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Two-dimensional particle-in-cell (PIC) simulations explore the collisionless tearing
instability developing in a Harris equilibrium configuration in a pair (electron–positron)
plasma, with no guide field, for a range of parameters from non-relativistic to relativistic
temperatures and drift velocities. Growth rates match the predictions of Zelenyi &
Krasnosel’skikh (Astron. Zh., vol. 56, 1979, pp. 819–832) modified for relativistic drifts by
Hoshino (Astrophys. J., vol. 900, issue 1, 2020, p. 66) as long as the assumption holds that
the thickness a of the current sheet is larger than the Larmor radius ρL, with the fastest
growing mode at ka ≈ 1/

√
3. Aside from confirming these predictions, we explore the

transitions from thick to thin current sheets and from classical to relativistic temperatures.
We show that for thinner current sheets (a < ρL), the growth rate matches the prediction
for the case a = ρL. We also explore the nonlinear evolution of the modes. While the
wavenumber with the fastest growth rate initially matches the prediction of Zelenyi
& Krasnosel’skikh (1979), these modes saturate moving the dominant mode to lower
wavenumbers (especially for thick current sheets with low growth rates). Furthermore,
at a late, nonlinear stage, the growth rate (initially following the growth rate prediction
proportional to (ρL/a)3/2 < 1) increases faster than exponentially, reaching a maximum
growth rate equivalent to the linear growth rate prediction at ρL/a = 1, before eventually
saturating.

Keywords: astrophysical plasmas, plasma instabilities, plasma simulation

1. Introduction

When opposite-directed magnetic fields are separated by a thin current sheet (where
either collisional or kinetic effects are present), the free energy of the magnetic field
can be converted to perpendicular fields and bulk flows that further drive this process
known as the tearing instability (Furth, Killeen & Rosenbluth 1963). The tearing instability
corresponds to the initial stage of a process that can eventually develop into nonlinear
magnetic reconnection, and convert this free energy into more bulk flows, plasma
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heating and non-thermal high-energy particles. On the other hand, competing instabilities,
i.e. kink (Zenitani & Hoshino 2007; Cerutti et al. 2014), firehose (Liu, Drake & Swisdak
2012; Innocenti et al. 2015), flow shears (Faganello et al. 2010; Cassak 2011) or other
nonlinear effects can, in some cases, disrupt or prevent the nonlinear stage of tearing from
continuing.

The tearing instability has been studied for the last few decades, in several different
regimes ranging from collisional tearing, which can be measured in the laboratory, and
collisionless or very weakly collisional tearing, which is often the relevant regime in
astrophysical and space plasmas (Coppi, Laval & Pellat 1966; Laval, Pellat & Vuillemin
1966). Although not the focus of this paper, the plasma beta (ratio of magnetic pressure
to plasma pressure) and the ratio of the guide field to the reconnecting field, can also play
important roles in describing the tearing instability.

In extreme astrophysical environments (Zenitani & Hoshino 2007; Cerutti et al. 2014),
the magnetization σc, i.e. the ratio of the background magnetic field to the particle rest
energy density, is much larger than unity, and pair production often leads to a plasma
predominantly composed of electrons and positrons. Several works have studied the
tearing instability in this context with analytical or numerical calculations of the growth
rate in both kinetic and fluid regimes (Zelenyi & Krasnosel’skikh 1979; Pétri & Kirk
2007; Yang 2017, 2019a,b). Numerical studies have addressed the tearing instability using
fluid models (Komissarov, Barkov & Lyutikov 2006; Barkov & Komissarov 2016) and
particle-in-cell (PIC) methods (Bessho & Bhattacharjee 2007; Zenitani & Hoshino 2007;
Yin et al. 2008; Bessho & Bhattacharjee 2012; Liu et al. 2015; Zenitani 2017). However, to
the best of our knowledge, an extensive study of the tearing instability using PIC methods
has not been offered.

Here, we will present such a study, considering the high σc pair plasma regime.
We will therefore neglect the effects of the background plasma, and consider a mass
ratio of unity. Pair plasmas are produced in environments with extremely high energy
density, so temperatures are expected to be relativistic. On the other hand, pairs can be
strongly cooled by radiative processes, allowing for classical temperatures as well. We
will therefore consider a wide range of temperatures. Out of simplicity, we will consider
a fully collisionless Harris equilibrium (Harris 1962) configuration with no guide field.
Also, we note that asymmetric reconnection has been studied in similar contexts (Mbarek
et al. 2022), but we will consider a symmetric configuration.

With these assumptions, the problem reduces simply to two parameters, the temperature
of the plasma normalized to the electron rest mass energy T/mec2, which is the same
for electrons and positrons, and the ratio of the Larmor radius (based on the upstream
magnetic field) to the thickness of the current sheet ρL/a. A third parameter that is a
function of the other two is the proper drift velocity compared with the speed of light, ud/c.

A quite general theoretical model for this instability that is relevant for all the
assumptions that we are considering was derived in Zelenyi & Krasnosel’skikh (1979).
The study included limits valid for both non-relativistic T/mec2 � 1 and ultrarelativistic
T/mec2 � 1 regimes, but assumed that ρL/a � 1, i.e. a thick current sheet with respect
to the kinetic scales involved in supporting the reconnection process. (Note that these
current sheets are often considered thin with respect to the system size as addressed in
§ 5.) This assumption implies ud/c � 1. However, a recent paper (Hoshino 2020) extends
the model beyond this constraint in the relativistic temperature regime. Hoshino shows
both theoretically and empirically through simulation results that Zelenyi’s model with
an additional factor of 1/Γd, where Γd =

√
1 + u2

d is a good prediction of the growth
rate even for ud/c � 1, resulting in a maximum growth rate for the tearing instability at
ud/c ∼ 1. In this paper, we show using PIC simulations that Zelenyi’s model, including
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Hoshino’s extension, gives quite accurate results for a wide range of parameters. While
there are modifications to the theoretical model based on the mass ratio for electron–ion
plasmas included in Zelenyi’s model, which are beyond the scope of this paper, the
electron–positron solution gives a good order of magnitude estimation of the growth rate
even in those situations.

We now lay out the organization of the paper. After this introduction in § 1, we will
describe our set-up of the simulation, the Harris equilibrium and important length scales
of the problem in § 2. We will then describe the equations from Zelenyi’s model in § 3.
We explain our simulation results in § 4 which is divided into two subsections: one for a
set of runs with classical parameters and one for a set with relativistic parameters. In § 5
we explore limits on astrophysical configurations based on the theoretical model. Finally,
we will conclude with a discussion in § 4.

2. Simulation set-up

The simulations presented here begin in a double Harris equilibrium using the
relativistic generalization (Kirk & Skjæraasen 2003) for relativistic temperatures (T >
mec2/2) with periodic boundary conditions. We use a simulation box ranging from
x = −Lx to Lx, and y = −Ly to Ly, where Ly is the distance between the two current sheets.

The current and self-consistent magnetic field profiles are in pressure balance
in a kinetic equilibrium. The current is carried by counter-drifting Maxwellian or
Maxwell–Jüttner distributions of positrons and electrons with a uniform temperature T ,
boosted into opposite ±ẑ-directions with a uniform velocity vd. The laboratory-frame
density profile (of both electrons and positrons) in the Harris current sheet at y = ±Ly/2
is

n = n0

2
sech2

(
y ∓ Ly/2

a

)
, (2.1)

where n0 is the total (electron plus positron) density at the centre of each current sheet.
The self-consistent initial reconnecting magnetic field is

Bx = B0

[
1 − tanh

(
y − Ly/2

a

)
+ tanh

(
y + Ly/2

a

)]
. (2.2)

Note that we do not consider a background population nb; this assumption corresponds
to the limit where σc = B2

0/4πnbmec2 � 1.
The drift velocity vd corresponds to a Lorentz factor Γd = 1/

√
1 − v2

d/c2, and a proper
drift velocity ud = Γdvd. The magnetic field can be calculated, using pressure equilibrium,
to be

B0 =
√

8πn0T
Γd

, (2.3)

where T is the comoving temperature, and using Ampere’s law, the current half-thickness
can be calculated to be

a = cB0

4πen0vd
=

√
Tc2

2πn0e2Γdv
2
d

≈
√

ΓTmec4

4πn0e2Γdv
2
d
. (2.4)

As highlighted in Pucci et al. (2018b), tearing growth rates can be affected by the
communication between two nearby (i.e. when Ly/a is small) current sheets. Based on the
analysis of our simulations, Ly/a ≈ 20 is a sufficient distance to guarantee no interaction
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between the current sheets. We therefore adopt this separation in all of the simulations
presented. The constraints from (2.3)–(2.4) leave only two free parameters, T and ud
(as we do not consider collisions or radiation, n0 can be absorbed into the normalization).
In the relativistic regime, we will write expressions in terms of the peak Lorentz factor
in a static, but strongly relativistic Maxwell–Jüttner distribution ΓT ≡ 2T/mec2, which
is simply a function of the temperature. Likewise, in the classical regime, we will write
expressions in terms of the thermal velocity vT (vT/c ≡ √

2T/mec2).
We can express the scales of the system in terms of these free parameters: the classical

electron inertial length,

de,C =
√

mec2

4πn0e2
; (2.5)

the relativistic electron inertial length,

de,R =
√
ΓTde,C; (2.6)

the classical Larmor radius,

ρL,C = vT

Ωc
=

√
Γdde,C = ud

vT
a; (2.7)

the relativistic Larmor radius,

ρL,R = ΓTc
Ωc

=
√
Γdde,R = ud

c
a, (2.8)

where Ωc = eB0/mec is the cyclotron frequency. These length scales are defined in the
laboratory frame and are only meaningful for Γd ∼ 1, as the magnetic field and the
temperature are defined in different frames. The comoving temperature is, however, a good
estimate for the laboratory frame temperature as long as Γd ∼ 1. We only consider these
length scales for regimes with a maximum of Γd ∼ 1.3 (ud/c = 0.8). Our constraint from
force balance, (2.3), implies ρL ≈ de in both classical and relativistic regimes as seen in
(2.7)–(2.8) as long as Γd ∼ 1. We do not precisely define ρL in the transition between
the classical and relativistic regimes, at T/mec2 ∼ 1 when ρL,C ∼ ρL,R. We will therefore
specify in the text when we are using ρL,C or ρL,R.

3. Theoretical model

Zelenyi & Krasnosel’skikh (1979) calculates a growth rate for the tearing instability in
a non-relativistic and ultrarelativistic Harris sheet assuming a small ρL/a. The classical
growth rate assuming a pair plasma with equal mass me and equal temperature T is

γ a
c

≈ 1√
π

ka
(
1 − k2a2) (ud

c

)3/2 (vT

c

)−1/2
(3.1)

and the fully relativistic case

γ a
c

≈ 2
√

2
π

ka
(
1 − k2a2) 1

Γ
5/2

d

(ud

c

)3/2
, (3.2)

where we have added the factor of 1/Γ 5/2
d (or 1/Γd, if you write the equation in terms of

the drift velocity vd/c) determined in Hoshino (2020). Note that both growth rates have a
maximum growth rate at the wavenumber ka = 1/

√
3.
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This prediction is based on the constant-ψ approximation (Burkhart & Chen 1989),
which is valid in the limit that ka ≈ 1. It is applicable down to values of ka ∼ kmaxa
corresponding to the maximum growth rate, below which the instability develops in the
large Δ′ regime (see e.g. Del Sarto et al. (2016) and references therein). Therefore, the
prediction that ka ≈ 1/

√
3 is only an estimate. Several analytical as well as numerical

methods, including PIC studies, have attempted to predict a more accurate dispersion
relation (Chen & Lee 1985; Daughton 1999, 2003; Daughton & Karimabadi 2005; Pétri &
Kirk 2007). In all studies, the wavenumber remains close to kmaxa ∼ 1/2, suggesting the
results found in this paper are in agreement with the literature. In addition, this is consistent
with the idea that the simulation predicted wavevector is at the transition between the
constant-ψ and regime of the maximum growth rate (see figure 4 of Tenerani et al. (2016)
for the resistive tearing case, and figure 1 of Del Sarto et al. (2016) for the collisionless
case).

Using (2.7) we can write (3.1) in terms of ρL,C/a:

γ a
c

≈ 1√
π

ka
(
1 − k2a2) (

ud

vT

)3/2
vT

c
= 1√

π
ka

(
1 − k2a2) (ρL,C

a

)3/2 vT

c
. (3.3)

This is equivalent to predictions from Laval et al. (1966) and Coppi et al. (1966), except
for the numerical factors and k dependence. We can similarly combine (2.8) and (3.2) to
show that γ ∼ (ρL/a)3/2 for both classical and relativistic regimes.

In the next section, we will test Zelenyi’s model for the non-relativistic regime using
the previous equation for constant values of ρL,C/a, which he assumes to be small, as
a function of the temperature T = mev

2
T/2. We will also explore the T , ud space from

T � mec2 to T � mec2 again testing Zelenyi’s model. We should note that the model is
only valid for sufficiently large temperatures. For increasingly smaller temperatures (and
constant ud), ρL,C/a = ud/vT will increase until ρL,C/a ∼ 1, and the assumptions of the
model break down.

While we consider the case with no constant guide field pointed in the direction
perpendicular to the plane of the simulation, Zelenyi & Krasnosel’skikh (1979) also
discussed a regime where the guide field magnetizes the particles at all points in space. In
the present paper, we will not investigate this regime, but it is worth noting and comparing
it with other models. In this regime, the growth rate is proportional to (ρL/a)2 rather than
(ρL/a)3/2. This matches other kinetic studies like Drake & Lee (1977) as well as fluid
models such as Del Sarto et al. (2016), Betar et al. (2022), etc. who find growth rates that
depend on (de/a)2 in the respective small Δ′ electron magnetohydrodynamic and reduced
magnetohydrodynamic (where ρL ∼ de) regimes. As we showed in the previous section,
force balance implies that ρL ≈ de for the Harris equilibrium with no guide field. Other
models exist where de � ρL are only valid in regimes either with strong guide fields or
starting from an equilibrium that differs from a Harris sheet, for example, a force-free
condition.

4. Simulation results

In this section, we test the theories for the classical cases where the temperature
remains non-relativistic (T/mec2 � 1), and in the more general case including relativistic
temperatures using PIC simulations, taking advantage of the OSIRIS framework (Fonseca
et al. 2002).
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a/ρL,C T/mec2 ud/c γtha/c γma/c γm(Lx = Ly)a/c tst,nlγth tfi,nlγth γm,nla/c

2.5 0.0003125 0.01 0.00137 0.00124 — 7.14 7.36 0.0036
2.5 0.00125 0.02 0.00275 0.00277 — 7.69 7.80 0.0081
2.5 0.005 0.04 0.00549 0.00512 — 7.25 7.47 0.0139
2.5 0.02 0.08 0.0110 0.0108 — 7.25 7.47 0.0282
5 0.0003125 0.005 0.000486 0.000465 0.000539 5.31 5.33 0.0077
5 0.00125 0.01 0.000971 0.000784 0.000961 5.21 5.22 0.0176
5 0.005 0.02 0.00194 0.00150 0.00194 5.48 5.52 0.0297
5 0.02 0.04 0.00388 0.00366 0.00277 4.86 4.91 0.0507

TABLE 1. Parameters for the classical set of simulations, along with the theoretical linear growth
rate γth given by (3.3), and the measured growth rate γm using a best fit between tγth = 3.08–4.39
for cases with a/ρL,C = 2.5, and between tγth = 1.55–3.88 for cases with a/ρL,C = 5 for
standard simulations with Lx = Ly/2. For the simulations with Lx = Ly the growth rate is
measured after performing a low pass filter over the same time range. In addition, we include
the time at the start tst,nl and the finish tfi,nl of the measurement of the fast-growing nonlinear
growth rate γm,nl.

4.1. Classical tearing
Here we present results from simulations aimed at measuring the tearing growth rate and
verifying (3.3). We note that, unlike classical references (Laval et al. 1966; Coppi et al.
1966), we are considering the case of a pair plasma composed of positrons and electrons
with equal mass. We expect pair plasmas with non-relativistic temperatures to occur as
a result of radiative cooling. Furthermore, our general conclusions should be relevant for
electron–proton plasmas as well, as the predictions of the growth rate from Zelenyi &
Krasnosel’skikh (1979) with electron–proton mass ratios only differ by a factor of order
unity (as long as the temperature ratio also remains of order unity). We will examine two
regimes holding a/ρL,C = 2.5 and a/ρL,C = 5 constant, and varying the temperature, in
the regime where T/mec2 � 1. This means that we are also varying ud/c, in contrast with
the next section where we will hold a/ρL,R = 1/(ud/c) constant. Please note the different
usage of classical and relativistic Larmor radii, ρL,C and ρL,R in the paragraph above.

For the cases with a/ρL,C = 2.5, we use 1024 particles-per-cell, Ly/a = 20.5 and Lx =
Ly/2 with a resolution of 18.6 grid cells per a. We take a time step of dt = 0.035a/c <
dx/c/

√
2 = 0.0376a/c to satisfy the Courant condition. For the case with a/ρL,C = 5,

to avoid issues with numerical heating, we use 4096 particles-per-cell. We use the same
system size, the same resolution of grid cells per a and the same time step as for a/ρL,C =
2.5. The parameters of each of these runs can be found in table 1.

We track the evolution of the perpendicular magnetic field energy B2
y/4π as a function

of time, along with the KE of the particles in the Harris sheet, the total magnetic field
energy and the total electric field energy. In figure 1, we present an example case where
T/mec2 = 0.00125 and a/ρL,C = 2.5. The magnetic energy B2

y/4π is dominated by noise
up until tγth ∼ 2.5 (tc/a ≈ 900), where we have normalized to the theoretical linear
growth rate γth given by (3.3). This time, therefore, corresponds to a couple of e-folding
times. We then measure a best fit of the growth rate between tγth = 3.08–4.4, obtaining a
growth rate γma/c = 0.00277, which matches very well with (3.3) (γtha/c = 0.00275). In
the time interval between tγth = 7.7–7.8, the signal begins to grow faster (γ a/c = 0.0081),
as measured in figure 1(d). This faster growth rate is close to the linear prediction for
a/ρL,C = 1 (γ a/c = 0.011). While the growth rate fits an exponential, it corresponds to
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(a) (b)

(c) (d)

FIGURE 1. Evolution of the energy (a) and change of energy (b) in the Harris sheet
electrons/positrons (kinetic energy (KE)), electric and magnetic fields, as well as the y
component of the magnetic field that characterizes the tearing growth rate, for the simulation
with T/mec2 = 0.00125 and a/ρL,C = 2.5. A fit of growth is plotted in solid black along with
the theoretical growth rate, given by (3.3), in the dashed line, which is nearly indistinguishable
from the solid line. The same plots are also shown with a time range near the fast-growing
nonlinear stage of the energy (c) and change of energy (d), where the fit for the faster growth
rate is highlighted, and compared with the linear theoretical curve (for a/ρL,C = 2.5). The fits
are measured in the range between the two vertical black lines.

multiple interacting modes, and we call this period the fast-growing nonlinear stage. Soon
after the signal saturates, and a significant portion of the free energy of the magnetic
field B2

x/4π is transferred to both the B2
y/4π signal and KE of the plasma, as seen in

figure 1(a,c), which shows the transfer of magnetic energy in purple to KE in red, and
in figure 1(b,d) which shows that By in green constitutes a significant portion of the total
magnetic energy in purple. The noise in the KE is larger than that of the B2

y/4π signal,
so it is not useful for calculating a reliable slope. However, in figure 1(b) at late times
tγth ∼ 6.6, the slope of the KE becomes comparable to that of B2

y/4π. The electric field
energy E2

z /4π does not increase appreciably until the fully nonlinear stage.
We will now provide a potential explanation for the faster nonlinear growth stage

that works in both relativistic and non-relativistic regimes. In the nonlinear stage of
the instability, the local Bx decreases around the x-line effectively increasing ρL. This
increase coincides with an increased ratio ρL/a as long as a does not grow too much,
and simulations show that a, on the contrary, shrinks during this nonlinear stage. We thus
expect an increase in the instability growth rate from (3.3) or in relativistic cases (3.2),
until ρL/a ∼ 1, where the assumptions behind the derivation of (3.1)–(3.3) break down.
For increasingly wide ρL/a the growth rate will stop increasing with ρL/a and begin to
decrease; thus its maximal value should be at ρL/a ∼ 1. We test this prediction in the
classical and relativistic temperature regimes. We will show in the relativistic part of § 4
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(a) (b)

FIGURE 2. Map of By as a function of space for the simulation with T/mec2 = 0.00125 and
a/ρL,C = 2.5 at an early time where the wavenumber ka ≈ 1/

√
3 matches Zeleyni’s prediction,

and at a later time where the smallest k (m = 1) mode begins to dominate.

that when varying T/mec2 (classical temperatures), keeping ρL,R/a = ud/c constant, the
peak growth rate indeed occurs when ρL,C/a ∼ 1. We also provide evidence of a maximum
when varying ud/c and keeping T/mec2 constant. While in the classical regime, a wider
ρL,C/a can occur if either T/mec2 or ud/c change, in the relativistic regime, a wider ρL,R/a
implies a faster ud/c. In particular, we expect the maximal value for relativistic cases where
ρL,R/a = ud/c ∼ 1, because this is the maximal growth rate according to the predictions
of Hoshino (2020). One should note that this is in a highly nonlinear stage, and thus
linear growth rates can only be used as a rough estimate of the dynamics. On the other
hand, we will show that this estimation gives a rather accurate prediction of the peak
nonlinear growth rate. As we showed in § 2, force balance implies that ρL ≈ de ∼ 1/

√
n

(in both classical and relativistic regimes). In the regions where Bx decreases, the density
n also decreases, and this force balance appears to hold. Following this logic, if there
were a background population, the growth of de would be limited to the background
value de(nb), and the fastest nonlinear growth might also be limited to the prediction for
ρL/a = de(nb)/a instead of ρL/a = 1. We check this prediction at the end of this section.

In figure 2 we show a map of the By component of the magnetic field from the same
example case from figure 1, for two representative times. The first time at tγth = 3.363
corresponds to the linear stage, where the signal has just grown beyond the noise. It is clear
in the upper current sheet that the dominant mode is at ka = 2πma/(2Lx) ≈ 0.6 (m = 2).
This matches very well with the predicted value from Zelenyi’s model ka = 1/

√
3 ≈ 0.58.

The later time tωpe = 7.205 corresponds to a late stage of the linear growth rate, where
the dominant mode shifts to a lower k (m = 1). Soon after, the growth moves into the
fast-growing nonlinear stage. The start of the nonlinear stage matches with the prediction
from Hoshino (2021) based on the theory from Galeev, Coroniti & Ashour-Abdalla (1978),
that once By/B0 > kρL an explosive nonlinear stage occurs. In our case, assuming ka =
1/

√
3, kρL,C ≡ 0.23, which is of the same order as the By/B0 seen in figure 1(b).

To better understand how to characterize a tearing instability (before it reaches a
strongly nonlinear stage), we present in figure 3 a spatial map of several quantities that
characterize the tearing mode, with selected contours of magnetic flux overlaid to highlight
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(a)

(b)

(c)

(d)

(e)

FIGURE 3. Map of the change in By, n, jz, T and nvx as a function of space for the simulation
with T/mec2 = 0.00125 and a/ρL = 2.5 at a late-enough time where the signals are visible, but
the growth is still in the linear stage. Selected contours of magnetic flux overlaid to highlight the
magnetic islands.

the magnetic islands. We have chosen By to measure the growth rates because the signal
is visible at times as early as tγth = 3; however, after around tγth = 5, one can see in
figure 1(b) that a majority of the energy is being transferred to the KE in the Harris sheet.
This energy goes to both heating and bulk flows. We show a map of By in figure 3(a) similar
to what we saw in figure 2, but at tγth = 5.284 and zoomed in on the current sheet. The
energy is mainly converted into thermal energy. The temperature is shown in figure 3(b),
where there is an overall heating with cooling at the x-points (e.g. at x/a ≈ −5, y/a ≈ 5).
The energy going into the bulk flows includes a flow in the x direction away from the
x-points and towards the o-points (e.g. at x/a ≈ −10, y/a ≈ 0), which can be seen in
figure 3(c). As the plasma moves with this flow, the density decreases at the x-points,
and increases at the o-points as seen in figure 3(d). This flow also drags the out-of-plane
current with it as seen in figure 3(e). The total KE in the current therefore also increases.

Although we do not plot this here, the energy associated with the quantities in figure 3
(when applicable) all grow at the same growth rate during the linear stage, taking energy
from the Bx component of the magnetic field outside of the current sheets. We now report
how much energy was transferred to each quantity by tγth = 5.284, the time associated
with figure 3. The source of free energy is in the Bx component; the total energy in Bx
drops by a factor of 3.3 × 10−4 its value at tγth = 0.48. The energy predominantly goes
to thermal energy, i.e. approximately 90 % plus an additional increase of 16 % due to
numerical heating, while 13 % of the energy goes into By. The energy going into the
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(a) (b)

(c) (d)

FIGURE 4. Evolution of the energy for the simulation with T/mec2 = 0.005 and a/ρL,C = 5
(for Lx = Ly/2 above, where the growth saturates early, and for Lx = Ly below, where it does not)
in the Harris sheet electrons/positrons, electric and magnetic fields, as well as the y component
of the magnetic field that characterizes the tearing growth rate. A fit of growth is plotted in solid
black and the theoretical growth rate given by (3.3) in the dashed line.

bulk flows is approximately an order of magnitude less, approximately equally distributed
between 1.3 % in the out-of-plane direction associated with the current, and 1.2 % in the
in-plane directions associated with reconnection outflows along the x direction. The energy
going into Ez is even less and the signal is not visible. This energy distribution between
the different quantities is consistent with figure 1 which shows that the loss of energy in
the total magnetic field in purple (predominantly associated with Bx) matches the gain
in KE (predominantly thermal energy) (Zenitani 2017; Pucci et al. 2018a). The energy
in By is approximately an order of magnitude less at tγth = 5.284. At later times, all of
these quantities convert the linear wavenumber mode to lower wavenumber modes and
eventually evolve into a fast-growing nonlinear state of multiple interacting modes.

Unlike the a/ρL,C = 2.5 case, when a/ρL,C = 5 the instability saturates before
significant energy is released, i.e. before the fast-growing nonlinear stage of the instability
is reached. For example, we show in figure 4(a,b) the energy evolution for the case
with T/mec2 = 0.005. We can measure a growth rate γma/c = 0.00150 which matches
theory γtha/c = 0.00194, in the linear stage (between tγth = 1.55–3.88). However, after
tγth ∼ 4.23 the growth saturates. The evolution continues without significant growth up
to tγth ∼ 6.87. We would like to point out that this saturation effect is dependent on the
noise. We performed a similar set of simulations, not presented here, with much fewer
particles-per-cell that were noisier and less accurate but obtained the same growth rates.
In this noisier case, the signal was able to grow to the fast-growing nonlinear stage without
saturating.

We found, however, that by increasing the length of the box to Lx = Ly (twice as long),
we get a similar linear growth rate γma/c = 0.00194 (matching theory almost perfectly).
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(a) (b)

FIGURE 5. Map of By as a function of space for the simulation with T/mec2 = 0.005 and
a/ρL,C = 5 during saturation Lx = Ly/2 (a), and while transitioning into the fast-growing
nonlinear stage Lx = Ly (b).

The wavenumber also remains consistent with theory with ka = 2πma/(2Lx) ≈ 0.6 (now
with a higher m = 4). However, in this case, the instability does reach a fast-growing
nonlinear stage. As we saw previously, the growth rate increases until it reaches γ a/c =
0.0296 close to the prediction corresponding to a/ρL,C = 1, γ a/c = 0.0217. In figure 4, we
highlight the difference between the case with the smaller box (Lx = Ly/2) in figure 4(a,b)
and an identical case except (Lx = Ly) in figure 4(c,d). In the case with the larger box,
significant energy is released as shown in figure 4(c), and the nonlinear growth rate is
measurable in figure 4(d).

We illustrate in figure 5 the time right before the nonlinear phase (at tγth = 5.241),
where either the growth of By saturates (when Lx = Ly/2) (figure 5a) or it blows up (when
Lx = Ly) (figure 5b). In both cases, the tearing has moved from the linear ka ≈ 1/

√
3 to

the lowest k that fits in the box (only one magnetic island). Furthermore, we note that
at this stage, the current sheets begin to interact. Once again we see that the nonlinear
stage matches the prediction from Hoshino (2021). Assuming ka = 1/

√
3, we calculate

the normalized wavelength kρL,C ≡ 0.12. While the By/B0 in figure 5(a) never exceeds
this value and thus no explosive reconnection phase is observed, it exceeds this value in
figure 5(b) and we do see an explosive phase.

From the start of the simulation, the tension from the bent magnetic field lines pulls the
plasma towards the centre of the magnetic islands, driving the instability. Meanwhile, the
upstream magnetic field is also bent providing a stabilizing force on the inflow. During the
linear phase of the tearing instability, the driving force is stronger than the stabilizing force.
However, in the nonlinear regime, the stabilizing force can dominate. In the simulation
with the large box, the aspect ratio of the island which is proportional to Lx/a is also
larger, and thus the driving force which is proportional to 1/a remains large compared
with the stabilizing force which is proportional to 1/Lx. This argument for saturation may
also explain the transfer we see from the Zelenyi prediction ka = 1/

√
3 to the smallest

mode that fits in the box ka = 2πa/Lx.
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FIGURE 6. Measurement of the tearing growth rate in the linear (solid circles) and nonlinear
(crosses) stages, along with prediction from (3.3), for a/ρL,C = 2.5 (red), and 5 (blue). The
solid black line is the prediction for a/ρL,C = 1. All blue markers correspond to simulations
with a/ρL,C = 5 but the symbols correspond to different simulations; blue circles correspond to
simulations with Lx = Ly/2, while blue crosses correspond to simulations with Lx = Ly where a
nonlinear growth rate can be measured.

We find similar results for all of our simulations. For all temperatures with a/ρL,C =
2.5, we measure the growth rates in the range tωpe = 3.30–4.39ωpe/γth. We find that the
measured growth rate γm matches the theory γth shown in table 1. We also measure the
growth rates for the nonlinear stage γm,nl, in the ranges tst,nl–tfi,nl also found in table 1. We
find that the nonlinear growth rate matches the linear prediction for a/ρL,C = 1. For the
cases with a/ρL,C = 5 we measure the growth rate that is consistent with the theory (both
in table 1) in the range tωpe = 1.55–3.88ωpe/γth, which is earlier than the interval used in
the set of simulations with a/ρL,C = 2.55 because we have less noise due to the increased
particles-per-cell. The peak growth rate for the nonlinear stage is again measured for the
simulations with Lx = Ly and is reported along with the time range of the measurement
in table 1. The growth rates in the linear stage of these simulations also match the theory
well and are listed in table 1.

These results are summarized in figure 6. We indicate the growth rates for the linear
stage with solid circles a/ρL,C = 2.5 (red) and a/ρL,C = 5 (blue), and the corresponding
theory (3.3) is plotted as a line with the same colour. These measurements match
remarkably well with the theory. We indicate the growth rates for the nonlinear stage with
crosses for a/ρL,C = 2.5 and a/ρL,C = 5 (measured from simulation with Lx = Ly), with
the same colour scheme. The nonlinear growth rate can be well estimated by the black line
which corresponds to (3.3) with a/ρL,C = 1.

The fast-growing nonlinear growth rate when a/ρL,C = 5 is a factor close to 53/2 ≈ 11
faster than the linear growth rate. However, earlier in this section, we hypothesized that
although a background plasma would not affect the linear growth rate, the fast-growing
nonlinear growth rate can be limited by the background. The linear growth rate is a
function of ρL,C/a ≈ de,C/a (3.3). While the fast-growing nonlinear growth rate can
be estimated by the linear prediction assuming ρL,C/a = 1, with a background, we
predict it is given by the linear prediction replacing ρL,C/a with the background inertial
length de,C(nb)/a = ρL,C/a

√
n0/nb, rather than 1. To test this hypothesis, we performed a

simulation identical to the case with a/ρL,C = 5, T/mec2 = 0.005, and Lx = Ly, but with
a background density of nb/n0 = 0.1. The simulation showed both a similar linear growth
rate and a slower nonlinear growth rate, that match this prediction. Using a low pass
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filter described in the next section to mitigate noise from the background population, we
measure a linear growth rate of γma/c = 0.00197, which is consistent with the theoretical
value of γtha/c = 0.00194. The fast-growing nonlinear growth rate was measured as
γm,nla/c = 0.0297 for the case with no background, close to the linear prediction for
a/ρL = 1, namely γ a/c = 0.0217. With the background density nb/n0 = 0.1, the ratio
a/de,C(nb) = 5

√
0.1, suggesting a nonlinear growth rate γnla/c = 0.0109, approximately

half the growth rate for the case with no background. The measured nonlinear growth rate
was γm,nla/c = 0.0095, matching our predictions.

4.2. Relativistic tearing
In this section, we examine a wider range of temperatures while keeping ud/c constant
(instead of ρL,C like the previous section); from T/mec2 = 2.74 × 10−5 � 1 to T/mec2 =
7.2 � 1, separated by factors of four, thus exploring a range of both classical and
relativistic temperatures. We examine three cases with ud/c = 0.8, 0.2 and 0.05, which,
respectively, correspond to a/ρL,R = c/ud = 1.25, 5 and 20 for relativistic temperatures
(see table 2 for a list of all the simulations). Here we explore regimes beyond the scope of
the Zelenyi model, i.e. (2.7)–(2.8). When we keep ρL,R/a constant while varying T/mec2,
as a consequence we are also varying ρL,C/a, and for increasingly small temperatures,
a/ρL,C decreases. Therefore, for many of our simulations a/ρL,C is smaller than 1, and
since the temperature is classical, the assumption that ρL/a � 1 breaks down.

For the ud/c = 0.8 case, a/ρL,R = 1.25, so even for large temperatures the assumption
ρL/a � 1 breaks down. However, this region is in the scope of the predictions from
Hoshino (2020) included in (2.8). This model predicts that ρL,R/a = ud/c ≈ 0.8 is the
optimal value for the maximum growth rate (higher ud/c leads to a suppression of the
instability).

For each simulation, we use 1024 particles-per-cell, Ly/a = 21.4 and Lx/a = 10.7 with
a resolution of 18 grid cells per a. We always choose a time step to satisfy the Courant
condition. Let us first consider the classical regime where T/mec2 � 1. Just as in the
previous section, we calculate growth rates, both in the linear stage and in the nonlinear
stage where the growth rate rapidly increases, by calculating a line of best fit of the By
component of the energy. Note that no faster nonlinear stage is found for cases where
ρL,C/a > 1 and the assumption that ρL/a � 1 breaks down. This is expected because in
these cases, the growth rate is already at its maximum with respect to ρL,C/a. For some
cases, we also perform identical simulations with increased length in the x direction Lx =
Ly and 2Ly, which will be identified in the text when they are used.

Before discussing the measurement of the growth rate in the relativistic regime, let
us briefly discuss the expected particle noise that seeds the instability. In a classical
Maxwellian distribution, there are fewer particles with high v/c leading to predominantly
low k noise in the magnetic field. This is due to the large interspatial distance between
these energetic particles. In contrast, for ultrarelativistic temperatures, there is only weak
k dependence as nearly all particles have the same value of v/c ≈ 1. Therefore, in the
relativistic regime, the particle noise with high ka contributes significantly to the magnetic
energy in B2

y/4π, making it difficult to measure the growth rate of the signal simply from
the evolution of the energy in B2

y/4π. While one might expect a similar effect when ud/c,
rather than T/mec2, becomes relativistic, the faster growth rates associated with faster ud/c
can more easily overcome the noise. Furthermore, the in-plane thermal noise is reduced by
1/Γd after being boosted into the moving frame. An increasing temperature, on the other
hand, keeping ud/c constant, can only slow the growth rate.
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a/ρL,C T/mec2 ud/c γtha/c tstγth tfiγth γma/c Lx/Ly tst,nlγth tfi,nlγth γm,nla/c

0.148 2.75 × 10−5 0.05 0.00161 2.71 5.43 0.00287 1/2 — — —
0.297 1.10 × 10−4 0.05 0.00322 2.71 5.43 0.00438 1/2 — — —
0.593 4.39 × 10−4 0.05 0.00644 2.71 5.43 0.00659 1/2 — — —
1.19 1.76 × 10−3 0.05 0.00997 5.46 6.30 0.00791 1/2 10.59 10.92 0.0105
2.37 7.03 × 10−3 0.05 0.00705 2.97 5.94 0.00670 1/2 7.43 7.55 0.0183
4.74 2.81 × 10−2 0.05 0.00499 2.10 4.20 0.00550 1/2 — — —
9.49 0.113 0.05 0.00353 5.48 5.52 0.00275 1/2 — — —
0.0371 2.75 × 10−5 0.2 0.00161 2.15 4.30 0.00237 1/2 — — —
0.0741 1.10 × 10−4 0.2 0.00322 2.15 4.30 0.00473 1/2 — — —
0.148 4.39 × 10−4 0.2 0.00644 2.15 4.30 0.00927 1/2 — — —
0.297 1.76 × 10−3 0.2 0.0129 2.15 4.30 0.01683 1/2 — — —
0.593 7.03 × 10−3 0.2 0.0258 2.15 4.30 0.02449 1/2 — — —
1.19 2.81 × 10−2 0.2 0.0399 2.94 5.89 0.03240 1/2 10.66 10.99 0.0395
2.37 0.113 0.2 0.0282 5.89 6.36 0.03378 1/2 6.34 6.59 0.0753
4.74 0.45 0.2 0.0295 6.16 7.39 0.0220 1/2 8.32 8.50 0.0770
9.49 1.8 0.2 0.00295 — — — 1/2 12.32 12.63 0.0848
19.0 7.2 0.2 0.00295 — — — 1/2 17.87 18.17 0.0879
0.0093 2.75 × 10−5 0.8 0.00161 3.84 7.68 0.00191 1/2 — — —
0.0186 1.10 × 10−4 0.8 0.00322 3.84 7.68 0.00383 1/2 — — —
0.0371 4.39 × 10−4 0.8 0.00644 3.84 7.68 0.00766 1/2 — — —
0.0741 1.76 × 10−3 0.8 0.0129 3.84 7.68 0.0153 1/2 — — —
0.148 7.03 × 10−3 0.8 0.0258 3.84 7.68 0.0300 1/2 — — —
0.297 2.81 × 10−2 0.8 0.0515 3.84 7.68 0.0540 1/2 — — —
0.593 0.113 0.8 0.1030 3.84 7.68 0.0832 1/2 — — —
1.19 0.45 0.8 0.1336 4.98 9.96 0.0872 1/2 — — —
2.37 1.8 0.8 0.1336 4.98 7.47 0.0863 1/2 — — —
4.74 7.2 0.8 0.1336 4.98 9.96 0.0859 1/2 — — —
2.37 7.03 × 10−3 0.05 0.00705 2.97 5.94 0.00711 1 6.48 6.65 0.0297
4.74 2.81 × 10−2 0.05 0.00499 1.05 4.20 0.00620 1 4.73 4.78 0.0587
9.49 0.113 0.05 0.00353 1.11 2.97 0.00382 1 7.33 7.37 0.0760
19.0 0.45 0.05 0.00386 0.61 2.24 0.00346 1 12.04 12.06 0.0934
37.9 1.8 0.05 0.00386 1.02 2.54 0.00350 1 7.66 7.69 0.0981
75.9 7.2 0.05 0.00386 0.51 3.05 0.00402 1 7.45 7.46 0.0989
2.37 0.113 0.2 0.0282 2.35 5.89 0.0366 1 5.42 5.77 0.0718
4.74 0.45 0.2 0.0295 1.85 3.70 0.0277 1 7.39 7.70 0.0961
9.49 1.8 0.2 0.0295 3.08 6.16 0.0206 1 8.32 8.93 0.0946
19.0 7.2 0.2 0.0295 3.08 6.16 0.0200 1 7.39 7.55 0.1031
9.49 0.113 0.05 0.00353 0.37 1.49 0.00377 2 1.88 1.91 0.0834
19.0 0.45 0.05 0.00386 0.61 2.03 0.00272 2 5.33 5.39 0.0865
37.9 1.8 0.05 0.00386 1.02 3.05 0.00278 2 5.17 5.19 0.1016
75.9 7.2 0.05 0.00386 1.02 3.05 0.00308 2 5.37 5.39 0.0956

TABLE 2. Parameters for the relativistic set of simulations including the theoretical linear growth
rate γth given by (3.3) with ρL,C/a = 1 when ρL,C/a < 1, given by (3.1) when ρL,C/a > 1 and
T/mec2 < 0.15, and given by (3.2) when T/mec2 > 0.15. The linear growth rate γm all for the
standard simulations with Lx = Ly/2 is measured between the start time tst and the finish time
tfi, and for simulations with Lx = Ly or 2Ly a linear growth rate measured after doing a low
pass filter over the same time interval. The fast-growing nonlinear growth rate γm,nl is measured
between tst,nl and tfi,nl.
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(a) (b)

FIGURE 7. Evolution of the energy for the simulation with T/mec2 = 1.8 and ud/c = 0.2 (with
Lx = Ly) in the Harris sheet electrons/positrons, electric and magnetic fields, as well as the y
component of the magnetic field that characterizes the tearing growth rate. No linear growth rate
is measurable, but a fit of the fast-growing nonlinear growth is plotted in solid black.

An example of the evolution of the energy of the particles, electromagnetic fields
and the energy in the By component of the magnetic field is shown in figure 7 for the
case where T/mec2 = 1.8 and ud/c = 0.2. Note that in this case, we have doubled the
length to Lx = Ly, which gives similar results to the standard case where Lx = Ly/2, but
will help us to measure the growth rate. Like in the previous section, we normalize the
time to the theoretical growth rate γth = 0.0295. However, here we have calculated the
theoretical growth rate using the relativistic model, (3.2). As expected, the noise of the
magnetic field dominates throughout the linear stage, and a measurement cannot be taken.
Furthermore, the scale separation between the noise in the different energy channels is no
longer significant. The energy in the By component of the magnetic field is a factor of vT/c
less than the electric field energy, which itself is a factor of vT/c less than total magnetic
field and KE, as seen in figure 1 in the non-relativistic case when vT � c. With relativistic
temperatures (vT ∼ c), this separation is no longer present, making a measurement more
difficult. However, around tγth ∼ 8 the system reaches the nonlinear stage, and like in the
classical case the growth rate increases rapidly and overcomes the noise. We can thus
measure a nonlinear growth rate between tγth ∼ 8.3–8.9 of γ a/c = 0.0848. Again, like
in the classical case, figure 7(a) shows that in the nonlinear regime significant energy
originally from the Bx component of the electromagnetic field is converted to KE.

To measure the linear growth rate, we put the magnetic field grid through a low pass
filter, keeping only ka � 1 (m ≡ kxLx/π and kyLy/π � 6) which are the modes that we
expect to grow and constitute our signal. To have a better resolution in k-space, we use
simulations with Lx = Ly, i.e. double the length of our fiducial runs. In figure 8, we show
the evolution of this filtered magnetic energy evolution compared with the curve of the
unfiltered magnetic field shown in dashed lines, and we can measure a growth rate between
tγth ∼ 3.1–6.2 of γma/c = 0.0206, which is comparable to the theoretical value γtha/c =
0.0295.

Figure 9(a) illustrates the significant noise in the linear growth stage in a map of the
magnetic field, while a low k signal is visible. Figure 9(b) shows that the low pass filter
removes this noise while retaining the low k signal. Finally, figure 9(c) shows the signal
once it has grown beyond the noise. At this point, it has already reached a nonlinear stage,
where the smallest ka dominates and the growth rate begins to blow up.

In figure 10 we summarize the temperature dependence on the growth rate for the
various values of ud/c from all our simulations, which can also be found in table 2. The
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FIGURE 8. Evolution of the By energy for the simulation with T/mec2 = 1.8 and ud/c = 0.2
(with Lx = Ly) unfiltered (dashed lines) and after performing a low pass filter only allowing the
modes m = 6 and below (solid lines). A fit of growth is plotted in solid black and the theoretical
growth rate given by (3.2) with a dashed line.

(a) (b)

(c)

FIGURE 9. Map of By as a function of space for the simulation with T/mec2 = 1.8 and ud/c =
0.2 (with Lx = Ly) unfiltered (a) and after performing a low pass filter only allowing the modes
m = 6 and below (b), and at a later time where the smaller ka modes begin to dominate (c).
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FIGURE 10. Measurement of the tearing growth rate in the linear (solid circles), and in
nonlinear (crosses) stages, along with prediction in the classical (3.1) (dashed lines) and
relativistic (3.2) (solid lines) temperature regimes for ud/c = 0.05, 0.2 and 0.8, along with the
prediction for (3.3) when a/ρL,C = 1 (solid black line). Stars represent simulations with Lx = Ly,
where the growth rate was measured after performing a low pass filter. In addition to the points
marked with crosses, additional simulations measuring the nonlinear growth with Lx = Ly are
marked with plus-signs, and Lx = 2Ly with stars.

standard measurements of the linear phase are marked by circles, while the simulations
measured in larger boxes (Lx = Ly) using a low pass filter are marked by stars. The
nonlinear growth rate was also measured for the ud/c = 0.2 and ud = 0.05 cases, and the
results are indicated by crosses for the standard simulation with Lx = Ly/2, plus signs for
the simulations with Lx = Ly and stars for Lx = 2Ly. This is an equivalent plot to figure 6
from the classical part of § 4, which is also the growth rate as a function of temperature.
Figure 6 would fit in the low temperature and ud/c regime (lower left-hand corner of
figure 10), remembering that while here a/ρL,R = ud/c is held constant, in figure 6, a/ρL,C
is held constant.

Let us first examine the familiar classical regime of the ud/c = 0.05 simulations for
temperatures above T/mec2 ≈ 2 × 10−3 (a/ρL,C = 1.26), where the simulated growth
rates follow the prediction for the classical regime, (3.1) (left-hand blue line). For lower
temperatures, the current thickness a/ρL,C < 1, and the growth rates fit the predictions for
ρL,C/a = 1 (indicated by the black line). A better approximation, at least for electron–ion
plasmas, is given by Pritchett et al. (1991), who looks in the small a/ρL,C ∼ 1 regime,
finding a similar limit for a/ρL,C � 1. Also Brittnacher, Quest & Karimabadi (1995) finds
an analytic expression that works well for both regimes of a/ρL,C. Finally, for temperatures
larger than T/mec2 ≈ 0.45, the growth rates follow (3.2) (horizontal blue line). Similarly,
the ud/c = 0.2 simulations follow (3.1) between T/mec2 ≈ 3 × 10−2 (a/ρL,C = 1.22) and
T/mec2 ≈ 0.45 (left-hand green line). Note that the range of validity for (3.1) is shorter
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than in the ud/c = 0.05 case. For lower temperatures, the growth rates follow predictions
for ρL,C/a = 1, and for relativistic temperatures beyond T/mec2 ≈ 0.45, they follow (3.2)
(horizontal green line). The growth rate does not match (3.2) precisely but is smaller by
a factor of 1.5, a factor similar to the ∼ 1.7–2 found in Hoshino (2020) and Zenitani &
Hoshino (2007), who only considered values of ud/c ≥ 0.3. We can see in these curves
that, as claimed in the previous section, for constant ud/c, the growth rate reaches a peak
near a/ρL,C = 1.

For ud/c = 0.8 (points marked in red), at no point does the growth rate match (3.1)
(indicated by the red line on the left-hand side), as it is always true that ρL,C/a > 1,
breaking the assumptions of the model. In the classical temperature regime, the growth
rate matches the predicted value from (3.3) for ρL,C/a = 1 (black line), until T/mec2 ≈ 0.1
when the growth rate becomes independent of the temperature as predicted by (3.2)
(indicated by the horizontal red line) for relativistic plasmas. Like in the ud/c = 0.2
case, the prediction overestimates the growth rate by a factor of ∼ 1.5. We also expect,
as claimed in the previous section, that for constant T/mec2, a peak growth rate occurs
near a/ρL,C = 1. In Hoshino’s model for the relativistic temperature regime, i.e. (3.2),
the growth rate for small ud/c is proportional to (ud/c)3/2, and for large ud/c (implying
a/ρL,R < 1) it is proportional to (ud/c)−1 ∼ 1/Γd, leading to a peak in between at moderate
ud/c ∼ 1. For the coldest temperatures simulated, when a/ρL,C < 1 the growth rate also
decreases with 1/ud, and thus a peak growth rate also exists when a/ρL,C ∼ 1.

Although not shown in the figure, we performed one simulation identical to our previous
simulations with T/mec2 = 1.8 and Lx = Ly, but this time with ud/c = 10 to confirm
Hoshino’s model for large drift velocities. We were able to measure a growth rate between
tγth = 2.8–8.4 of γma/c = 0.027 using both the growth with and without the low pass filter
(the thermal noise is greatly reduced in the boosted frame). This value is consistent with
the theoretical value γma/c = 0.034 from (3.2), with only a factor of 1.3 overestimation.
The wavenumber at the start of the measurement was ka = 0.47, which is consistent with
the wavenumbers ka = 0.3–0.5 reported in Hoshino (2020).

We measure the nonlinear growth rate in simulations where a/ρL,C > 1, for all cases
where ud/c = 0.2 and several cases where ud/c = 0.05. In the cases when ud/c = 0.05
and T/mec2 > 0.028 (a/ρL,C > 4.7), the growth rate saturates early and therefore there is
no measurement presented. Like in the previous section, we double the length, increasing
to Lx = Ly, which allows a wavenumber as low as ka = 0.16 at the m = 1 mode, and
find that the growth reaches the fast-growing nonlinear stage where significant energy
is released before saturation occurs. Once again when ud/c = 0.05 and T/mec2 > 0.5
(a/ρL,C > 20), the growth rate saturates early for the Lx = Ly case, and likewise we double
the length again (Lx = 2Ly), which allows a wavenumber as low as ka = 0.08 at the
m = 1 mode and reach the fast-growing nonlinear stage. (The growth rate does eventually
reach the fast-growing nonlinear stage without doubling Lx due to a slow growth after
saturation.) Beyond this temperature is considered the relativistic regime, and a/ρL,R = 20.
Unsurprisingly, we do not see any more early saturation as we increase the temperature.
We expect the fast-growing nonlinear stage can always be reached, for a sufficiently long
system. An important question remains: How does this critical length scale with the ρL/a?

At the nonlinear stage, the growth rate increases to the prediction from (3.3) for
ρL,C/a = 1 (black line) in the non-relativistic regime (T/mec2 < 0.1), similar to the
observations from the previous section. In the relativistic regime, the growth rate increases
to the same value as the linear growth rate measured in the ud/c = 0.8 case. As ud/c =
ρL,R/a, this is equivalent to the prediction of ρL,R/a ∼ 1 for the relativistic regime, and
thus one can make a generalized statement: in the nonlinear stage, the growth rate rises
until it reaches the prediction for ρL/a ∼ 1.
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5. Astrophysical limits on tearing

For various astrophysical environments, one can put a limit on the thinnest steady state
current sheet that can form before tearing grows and disrupts the current sheet, using the
prediction for the tearing growth rate. This limit is predicated on the assumption that, for
a system with a size L, current formation occurs at a time scale slower than τF ∼ L/vA,
where vA is the Alfvén speed. In our set-up, based on pressure balance, vA = vT , and we
will take the classical and ultrarelativistic limits, vT = √

2T/me and vT = c, respectively.
The tearing instability grows faster as the thickness of the current sheet a shrinks. If it
reduces to a thickness a where the growth rate reaches γ τF ∼ 1, the instability will occur
before the current sheet can get any thinner. We can thus calculate a minimum a using (3.3)
or the relativistic version (3.2), with γ τF = 1 at the fastest growing mode ka ≈ 1/

√
3. We

have found that the fastest-growing mode in our simulations remains at this value for large
L/a and make the assumption that this trend continues for increasing L/a.

Note that this limit follows the same assumptions of this study, a pair-plasma Harris
current sheet with no guide field and the constant-ψ approximation. When there is no
guide field, a thin current sheet would likely be subject to the drift kink instability (Zenitani
& Hoshino 2008). Furthermore, a guide field is often present in instances of reconnection,
but this only reduces the growth rate. We are thus making an upper limit on the minimum
thickness of a current sheet. One should also take this as an order-of-magnitude estimate.
An electron–ion plasma with a mass ratio would have a similar, but not equal growth rate
as a pair plasma. Furthermore, we assume that the tearing instability is spontaneous rather
than driven; the growth rate can be enhanced due to the injection of Poynting flux.

We thus find the minimum a for the classical regime

amin

L
≈ CC

(
ΩcL

c

)−3/5 (
T

mec2

)3/10 (
L
vAτF

)−2/5

, (5.1)

and for the relativistic regime

amin

L
≈ CR

(
ΩcL

c

)−3/5 (
T

mec2

)3/5 (
L
vAτF

)−2/5

, (5.2)

where the respective constants are CC = 27/103−3/5π−1/5 ≈ 0.67 and CR = 28/53−3/5π−2/5 ≈
0.99. As this is an order of magnitude estimate, and these constants are close to unity, we
can neglect them. The normalized length scale

ΩcL
c

≈ 1.81 × 1015 B
1 Gauss

L
1 Parsec

(5.3)

tends to be a large number, for many astrophysical contexts, and therefore the ratio a/L is
expected to be small.

Figure 11 shows the current formation time scale τF and the predicted minimum current
sheet thickness amin normalized to L (using (5.1) and (5.2)) for various astrophysical
regimes. A range of values are highlighted for each regime based on the typical orders
of magnitude of the system size L, magnetic field strength B and temperature T , assuming
τF = L/vA. The ratio amin/L remains small for all of the regimes considered, and we find
that this ratio tends to become smaller for cooler temperature regimes. Furthermore, the
formation time is significantly lower for more relativistic regimes.

As we previously stated, the current formation time tends to be proportional to τF ∼
L/vA. However, the very thin current sheets predicted in figure 11 can take considerably
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(a) (b)

FIGURE 11. Potential ranges of the minimum thickness for a set of astrophysical environments
based on the characteristic orders of magnitude of the system parameters L, B and T .
Dependent on the astrophysical environment (such as active galactic nucleus (AGN), supernova
remnant (SNR) or intracluster medium (ICM)) (5.1) and (5.2) are adopted for relativistic and
non-relativistic temperatures, respectively, as well as a minimal current formation time as given
by τF = L/vA with vA = vT for the relativistic and non-relativistic limits.

longer to form (τF � L/vA). We expect reconnection to be more prominent for the
regions with the shortest time τF before a reaches amin (and tearing onsets). We therefore
expect significant reconnection, a source of energetic particles, in the more relativistic
temperatures, where the minimum current thickness is wider. In this regard, the AGN
corona is the most promising source candidate for particle acceleration by reconnection.

On the other hand, a/ρL tends to be very large, as the particle’s Larmor radius is
typically multiple orders of magnitude smaller than the astrophysical system size. One
can write the previous equations in terms of a/ρL for the classical regime

amin

ρL,C
∼

(
ΩcL

c

)2/5 (
T

mec2

)−1/5 (
L
vAτF

)−2/5

, (5.4)

and for the relativistic regime

amin

ρL,R
∼

(
ΩcL

c

)2/5 (
T

mec2

)−2/5 (
L
vAτF

)−2/5

. (5.5)

For example, the minimum thickness for AGN parameters would be around amin/ρL,R ∼
40 000.

For such thick current sheets (with respect to the particles’ Larmor radius), we have to
extrapolate from the much thinner current sheets that we tested numerically using the
theoretical expressions. The three cases shown in figure 10, ud/c = 0.8, 0.2 and 0.05,
correspond to only a/ρL,R = 1.25, 5 and 20, respectively. While we have put a limit on
the minimum thickness at the astronomical scales, it is unlikely that current sheets of such
a high aspect ratio would occur. We also expect smaller scales to occur within the context
of turbulence (Comisso & Sironi 2018), or the nonlinear evolution of the tearing instability,
as shown in our simulations.

Also, for very thick current sheets, collisions can play a role. For collisional
tearing the growth rate is γ a/vA ∼ S−1/2, where the Lunquist number S ≡ avA/η ∼
(a/re)(vT/c)(T/mec2)3/2, η is the resistivity and re is the classical electron radius. This
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scaling for S is based on the Spitzer resistivity, which is independent of density, and since
vA = vT is only a function of T and a. Equating this growth rate with the collisionless
growth rates (3.1)–(3.2), we find that the transition from collisional to collisionless occurs
when the temperature exceeds a certain value, expressed in terms of L using (5.4)–(5.5),
roughly

T
mec2

� 0.1
(

B
1 Gauss

)18/29 (
L

1 Parsec

)8/29 (
L
vAτF

)−8/29

, (5.6)

for the classical regime, or

T
mec2

� 0.1
(

B
1 Gauss

)9/19 (
L

1 Parsec

)4/19 (
L
vAτF

)−4/19

, (5.7)

for the relativistic regime. Therefore, for cold plasmas particularly in denser regions with
strong magnetic fields such as, for example, starburst regions, collisional effects may
determine the minimum current thickness amin. On the other hand, these collisional effects
can clearly be ruled out for the different high-temperature locations within an AGN.

6. Conclusion

We have investigated the tearing instability for a collisionless pair plasma, starting
from a Harris equilibrium and no guide field or background population for a range of
temperatures and drift velocities, from the classical regime where T/mec2 = 3 × 10−5

and ud/c = 0.05 to the relativistic regime where T/mec2 = 7.2 and ud/c = 0.8. The
growth rates match the predictions from Zelenyi & Krasnosel’skikh (1979) including
modifications by Hoshino (2020) for relativistic drift velocities quite well for all the
valid regimes (a/ρL � 1), with a dominant mode at ka ≈ 1/

√
3. The close agreement

between theory and simulation results shows that a/ρL > 1 (as opposed to a/ρL � 1) is
a sufficient condition. Our measurement of the growth rate for relativistic temperatures is
not as precise, and this coincides with arguably less strict agreement with the theory.

We have found that as the instability progresses, the dominant mode shifts from the
Zeleyni prediction ka = 1/

√
3 towards the longest wavelength that fits in the simulation

box, and the instability tends to saturate when Lx is below a threshold that depends on a/ρL.
We also find that in the nonlinear stage of the instability, when a/ρL > 1, the growth rate
increases up to a maximum rate around the prediction for a/ρL = 1. In the other regime
with thin current sheets where a/ρL < 1, the growth rate is already at its maximum and can
be estimated by the prediction for a/ρL = 1. We find that this growth rate can be limited
in the presence of a background density to the linear prediction for a/ρL = a/de,C(nb) ≈
(a/ρL,C)

√
nb/n0.

Moreover, we have obtained a prediction for a minimum current thickness amin/L that
can be formed before tearing breaks up a current sheet. This prediction has been applied
to different astrophysical systems showing that the minimum current sheet thickness is
multiple orders of magnitude smaller than the system size L. Hence, these thin current
sheets can clearly not be realized in starburst regions or the ICM since their formation takes
approximately the age of the Universe or longer. But in some relativistic environments of
an AGN – in particular the AGN corona – even these thin structures can in principle be
realized, so that we expect the occurrence of reconnection providing energetic particles.
Recent observations (IceCube Collaboration 2022) by the IceCube detector indicate high
energy neutrinos from a particular AGN called NGC 1068, that originate from its AGN
corona as proposed by, for example, Inoue, Khangulyan & Doi (2020), Kheirandish,
Murase & Kimura (2021) and Eichmann et al. (2022). To produce these neutrinos in
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the first place, high-energy cosmic ray protons are needed that could be generated via
reconnection. A more detailed investigation, beyond the scope of this work, is still needed
to clarify the actual acceleration processes in these astrophysical systems.

Despite these conclusions, we acknowledge several assumptions we have made that do
not always hold. This implies other regimes that require further investigation. We have
assumed a pair plasma, so the effect of different mass ratios remains to be explored.
We have also assumed that there is neither a guide field nor a background population.
Furthermore, all simulations were performed in two dimensions. Other instabilities (e.g.
drift kink instability (Zenitani & Hoshino 2008)) can occur in a three-dimensional model.

Our simulations were done all with a mass ratio of 1. In a system with an
electron–proton-dominated plasma, we expect similar results, as predicted by Zelenyi for
thick current sheets. We have done simulations not presented here where ρL,p < a, and the
growth rate matches Zelenyi’s prediction. We have not explored the intermediate regime
where ρL,p > a > ρL,e. The fast-growing nonlinear mode would in principle pass through
this intermediate regime. One may still ask: What implications does the Hall term have on
the system for thick current sheets?

When a strong enough guide field Bz is included (such that Bz/B0 > (ρL/a)1/2),
predictions show slower growth rates that scale as γ ∼ (ρL/a)2B0/Bz instead of γ ∼
(ρL/a)3/2, and when ρL � de they can be even slower with γ ∼ (de/a)3. Comparable
differences should occur for force-free initial conditions instead of a Harris equilibrium.
We suspect similar conclusions in these regimes, but the differences remain beyond the
scope of this paper. The typical current sheet configuration is not well known for relevant
astrophysical systems, so these differences remain an important open question.

Zelenyi predicted how a background plasma would affect the tearing instability, and
concluded that the background could be neglected for densities below a critical value
nb/n0 ∼ (γth/kvT)

1/2. This constraint is less strict for temperatures Tb/T > (γth/kvT)
2,

where the critical density increases to nb/n0 ∼ (Tb/T)1/4. A high σc is not strictly
enough to conclude that the background can be neglected. However, it does imply a
low nb/n0 even if the Harris temperature is moderately relativistic. We have shown that,
while a small background was not enough to affect the linear tearing growth rate, it
limits the fast-growing nonlinear growth rate to the prediction for a/ρL = a/de,C(nb) ≈
(a/ρL,C)

√
nb/n0.
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