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We prove in this paper that if (T, G, 3) is a perfect and aspherical (Ker3 = 1) crossed module, then it admits
a universal central extension, whose kernel is the invariant H2(T, G, 3), that we introduced in [9].
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Introduction

In previous work [4] the first author and Doncel-Juarez started on a detailed study
of crossed modules as algebraic objects in their own right. It is well known that they
model all homotopy 2-types and study of their homological algebra from that
viewpoint has been started by Ellis [5] and others. In [4] it was proved that (T, G, 3) is
a q-perfect crossed module if and only if it admits a universal q-central extension by
(7\ G, 3). We got as corollaries the results obtained in [1] and [10]. Later in [9], we
introduced for a crossed module (T, G, 3) two crossed module valued invariants
Hi(T, G, 3) and H2(T, G, 3). These are connected by a five-term exact sequence,
associated to an extension of crossed modules.

This paper is divided into three sections. In the first section, we introduce some
concepts in the theory of crossed modules, with special mention of commutator, centre
and tensor product of G-crossed modules introduced in [10], [11] and [3]. Section 2 is
a summary, without proof, of some results of our paper [9], that are necessary to apply
in Section 3. The main result in this section is the theorem that says "If (T, G, 3) is a
perfect crossed module (f/,(T, G, 3) = (1,1, 1)) and aspherical (Ker3=l ) , then
H2(T, G, 3) is the kernel of the universal central extension by (T, G, 3)". We get as
corollaries the analogous results for groups [12] and an isomorphism of crossed
modules.

1. Generalities on crossed modules

Recall that a crossed module (T, G, 3) is a group homomorphism 3 : T —»• G together
with an action of G on T satisfying:
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(i) 3 is a precrossed module, i.e., 3(9t) = gdtg~x, for all g e G, t e T.

(ii) The subgroup of Peiffer is trivial, i.e., :s's = tst'1, for all t, s e T.

Examples. (1) If X is a path connected topological space and Y is a path connected
subspace, Y c X, then 3 : 7t2(^, Y) —• rt,(Y) is a crossed module. This was the
motivating example for Whitehead [13].

(2) (N, G, i), where N is a normal subgroup of a group G, i is the inclusion and G acts
on N by conjugation. In this way, every group G can be seen as a crossed module in
the two obvious ways: (1, G, i) or (G, G, id).

(3) (A, G, 0) where A is a G-module and the boundary operator is the zero map.

A morphism of crossed modules (a, <f>): (T, G, 3) —• (JVf, P, /x) is a pair of group
morphism a : T —> M and <f>: G —• P, such that \ia. = <j)d and a is a G-group
morphism, via (j)(<x(gt) =*(9) a(t), for all g € G, t e T).

A crossed module (S, H, a) is a crossed submodule of a crossed module (T, G, 3) if:

(i) S is a subgroup of T and H is a subgroup of G.

(ii) a = 3|,

(iii) The action of H on S is induced by that of G on T.

A crossed submodule (S, H, cr) of a crossed module (T, G, 3) is a normal crossed
submodule if:

(i) / / is a normal subgroup of G.

(ii) 9s € S, for all g e G, s € S.

(iii) *t • r 1
 G 5, for all h e H, t e T.

Taking objects and morphisms as defined above we obtain the category CM of
crossed modules. CM has pullbacks, zero object, kernels and cokernels [2, 8].

A sequence of crossed module morphisms

(M.P.ji) - ^ * (T.G.3) - ^ > ( l / , e ,« )

is called exact if the crossed submodules of (T, G, 3), Im (a, (f>) and Ker (/?, i/0,
coincide.

If (S, /f, 3) and (R, K, 3) are two normal crossed submodules of a crossed module
(7\ G, 3), then the commutator crossed submodule [10] of (S, H, 3) and (K, /C, 3), denoted
by [(S, H, 3), (R, K, 3)], is ([K, S] [tf, R], [H, K], 3). In particular, the commutator crossed
submodule of (T, G, 3), denoted by (7\ G, 3)' = [(T, G, 3), (7\ G, 3)], is ([G, T], G', 3),
where [G, T] = ({gtt~l/t eT,g e G}> is the displacement subgroup of T relative to G,
and G' = [G, G] is the commutator subgroup of G.
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Examples. (1) If N is a normal subgroup of G then (N, G,i)' = {[G, N], G'.i).
Regarding a group G as a crossed module in the two usual ways, N = 1 or N = G, then
(G, G, Id)' = (G\ G', W) or (1, G, i)' = (1, G\ i).

(2) If /I is a G-module then (4, G, 0)' = (X • IG, G', 0), where IG is the augmentation
ideal of G, [6].

The cen/re of (T, G, 3) is Z(T, G, 3) = (TG, Z(G) n stc(T), 3) where TG = {t € T/9t = t
for all geG] and stc(T) is the stabilizer in G of T, i.e., stG(T) = { j € G/9r = t for all
t e T} [10]. The crossed module (7\ G, 3) is abelian if it coincides with its centre. (7\ G, 3)
is abelian if and only if G is abelian and the action of G on T is trivial, which implies that
T is also abelian.

Suppose that we are given two crossed modules (M, G, n) and (T, G, 3). Each of the
groups M and T acts on the other, and also acts on itself, via the action of G. The
(non-abelian) tensor product [3] M ® T is the group generated by the symbols m ® t
with m e M, t e T subject to the relations

mm' ® t = Cm' ®mt)(wJ ® 0.
m® ft7 = (m® t)('»n®'0 for m,m'e M and U e T .

The commutator map K: G ® G —• G,g® g —> [g, g], g, g' e G is a homomorphism
with image the commutator subgroup G' of G and central kernel. If G is perfect, the
commutator map gives the universal central extension by G [3].

The tensor square G®G acts on G® T componentwise via the commutator map,
i.e.,

g®9\h <8> t) =^g'] h <^-g'] t with g,g',heG,teT

and so the map 1 <8> 3: G <8> T —>• G®G,g®t —> g <g> dt, is a crossed module.
Let U: £* —> Sa be the forgetful functor. We denote by {Sit \. U) the comma

category determined by the functors Id: Set —> Set and U: Q% —>• Set. There exists an
adjunction

defined by T(f : S —• UG) = (C, G, 3), where C = Fr(G x S)/P, Fr(G x S) is the free
group over G x S, P is the Peiffer subgroup of Fr(G x S) and the action of G over the
generators is given by ^{g, s) = (g'g, s), g,g e G, s e S. It is said that T(J : S —• UG) is
the /ree crossed module over / : S —• (/G. The construction of this object, without
adjunctions, appears for the first time in [13].

We are interested in free presentations of a crossed module (T, G, 3):
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(V,R,n) « • (Y,F,n) » (T,G,d)

where the codomain F of the free crossed module (Y,F,(i) is a free group. This
corresponds to another notion of freedom on crossed modules, given by the
adjunction:

(Set i Set) +=±CM

composite of two adjunctions: (Set 4- Set) • (Set j U) • CM

where the first one associates to A —> B the map A —> Fr(B), with Fr(B) the free
group over B. We will call Fs*(f '• A —• B) Sa-free crossed module over / : A —>• B.

Let £ be the class of epimorphisms in CM (a, 4>): (M, P, n) —*• (T, G, 9) such that
a, </> and the morphism Ker \i —^ Ker 3 are all surjective. Sa-free crossed modules are
£-projective and every crossed module (T, G, 3) is the quotient of Set-free crossed
module (a, $): (M, P, /z) —• (T, G, 3) with (a, 0) e £ [9].

2. Crossed modules and homology

Let ACM denote the category of abelian crossed modules, and consider the abelian-
ization functor Ai : CM —>• ACM, that to each crossed module (T, G, 3) associates its
abelianization, i.e., (7\ G, 3)/(T, G, 3)' = (T/[G, T], G/(G, G), 3), and to each morphism
the induced one. The functor AS is left adjoint to the inclusion functor
U : ACM —> CM. This follows from the universal property [10] of the commutator
crossed submodule.

We define the first homology crossed module of a crossed module (T, G, 3) by

tf ,(7\ G, 3) = (T, G, 3)/(7\ G, 3)' = (T/[G, T], G/[G, G], 3).

Examples. (1) If N is normal subgroup of G, then tf,(N, G, i) = (N/[G, N], H,(G), i).

(2) Seeing a group G as a crossed module in the two usual ways, we obtain the
first group of integral homology Ht(l,G,i) = (\,Hl(G),i), or Ht(G,G,Id) =

(3) If A is a G-module, then Ht(A, G, 0) = (H0(G, A), tf,(G), 0).

A crossed module (7\ G, 3) is called perfect if it coincides with its commutator
crossed submodule (HX(T, G, 3) = (1, 1,1)). This is equivalent to saying that G is a
perfect group [12] and T = [T, G\.
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Examples. (1) Note that (G, G, 1) or (1, G, i) are perfect crossed modules if and only
if G is a perfect group.

(2) (A/B, G, 0) is a perfect crossed module where A is a G-module, G is a perfect group
and B = ({"a - 2a/a e A,g e G}).

Given an 5-projective presentation

(7,K,Ai) a • (y.F./i) * (T.G.3)

of the crossed module (T, G, 9) we define the second homology crossed module of
(T, G, 9) by

H2(T, G, 3) = ((K, K, AI) n [(7, F, ji), (7, F, /x)D/[(r. F, fi, (V, R, fi)]
= (Vn [F, Y]/[R, Y][F, V\,Rn [F, F]/[F, R],

H2(T, G, 3) is independent of the chosen £-projective presentation [9]. If (Y, F, /J) is a
•Sen-free crossed module, then H2(Y, F, /i) = (1,1, 1).

Examples. (1) If we consider a group G as a crossed module in the two usual ways,
then we obtain the classic formula of Hopf [7], H2(G, G, id) = (H2(G), H2(G), id), or
H2(\,G,i) = (l,H2(G),i).

(2) If A is an abelian group, then H2(A, 0,0) = (0,0, 0) since [F, Y]/[F, Y][F, V] = 0,
where (V, F,fj) -H >• (Y,F,fi) 1» (A, 0,0) is an £-projective presentation.
Considering A-Z x Z (H2(A) = Z) we remark that, in general, H2{T, G, 3) ^ (H2(T),
H2(G), H2(3)).

3. Central extensions for crossed modules

Suppose that (R, K, 3) is a normal crossed submodule of (T, G, 3) and that (S, H, &)
is a crossed module such that (T/R, G/K, 3) ̂  (S, //, 30, then we call (T, G, 3) an
extension of (#, /C, 3) by (S, //, S"). If there exists a surjective morphism
^:(A",,X2>0—>• (T, G,3), then trivially (X,, X2, f) is an extension of the crossed
module Ker i// by (T, G, 3).

An extension ((AT,, X2, ^), [}/) by (T, G, 3) is a central extension if Ker ^ is contained
in Z{XX, X2, g). It is easy to see that the extension ((AT,, X2, <!;), ^) by (T, G, 3) is central
if and only if (T, G, 3) acts trivially on Ker ij/ (the morphism of (T, G, 3) to the actor
[11] of Ker ^ is trivial).

We will use the following lemmas [10]:

Lemma 1. If (Yu Y2,tj) is perfect, there exists at most one morphism from (Y,, Y2, rj)
to(Xt,X2,Oover(T,G,d).

https://doi.org/10.1017/S0013091500020095 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020095


174 A. R.-GRANDJEAN AND M. LADRA

Lemma 2. If ({XUX2,^),\I/) is a central extension by a perfect crossed module
(P,, P2, p) then the commutator crossed submodule (Xx, X2, £)' of(Xt, X2, £) is perfect and
maps onto (P,, P2, p).

A central extension ((I/,, U2, v), (f>) by (T, G, 3) is called a universal central extension
if for every central extension (Xlt X2, £), i/f by (T, G, 3) there exists one and only one
morphism h: (17,, U2, v) —> (Xu X2, £), making the following diagram commutative:

> (l/,,t/2, v) —^-> (T, G, 3) > 1

1 »• Keri/f • ( Z , , ^ , ^ ) -—-> (T, G, 3) ^ 1.

By definition, if such a universal central extension exists then it is unique up to
isomorphism over (T, G, 9).

Proposition 1. Let (P, N, 3) -M > (T, G, 3) n- (I/, Q, cS) be a central extension
of crossed modules where (T, G, 3) • (U, Q, co) belongs to £. Then we have the
following exact (and natural) sequence:

H2(T, G, 3) —• H2(U, Q, co) —»• (P, AT, 3) —• / / , (T, G, 3) —»• Ht(U, Q, cu) —• (1,1,1).

Proof. Since (P, TV, 3) c Z(T, G, 3) = (TG, Z(G) n stc(T), 3) we have [G, P] = 1
(P c TG), [G, A/] = 1 (A/ c Z(G)) and [A/, T] = 1 (A/ c src(T)). The result is consequence
of [9,4.1 Theorem].

Now it is possible to define various classes of central extensions (commutator, stem,
stem cover) for crossed modules in the same way that is done for groups [12].

Theorem. / / (T, G, 3) is a perfect (H,(T, G, 3) = (1, 1, 1)) and aspherical (Ker 3 = 1 )
crossed module, then

H2(T, G, 3) * > ([F, Y]/[R, Y][F, V], [F, F]/[F, R], p*) » (T, G, 3)

is the universal central extension by (T, G, 3), where (V,R,n) n > (Y,F,fi) f>
(T, G, 3) is an E-projective presentation of(T, G, 3).

Proof. Let (V,R,fi) -H > (Y,F,n) * (T, G, 3) be a presentation <Stf-free of
(T, G,3). Since [(V, R, n), (7, F,n)] = ([R, Y][F, V], [F, R],n) is a normal crossed
submodule of (V, R,fi) and (T, G, 3) is aspherical we have the following extension of
crossed modules
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(V/[R, Y][F, V], R/[F, R], n*) <•—> (Y/[R, Y)[F, V], F/[F, R], ft*) —%• (T, G, 3)

(1)

where the epimorphism ct e £.
Further if u = u[K, Y][F, V] e V/[R, Y][F, V] and / = /[F, R] e F/[F, /?], then

h=/v-v because fvv~l e [F, V]. In the_same way if f = r[F, R]e R/[F, R] and
y = y[R, Y][F, V] e Y/[R, Y][F, V] then ?y=7y = y, because 'yy~] e [R, Y]. So

(V/[R, Y][F, V], R/[F, R], ft*) c Z(y/[R, y][F, 7], F/[F, R], p*)

, Y][F, V]F/[FR], Z(F/[F, R])nstF/lFR](Y/[R, Y][F, V],

and therefore the extension (1) is central.
The epimorphism a in the central extension (1) maps the commutator crossed

submodule of (Y/[R, Y][F, V], F/[F, R], fi*) = ([F, Y]/[R, Y][F, V], [F, F]/[F, R], /O that
is perfect (Lemma 2) onto (T, G, 9).

So we have the central extension of crossed modules

H2(T, G, 3) * • ([F, Y]/[R, Y][F, V], [F, F]/[F, R], ft*) —?-» (T, G, 3) (2)

where /S € £ as (7", G, 3) is aspherical (Ker 3 = 1). To show that the central extension
(2) is the universal, it is enough to prove by Lemma 1 that exists a morphism from (2)
to an arbitrary central extension by (T, G, 3).

Let Ker y -H > (L, M, X) —^-t> (T, G, 3) be an arbitrary central extension by
the aspherical crossed module (T, G, 3). Since y e £ and (Y,F,fi) is £-projective,
there exists a morphism <t> = (<f)l, 4>2): (Y, F,fi) >(L,M,X) such that the
diagram

(L, M, X) > (T, G, 3)

is commutative.
Since Ker y c Z(L, M, X) = (LM, Z{M) n s(M(L), A), we have 0,([K, y][F, V])=\,

(j)2([F, R])= 1, and so we get a morphism h: (Y/[R, Y][F, V], F/[F, R], n*) >(L,M,X)
such that hic = <j>, ic being the cokernel of i": ([R, Y][F, V], [F, R], fi) > (Y, F, /i). The
restriction h' of h to the commutator crossed submodule verifies yh' = /? and yields the
wanted morphism.
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([F, Y]/[R, Y][F, V], [F, F]/[F, R], n*) £ » (7, G, 9)

(Y,F, » ( Y/[R, y][F, n F/[F, R], /<*) "—^ (r, G, 9)

Corollary 1. If G is a perfect group, then H2(G) -H • [F, F]/[R, R] » G is the
universal central extension by G, R -H • F H> G 6eiwg a free presentation of G.

Proof. Consider a group G as a crossed module in the two usual ways, (G, G, id)

Corollary 2. 7/" (T, G, 9) is an aspherical perfect crossed module, we have an isomor-
phism of crossed modules (G <8> T, G <g> G, 1 ® 9) =* ([F, 7]/[R, y][F, 7] , [F, F]/[F, K], /i*),
(V, R,/i) -H > (Y,F,fi) 1> (T,G, d) being an £-projectivepresentation of (T,G,d).

Proof. If (T, G, 9) is a perfect crossed module, then

1 > Ker c • (G ® T, G ® G, 1 <g> 9) — ^ - (T, G, 9) • 1

is the universal central extension by (T, G, 9) [10, 2.68 Theorem]. The result is a
consequence of the above Theorem and the uniqueness of the morphism from the
universal central extension to another central extension by (T, G, 9).
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