymp-
totics of the tail probability of the busy period where a service time has a meromorphic moment
generating function m̂B(θ). Let λ be the arrival rate and let κ(s) = λ(m̂B(s) − 1) − s.
Kyprianou (1971) considered the light tail case, namely that there exists a θ0 > 0 such that
κ ′(θ0) = 0 or, equivalently, λm̂′

B(θ0) = 1. Using analytical methods he proved that

Px(τ > t) ∼ h(x)e−γ t t−3/2 (1.1)

as t → ∞, where h(x) = Cxeθ0x ,

γ = −κ(θ0), C = 1

−κ(θ0)σ
√

2π
, σ 2 = λm̂′′

B(θ0). (1.2)

A result of this type for the density function was first given in the appendix of the book of Cox
and Smith (1961) (Equation (46) on page 154), and it was proved using the saddle-point method.

The main result of this paper is the exact asymptotics for the tail of the distribution function of
the busy period in the GI/G/1 queue. Of course, in this case we must first markovize the workload
process by attaching the second component of the remaining arrival time process to obtain a
Markovian setting; therefore, in Theorem 2.1 we give the asymptotics of P(x,z)(τ > t), where x

and z are the initial workload and remaining arrival time, respectively. In Corollary 2.1 we state
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The busy period in GI/G/1 queues 793

a result similar to (1.1) for GI/G/1 a work-conserving system. Recently, a weaker logarithmic
asymptotics was found in GI/G/1 queues by Mandjes and Zwart (2006), as a by-product of their
studies of GI/G/1 processor-sharing queues.

In the light of Kyprianou’s (1971) studies, a naturally related concept is the workload process
conditioned to stay positive. This notion is a counterpart of ones such as the random walk
conditioned to stay positive (see, e.g. Keener (1992) and Bertoin and Doney (1994)) or the
Brownian motion conditioned to stay positive derived by Knight (1969). In Section 4 we study
this concept for an M/G/1 queue, completing Kyprianou’s (1971) studies.

2. Main result

We now introduce the queueing notation used throughout the paper. Customers arrive at the
instants T0, T0 + T1, T1 + T2, . . . , where T0, T1, . . . are the interarrival times. If there is an
arrival at 0 then we set T0 = 0. The customer arriving at 	n := T0 + · · · + Tn has associated
service time Bn. Let S(t) = ∑N(t)

j=1 Bj be the cumulative service time up to time t , where N(t)

denotes the number of all arrivals by time t (including the one at time 0 if there is one). That is,

N(t) =
∞∑

j=0

1(T0 + · · · + Tn ≤ t).

We assume that the random variables T0, T1, T2, . . . are independent and that T1, T2, T3, . . . are
independent, identically distributed random variables. This sequence of variables is furthermore
independent of an independent, identically distributed sequence B1, B2, . . . with the nonlattice
distribution FB . Throughout the paper we also assume that a generic T = T1 and B = B1 are
light tailed, that is, there exists a δ > 0 such that

Ex eδT < ∞, Ex eδB < ∞. (2.1)

Under Px we define the process X(t) = x + S(t) − t . Let Ex be a corresponding expectation.
For all systems working under a work-conserving discipline the work load process is

V (t) = max
0≤s≤t

(X(t), X(t) − X(s)).

By the busy period we mean the following stopping time:

τ = min{t : V (t) = 0} = min{t : x + S(t) − t = 0}.
Our permanent assumption is that τ is a proper random variable, that is, ρ = Ex B/ Ex T < 1.
Note that the two processes X(t) and V (t) are identical within the first busy period. We let

λ = lim
t→∞

N(t)

t
almost surely.

With the above queueing description in continuous time we associate the following random
walk. For ζi = Bi − Ti (i = 1, 2, . . .), let

Z0 = x, Zn =
n∑

k=1

ζk, n = 1, 2, . . . , (2.2)

and ν = min{n : Zn < 0}.
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Note that Ex ζ < 0 since ρ < 1. We also consider a Palm version of the problem with
probability measure P◦

x , under which T0 = 0.
For a random variable Y we denote by FY (·) its distribution and by m̂Y (s) = E exp(sY ) its

moment generating function. Also, we use the notation l̂ξ (s) = ∫ ∞
0 e−sx ξ(dx) for the Laplace

transform of a measure ξ which is not necessarily finite. We will write k(t) ∼ l(t) to mean that
limt→∞ k(t)/ l(t) = 1.

Let θr = sup{θ : m̂B(θ) < ∞} > 0. The function κ(θ) is the unique solution to

m̂B(θ)m̂T (−κ(θ) − θ) = 1 (2.3)

in the interval (−∞, θr). The function κ(θ) is convex and κ ′(0) = ρ−1 (see Rolski et al. (1999,
Lemma 11.5.1)). We assume that there exists a θ0 < θr such that κ ′(θ0) = 0. If the above
condition, together with (2.1), is fulfilled, then we say that the light tail case pertains.

Unfortunately, neither V (t) nor X(t) is a Markovian process unless the queue is of M/G/1
type. However, the process (X(t), Z(t)) is Markovian, where the process

Z(t) =
N(t)∑
j=0

Tj − t

measures the remaining time to the next arrival. We also set the initial conditions X(0) = x

and Z(0) = z, which will be indicated to hold by the notation P(x,z).
Actually, we consider the Markov process (X(t), Z(t), t), which falls into the framework

of piecewise-deterministic Markov processes; for the theory, see Davis (1993, Chapter II). The
full generator has the form

Af (x, z, t) = ∂

∂t
f (x, z, t) − ∂

∂x
f (x, z, t) − ∂

∂z
f (x, z, t),

where f is an absolutely continuous function fulfilling the boundary condition

f (x, 0, t) =
∫ ∞

0

∫ ∞

0
f (x + y, z, t) dFB(y) dFT (z) (2.4)

and such that

E

(∑
i≤t

|f (X(τ ∧ 	i)) − f (X(τ ∧ 	i−))|
)

< ∞ (2.5)

for each t ≥ 0.
We first show how to remove the drift. Let θ < θr. Consider a function g(x, v, t) =

k(z)eθxe−κ(θ)t . For g to be a harmonic function, we have to check that Ag = 0 and that the
conditions (2.4) and (2.5) hold. This means that k(v) solves −κ(θ)k(z) − θk(z) − k′(z) = 0
and, hence, that k(z) = k(0)e−(κ(θ)+θ)z. We also find that the boundary condition (2.4) holds,
because κ(θ) is the solution to (2.3). Since θ < θr, we can show (2.5) following Rolski et al.
(1999, Chapter 11.3.1). Note that κ ′(0) = ρ − 1 < 0. Thus, g(x, z, t) = eθx−(κ(θ)+θ)ze−κ(θ)t

and the process
E(t) = e−θxe(θ+κ(θ))zeθX(t)e−(θ+κ(θ))Z(t)e−κ(θ)t

is a mean-1 exponential martingale defined by the function g.
We now introduce the new probability measure P(x,z);θ , defined by

dP(x,z);θ |t = E(t) dP(x,y)|t , t ≥ 0,
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where the subscript ‘|t’ denotes the restriction of a probability measure to F X,Z
t , the σ -field

generated by the process (X(t), Z(t), t) up to time t . From Theorem 5.3 of Palmowski and
Rolski (2002), under the new probability we find that the distributions of T and B are

dFθ
T (v) = 1

m̂T (−κ(θ) − θ)
e−(κ(θ)+θ)v dFT (v),

dFθ
B(v) = 1

m̂B(θ)
e−θv dFB(v),

(2.6)

and, so,

E(x,z);θ T = m̂′
T (−κ(θ) − θ)

m̂T (−κ(θ) − θ)
, E(x,z);θ B = m̂′

B(θ)

m̂B(θ)
. (2.7)

Taking the first derivative with respect to θ in (2.3), we obtain

m̂′
B(θ)m̂T (−κ(θ) − θ) − m̂B(θ)m̂′

T (−κ(θ) − θ) − κ ′(θ)m̂B(θ)m̂′
T (−κ(θ) − θ) = 0. (2.8)

Using (2.7) and (2.8) we can prove that the workload process has zero drift under P(x,z);θ0 .

Lemma 2.1. Under the new probability, the drift,

E(x,z);θ B − E(x,z);θ T = m̂′
B(θ)m̂T (−κ(θ) − θ) − m̂B(θ)m̂′

T (−κ(θ) − θ)

m̂B(θ)m̂T (−κ(θ) − θ)
,

is 0 if and only if κ ′(θ) = 0.

Let β = −(θ0 + κ(θ0)), which is negative by (2.3). Under the new probability P̃x , consider
the random walk Zn such that the distribution of the generic increment ζ is

P̃x(ζ ∈ �) = r−1 E◦
x;θ0

(eβζ ; ζ ∈ �), (2.9)

where r = E◦
x;θ0

eβζ and � is a Borel set. Note that Ẽxζ < 0, since E◦
x;θ0

T e−βT > E◦
x;θ0

BeβB .
Let κ̃(θ) = log Ẽxeθζ and κθ0(θ) = log Ex;θ0 eθζ . Then κ̃(θ) = κθ0(θ + β) − κθ0(β) and
κ̃ ′(−β) = κ ′

θ0
(0) = 0. Moreover,

r = eκθ0 (β) = e−κ̃(−β) > 1.

Let

H(x) = D

∞∑
n=0

P◦
x;θ0

(Ln = n, Zn ≥ 0), (2.10)

where
Ln = min

{
r ≥ 0 : Zr = min

k≤n
Zk

}
is a decreasing ladder epoch and

D = 1

−β
√

2πκ ′′
θ0

(0)

Ẽ(rν − 1)

r − 1
. (2.11)

Let λ(θ) = (Ex;θ T )−1. We can now state the main result, whose proof will be presented in
Section 3.
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Theorem 2.1. For all x and z, x ≥ z ≥ 0, as t → ∞,

P(x,z)(τ > t) ∼ r − 1

−κ(θ0)
eθ0xe−(θ0+κ(θ0))zH(x − z)eκ(θ0)t

1√
λ(θ0)t3/2

.

In the following corollary of Theorem 2.1 we write Px(·) for Px,z(·) dFZ(0)(z).

Corollary 2.1. For all x > 0,

Px(τ > t) ∼ h(x)eκ(θ0)t t−3/2 (2.12)

as t → ∞, where

h(x) = r − 1

−κ(θ0)

1√
λ(θ0)

eθ0x

∫ x

0
e−(θ0+κ(θ0))zH(x − z) dFZ(0)(z).

We complete the section by comparing (2.12) with (1.1) for the M/M/1 queue. In this case
FZ(0)(·) is exponentially distributed with parameter λ. The following argument demonstrates
that indeed h(x) = Ceθ0xx, where C is as defined in (1.2). Suppose that B

d= Exp(ϕ) and
T

d= Exp(λ), where ‘
d=’ denotes equality in distribution. Then θ0 = √

ϕ(
√

ϕ − √
λ) and

κ(θ0) = ϕ−λ−2θ0. Hence, we compute that β = −(θ0 + κ(θ0)) = √
λ(

√
λ − √

ϕ). Note that
λ−β = √

ϕλ. Moreover, we have B
d= T

d= Exp(
√

ϕλ) under Px;θ0 . Thus, from Feller (1966,
p. 387), we obtain H(x) = C(1 + √

ϕλx) because under Px;θ0 the downward ladder epoch is
exponentially distributed with parameter

√
λϕ. Straightforward calculations now show that∫ x

0
e−(θ0+κ(θ0))zH(x − z) dFZ(0)(z) = λ

∫ x

0
e−(λ−β)zH(x − z) dz = Dλx,

where D is the constant given in (2.11). Thus, it suffices to demonstrate that

r − 1

−κ(θ0)

1√
λ(θ0)

λD = C,

which is equivalent to
Ẽ(rν − 1)

−β
√

κ ′′
θ0

(0)

λ√
λ(θ0)

= 1

σ
, (2.13)

where σ is as defined in (1.2). Now (2.6) yields

varx;θ0 S(1) = λ(θ0) Eθ0 B2 = λm̂B(θ0)
m̂′′

B(θ0)

m̂B(θ0)
= σ 2,

and, hence, σ 2 = 2λ(θ0)/λϕ. Moreover, from (2.9) we obtain

Ẽrν =
∞∑

n=1

rnP̃(ν = n) =
∞∑

n=1

rnr−n P◦
θ0

(eβZn; ν = n) = E◦
θ0

eβZν

= √
λϕ

∫ ∞

0
e−βxe−√

λϕx dx =
√

λϕ√
λϕ + β

=
√

ϕ

λ
.

By inspection we see that κ ′′
θ0

(0) = 2/λϕ. This completes the proof of (2.13).
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3. Proof of Theorem 2.1

We will use the following properties of a class of regularly varying discrete sequences. The
proofs can be found in Chover et al. (1973).

Lemma 3.1. Let (a
(i)
n ), i = 1, 2, 3, be sequences of nonnegative numbers and let Ai =∑∞

n=1 a
(i)
n , i = 2, 3. If a

(1)
n ∼ a1n

−1/2, a
(2)
n ∼ a2n

−3/2, and a
(3)
n ∼ a3n

−3/2, then

(a(1) ∗ a(3))n ∼ a1A3n
−1/2 and (a(2) ∗ a(3))n ∼ (a2A3 + a3A2)n

−3/2,

where ‘∗’ denotes convolution.

The more detailed analysis that can be found in Doney (1989) and Iglehart (1974) allows us
to prove the following lemma.

Lemma 3.2. For some function c(x),

P̃x(ν > n) = H(x)r−nn−3/2
(

1 + c(x)

n
+ o(n−1)

)
(3.1)

in the limit as n → ∞.

Proof. Let Sn = −(Zn − x), where Zn is as defined in (2.2), be a random walk. It starts
from 0 and drifts to ∞. Let Mn = maxk≤n Sk . To prove the lemma we have to generalize
Theorem II of Doney (1989) (see also Theorem 2.1 of Iglehart (1974)). Basically, we need to
generalize Lemma 4(ii) of Doney (1989) and prove that

an(t) = 1

n
[E(e−tSn; Sn > 0) + P(Sn ≤ 0)]

= 1

−β
√

2πκ̃ ′′(−β)

t

t − β
eκ(θ0)nn−3/2

[
1 + Q(t)

n
+ o(n−1)

]
(3.2)

for some function Q(t). We start from Spitzer’s identity,

∞∑
n=0

sn E(e−tMn) = exp

( ∞∑
n=1

snan(t)

)
.

Using Lemma 3.1 and following ideas from the proof of Theorem 2.1 of Iglehart (1974) (see
also Lemma 1 of Doney (1989)), in the next step we obtain

E(e−tMn)

= exp

( ∞∑
n=1

e−κ(θ0)nan(t)

)
1

−β
√

2πκ̃ ′′(−β)

t

t − β
eκ(θ0)nn−3/2

[
1 + Q1(t)

n
+ o(n−1)

]
,

where Q1(t) is a certain function. Then, as in the proof of Theorem II of Doney (1989), we
can recover (3.1) with a function c(x) of a form uninteresting to us and

H(x) = De−βx
∞∑

n=0

rnẼ0(e
βSn; LS

n = n, 0 ≤ Sn ≤ x), (3.3)
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where LS
n are increasing ladder epochs of the random walk Sn. In calculating the constant D

we use the identity κ̃ ′′(−β) = κ ′′
θ0

(0). The function H(x) given in (3.3) can, after some work,
be transformed into

H(x) = D

∞∑
n=0

rnẼx(e
−βZn; Ln = n, Zn ≥ 0).

Next, using (2.9) we can write the function in the form in (2.10). Finally, to demonstrate (3.2)
we follow the proof of Lemma 4(ii) of Doney (1989). However, we use the asymptotics

P(Sn ≤ x) = 1

θ1
√

2πκ̃ ′′(θ1)
exθ1 eκ(θ1)nn−1/2

(
1 + d(x)

1

n
+ o(n−1)

)
, (3.4)

which holds uniformly in x ≤ 1
2n E S1, instead of Equation (2.8) of Doney (1989). Here θ1

is a solution to κ ′(θ) = x/n and d(x) is a certain function. The proof of (3.4) follows from
the proof of Theorem 1 of Petrov (1965) using Theorem VI.3.4 of Petrov (1972) instead of
Equation (4.12) therein. This completes the proof of the lemma.

Since, under the Palm probability measure, we have Z(0) = 0, we may write P◦
(x,0);θ0

=
P◦

x;θ0
. Recall that under P◦

x;θ0
the random walk Zn defined in (2.2) oscillates. We have

τ = inf{s ≥ 0 : X(s) < 0} > t

if and only if ν > N(t), where N(t) is the number of customers that have arrived up to time t .
By the law of large numbers, limt→∞ N(t)/t = λ(θ0) P◦

x;θ0
-almost surely. Furthermore, by

the central limit theorem (see, e.g. Theorem IX.4.28 of Petrov (1972)), for each δ > 0,

P◦
x;θ

(∣∣∣∣N(t)

t
− λ(θ0)

∣∣∣∣ > δ

)
= o(t−3/2)

since E eςT < ∞ for some ς > 0. Note also that Z(τ) = −Zν .

Lemma 3.3. For c1 = r/(2(r − 1)), as t → ∞ we have

E◦
x;θ0

(e−βZ(τ); τ > t) = E◦
x;θ0

(eβZν ; ν > λ(θ0)t) + o(t−3/2)

= 2H(x)(r − 1)√
λ(θ0)t

(1 + c1(λ(θ0)t)
−1 + o(t−1)).

Proof. We prove the first asymptotic equivalence. For the upper bound we have the estima-
tion

E◦
x;θ0

(e−βZ(τ); τ > t) ≤ E◦
x;θ0

(
e−βZ(τ); τ > t;

∣∣∣∣N(t)

t
− λ(θ0)

∣∣∣∣ < δ

)
+ o(t−3/2)

≤ E◦
x;θ0

(eβZν ; ν > (λ(θ0) − δ)t) + o(t−3/2).

For the lower bound, we have

E◦
x;θ0

(e−βZ(τ); τ > t) ≥ E◦
x;θ0

(
e−βZ(τ); τ > t;

∣∣∣∣N(t)

t
− λ(θ0)

∣∣∣∣ < δ

)
− o(t−3/2)

≥ E◦
x;θ0

(eβZν ; ν > (λ(θ0) + δ)t) − o(t−3/2).
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Letting δ → 0 completes the proof of the first part. To prove the second asymptotic equivalence,
note that

E◦
x;θ0

(eβZν ; ν > n) =
∑
k>n

E◦
x;θ0

(eβZk ; ν = k) =
∑
k>n

rkP̃x(ν = k) = Ẽx(r
ν; ν > n).

From P̃x(ν > n) = ∑
k>n P̃x(ν = k) and Lemma 3.2, we conclude that

P̃x(ν = n) = (r − 1)H(x)r−nn−3/2(1 + c0n
−1 + o(n−1))

for c0 = 3r/(2(r − 1)). Similarly, since Ẽx(r
ν; ν > n) = ∑

k>n rkP̃x(ν = k), we obtain

Ẽx(r
ν; ν > n) = 2(r − 1)H(x)n−1/2(1 + c1n

−1 + o(n−1)).

This completes the proof.

Lemma 3.4. We have

P(x,z)(τ > t) = −κ(θ0)e
θ0xe−(θ0+κ(θ0))zeκ(θ0)t

×
∫ ∞

0
eκ(θ0)v[E(x,z);θ0(e

(θ0+κ(θ0))Z(τ); τ > t)

− E(x,z);θ0(e
(θ0+κ(θ0))Z(τ); τ > t + v)] dv. (3.5)

Proof. Standard arguments based on the likelihood ratio identity as in Lemma 10.2.2 of
Rolski et al. (1999) (see also the section on the change of measure in Asmussen (2003,
Chapter XIII.3)) yield

P(x,z)(τ > t) = eθ0xe−(θ0+κ(θ0))z E(x,z);θ0(e
(θ0+κ(θ0))Z(τ)eκ(θ0)τ ; τ > t).

Integrating by parts completes the proof.

From Lemma 3.4 we immediately obtain a Lundberg-type bound for P(x,z)(τ > t).

Corollary 3.1. For all t ≥ 0, P(x,z)(τ > t) ≤ eθ0xe−(θ0+κ(θ0))zeκ(θ0)t .

Proof. Rewrite (3.5) in the form

P(x,z)(τ > t) = −κ(θ0)e
θ0xe−(θ0+κ(θ0))zeκ(θ0)t

×
∫ ∞

0
eκ(θ0)v E(x,z); θ0(e

(θ0+κ(θ0))Z(τ); t + v > τ > t) dv.

From this, since θ0 + κ(θ0) > 0 and Z(τ) ≤ 0, the inequality follows.

In the proof of the main result we will also use the following technical lemma.

Lemma 3.5. If f (t) = A′t−1/2 + Bt−3/2 + o(t−3/2), for some A′ �= 0, then

f (t + v) − f (t) = −v
A′

2
t−3/2 + o(t−3/2).

Proof. Since (1 + s)α = 1 + αs + o(s), we have

A′(t + v)−1/2 + B(t + v)−3/2 + o(t−3/2) − A′t−1/2 − Bt−3/2 + o(t−3/2)

= A′((t + v)−1/2 − t−1/2) + B((t + v)−3/2 − t−3/2) + o(t−3/2)

= −A′v
2

t−3/2 + o(t−3/2).
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Proof of Theorem 2.1. In the proof we use Lemmas 3.3, 3.4, and 3.5 and the dominated
convergence theorem, yielding

− κ(θ0)

∫ ∞

0
eκ(θ0)v[E(x,z);θ0(e

(θ0+κ(θ0))Z(τ); τ > t)

− E(x,z);θ0(e
(θ0+κ(θ0))Z(τ); τ > t + v)] dv

∼ H(x − z)(r − 1)√
λ(θ0)

t−3/2(−κ(θ0))

∫ ∞

0
veκ(θ0)v dv

= H(x − z)(r − 1)

−κ(θ0)
√

λ(θ0)
t−3/2

in the limit as t → ∞.

4. Workload of the M/G/1 queue conditioned to stay positive

Assume that T0, T1, T2, . . . are exponentially distributed with parameter λ > 0. In this case
κ(s) = λ(m̂B(s) − 1) − s, and throughout this section we assume the light tail case to pertain.
We will study the workload process V (t) (or, equivalently, the process X(t)) for an M/G/1
system conditioned to stay positive. Clearly the process X(t) is Markovian. We denote by
X†(t) the process X(t) killed at the exit from (0, ∞); that is,

X†(t) =
{

X(t), t < τ,

0, t ≥ τ.

Lemma 4.1. The function h(x) = xeθ0x is γ -harmonic for X†(t), where γ = −κ(θ0).

Proof. Note that X(t) is a spectrally positive Lévy process. Using the Wald martingale
E(t) = e−θ0xeθ0X(t)−γ t (see, e.g. Kyprianou and Palmowski (2005)), the function h(x) = xeθ0x

is (γ, Px)-harmonic for X†(t) if and only if the function x is Px;θ0 -harmonic for X†(t), which
in turn holds if and only if the process X†(t) is a Px;θ0 -martingale. Note that under Px;θ0 the
process X(t) has zero drift. Moreover, the dual process, X̂(t) = −X(t), is upward creeping (has
no positive jumps). From Theorem 19 of Bertoin (1996) (see also page 191 there) the renewal
function, V̂(x), of X̂(t) is then equal, up to a constant, to x. To complete the proof it thus
suffices to demonstrate that V̂(X†(t)) = cX†(t) is a Px;θ0 -martingale. This is straightforward
from Problem 7 of Bertoin (1996), since

ˆ̂
X(t) = X(t)

and the dual process X̂(t) also has zero drift.

From the above lemma, we may define a process X↑(t), the process X(t) conditioned to stay
positive, through an exponential change of measure using the martingale E↑(t) = h(X†(t))

with the good function

h(x) =
{

x exp(θ0x), x > 0,

0, x = 0.

We denote the resulting twisted probability measure and the corresponding expectation by P↑
and E↑, respectively. The details can be found in Palmowski and Rolski (2004). In the next
proposition we identify the parameters of X↑(t).

https://doi.org/10.1239/aap/1158685002 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1158685002


The busy period in GI/G/1 queues 801

Proposition 4.1. An M/G/1 workload process conditioned to stay positive (or, equivalently,
process X(t) conditioned to stay positive) is a piecewise-deterministic Markov process with
extended generator of the form

A↑f (x) = −f ′(x) + λ↑(x)

∫ ∞

x

(f (y) − f (x)) Q↑(x, dy),

where

λ↑(x) = λeθ0x[1/λ + xm̂B(θ0)]
xeθ0x

= 1

x
+ λm̂B(θ0),

Q↑(x, dy) = yeθ0y

eθ0x[1/λ + xm̂B(θ0)]FB(dy − x).

Proof. Following Theorem 3.1 of Palmowski and Rolski (2004), under the new probabil-
ity measure the M/G/1 workload process is a piecewise-deterministic Markov process with
parameters

λ↑(x) = λḠ(x)

h(x)
and Q↑(x, dy) = h(y)

Ḡ(x)
FB(dy − x),

where the normalization function is

Ḡ(x) =
∫ ∞

x

h(y) FB(dy − x)

=
∫ ∞

x

yeθ0y FB(dy − x)

=
∫ ∞

0
(y + x)eθ0(y+x) FB(dy)

= eθ0x

[∫ ∞

0
yeθ0y FB(dy) + x

∫ ∞

0
eθ0y FB(dy)

]
= eθ0x[m̂′

B(θ0) + xm̂B(θ0)]
= eθ0x

[
1

λ
+ xm̂B(θ0)

]
.

The final equality holds because κ ′(θ0) = 0 implies that m̂′
B(θ0) = 1/λ. The formulae for

λ↑(x) and Q↑(x, dy) immediately follow.

Note that X↑(t) is transient. Indeed, for 0 < a < x < b, let τ−
a = inf{t ≥ 0 : X↑(t) < a}

and τ+
b = inf{t ≥ 0 : X↑(t) > b}. Then E↑(t ∧ τ−

a ∧ τ+
b ) is a uniformly integrable martingale.

Hence, using the optional stopping theorem, we have

P↑
x (τ−

a < τ+
b ) = a

x
eθ0(a−x) Px(τ

−
a < τ+

b ).

By taking b → ∞ and keeping in mind that Px(τ
−
a < ∞) = 1, we obtain

P↑
x (τ−

a < ∞) = a

x
eθ0(a−x) < 1.

From Kyprianou (1971) we know that a quasistationary distribution µ exists for the M/G/1
queue in which the service time has a meromorphic moment generating function

m̂µ(t) = θ0 + λ(1 − m̂B(θ0))

θ0 − t + λ(m̂B(t) − m̂B(θ0))
.
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Recently, Kyprianou and Palmowski (2006) proved the existence of a quasistationary distri-
bution for a more general model than that considered here, namely one where X(t) is a Lévy
process with light-tailed jumps. Thus, following Proposition 4.1 of Palmowski and Rolski
(2004), we know that there exists an invariant measure π (which is not finite in this case) for
the transition function, p

↑
t (x, B), of X↑(t). That is, π satisfies∫

A

π(dx)p
↑
t (x, B) = π(B) (4.1)

for all bounded Borel subsets B. Furthermore, we have
∫ ∞

0 (1/x)e−sx π(dx) < ∞ for s > 0.
Note that it follows, from (4.1), that

∫
A

π(dx)A↑f (x) = 0 for all functions f from the domain
of A↑ such that A↑f is π -integrable. In the following corollary we obtain the Laplace–Stieltjes
transform, l̂π (s), of the invariant measure π .

Corollary 4.1. The process X↑(t) has an invariant measure π given, up to a multiplicative
constant, by its Laplace transform,

l̂π (s) = (θ0 + λ(1 − m̂B(θ0)))(λm̂′
B(θ0 − s) − 1)

(s + λ(m̂B(θ0 − s) − m̂B(θ0)))2 , s > 0.

Proof. For f (x) = e−sx , x > 0, s > 0, we have

(A↑f )(x) = se−sx + λ

∫ ∞

0
(e(θ0−s)y − eθ0y)

y + x

x
e−sx FB(dy).

We now integrate both sides with respect to π(dx), to obtain∫ ∞

0
(A↑f )(x) π(dx) = sl̂π (s) + λ

∫ ∞

0
y(e(θ0−s)y − eθ0y) FB(dy)

∫ ∞

0

1

x
e−sx π(dx)

+ λ

∫ ∞

0
(e(θ0−s)y − eθ0y) FB(dy)l̂π (s).

If π is an invariant measure then
∫ ∞

0 (A↑f )(x) π(dx) = 0 (see Davis (1993, Theorem 34.19)).
Hence,

sl̂π (s) + λ(m̂′
B(θ0 − s) − m̂′

B(θ0))

∫ ∞

0

1

x
e−sx π(dx) + λ(m̂B(θ0 − s) − m̂B(θ0))l̂π (s) = 0

for s > 0. Now, using the fact that∫ ∞

0

1

x
e−sx π(dx) =

∫ θ0

s

l̂π (t) dt +
∫ ∞

0

1

x
e−θ0x π(dx),

which is finite, we have

−l̂π (s)∫ θ0
s

l̂π (t) dt + ∫ ∞
0 (1/x)e−θ0x π(dx)

= − 1 − λm̂′
B(θ0 − s)

s + λ(m̂(θ0 − s) − m̂B(θ0))
.

Hence, we obtain∫ θ0

s

l̂π (t) dt +
∫ ∞

0

1

x
e−θ0x π(dx) = c

s + λ(m̂B(θ0 − s) − m̂B(θ0))
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for some constant c. By choosing the multiplicative constant in π so that∫ ∞

0

1

x
e−θ0x π(dx) = 1,

we can show that c = θ0 − λm̂B(θ0) + λ and, thus, that∫ θ0

t

l̂π (s) ds = θ0 − λm̂B(θ0) + λ

t + λ(m̂B(θ0 − t) − m̂B(θ0))
− 1.

Differentiation completes the proof.
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