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The regularity series of a

convergence space

G.D. Richardson and D.C. Kent

The regularity series, or briefly i?-series, of a convergence

space is an ordinal sequence of spaces leading to the regular

modification of the space. The behavior of this series is

studied relative to such basic constructs as products, subspaces,

and various quotient maps. Upper bounds on the length of the

i?-series are obtained for several classes of spaces. This series

can be employed to construct regular completions and

compact ificat ions.

Introduction

The definition of convergence space used here is the same as that used

in [«], [9], [70], [7 7], and is a l i t t l e more general than that introduced

by Fischer [4]. This paper is a further addition to the l i s t of papers

(see references) concerned with the study of regularity in convergence

spaces. The point of view taken here i s , however, quite different from

other papers on this subject; i ts nearest generic relative in the

literature is a paper on the decomposition series published by the same

authors (see [70]).

Fischer, [4], defined a space to be regular if, whenever F •+ x ,

cl F -»• x ("cl" denotes the first iteration of the closure operator).

Later, Cook and Fischer [3] introduced a more complicated definition of

regularity which was shown by Biesterfeldt [7] to be equivalent to

Fischer's original definition. Other authors have introduced other

versions of regularity for convergence spaces (see, for example, [5], [7],
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[8] , and [/2]). We will use the term regular as i t was originally defined

by Fischer.

Following a preliminary section on notation and terminology, there is

a short section stating some simple propositions about regular spaces and

introducing the concept of an R-Bauadovff space. The next section defines

the regularity series (or R-series). Later sections study the properties

of this series and show how i t can be applied in the study of regular

compactifications and completions. A brief concluding section compares the

i?-series with the Z>-series (that i s , decomposition series) which was

investigated in [JO].

0. Preliminaries

The term space will mean convergence space unless otherwise indicated.

If A c_X , A t 0 , then A' will designate the filter consisting of all

oversets of A ; the symbol x will be used in place of {x} , for

x € X • Given two filters F and G on X such that F n G ? 0 , for

all F € F , G € G , we use F v G to denote the filter generated by

{/ n C : F f F, 5 E G} . The statement "F v G = 0 " means that there is

F € F and C E G such that F n G = 0 ; the symbol 0 does not

represent a proper filter, however.

A pretopological space (called a closure space in [2] and a principal

space in [4]) is a space in which, for each point a; , the neighborhood

filter U (x) at x converges to x . (The neighborhood filter at x is
A.

obtained by intersecting all filters which converge to x .) A pseudo-

topological space is characterized by the property F •* x whenever each

ultrafilter finer than F converges to x .

Let X be any space. The topological modification XX of X is the

finest topological space on the same underlying set coarser than X • The

pretopological modification TJX and the pseudo-topological modification

pX are defined analagously. Note that X, XX, TtX , and pX all have the

same closed sets; X, TtX , and p̂ f have the same closure operators, and X

and pX have the same ultrafilter convergence.

The set of all natural numbers (including 0 ) will be denoted by JV ;

io will denote the first infinite ordinal number, and u) the first
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uncountable ordinal number. Let X be a. space, A c X , and a an

ordinal number. The ath iteration of the closure of A is defined

recursively to be cl c l y ~ A\ if a - 1 exists, and is defined to be
v. A )

IK el™ .4 : 3 < a> if a is a limit ordinal. For any f i l ter F on X ,

n € N , we define cl^"F to be the fi l ter generated by |clyMF : F €

A space is Eausdorff if each ultrafilter converges to at most one

point, and compact if each ultrafilter converges to at least one point. A

space with the property that every convergent fi l ter contains a compact set

is said to be locally compact. A space is first countable if, whenever

F •*• x , there is a f i l ter G with a countable base such that G •+ x and

F > G .

1 . i?-Hausdorff spaces

LEfWA 1.1. Let X be a space, let F be an ultrafilter on X , and

let G be a filter on X such that F > cl"G . Then there is an ultra-

filter H 2 G such that F > cl^H .

Proof. Let Z = jfC : K a fi l ter on X, F > cl^K , and K > G\ ;

let Z be partially ordered by set inclusion. By Zorn's Lemma, Z

contains a maximal element H , and a straightforward argument establishes

that H is an ul trafi l ter . / /

PROPOSITION 1.2. Let X be a space with the property that, whenever

F ie an ultrafilter and ¥ -*• x 3 then cl^F •+ x . Then pX is regular.

In particular, pX is regular whenever X is regular.

Proof. Let F •*• x in pX . If cl VF fa i l s to converge to a; in
px.

pX , then there is an ultrafilter G 2 cl yF which fails to converge to x

in X . Since clv = cl „ , there exists, by Lemma 1.1, an ultrafilter
A pA

H > F such that G 2 cl̂ -H . But H •*• x in X , and so clyH -»• x in X

by assumption. Thus G -*• x in X , a contradiction. //

PROPOSITION 1.3. If {Xa} is a set of regular spaces on the same
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underlying set X , and X = sup{* } , then X is regular.

Proof. If F •* x in X , then F •+ x in X for a l l a .

Consequently, c l F •+ x in X for a l l a , and, since c l v F > c l v F
a a X0 Xa

for a l l a , c l v F •+ x in Xn . II
X0 °

From Proposition 1.3, i t follows immediately that, for any space X ,

there is a finest regular space X on the same underlying set which is

coarser than X ; X is the supremum of all regular spaces coarser than

X and will be called the regular modification of X . A space X is

defined to be R-Hausdorff iff Xp is Hausdorff.
/

In [S], a space X is defined to be T^ if distinct points x and

y have disjoint neighborhoods (that is, if U {x) V U (y) = 0 ).
•A A

PROPOSITION 1.4. A compact R-Hausdorff space is ?2 .

Proof. Suppose there is an ultrafilter F > UY(x) v ilY(y) . Since X
A A

i s compact, there i s z £ X such tha t F •+• 3 . Thus c l J •+ z in X

But F 2 U (x) =* x 2 cl^F , and so x •+• 3 and j / -»• 3 in AT . Since

X i s assumed to be Hausdorff, x = y = z , and X i s T^ • II

In the following example, we show that a locally compact, first

countable, i?-Hausdorff space can fail to be T .

EXAMPLE 1.5. Let X = [0, l ] , and let X be equipped with the

finest convergence structure subject to the following conditions:

(1) each free sequence that converges in the usual topology to

l/n , for some positive integer n , converges to 1 in X ;

(2) each free sequence which converges to 0 in the usual

topology and contains at most finitely many terms from the

set {l/n : n = 1, 2, . . .} converges to 0 in X .

Since convergence is defined entirely in terms of sequences and X is

clearly Hausdorff, i t follows that X is regular, i?-Hausdorff, locally
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compact, and first countable. But X is not 21- , since 0 and 1 do

not have disjoint neighborhoods. / /

A compact T space which is not i?-Hausdorff is constructed in

Example 2.7.

2. The if-series

Let X be a space. An ordinal family {r X} is defined recursively

on the same underlying set.

V = x -
F ->• x in r X iff there exist n £ N and G -*• x in X such that

F » cl/6 .

F •+ a; in rJC iff there exist n € iV and G * * in X such that

F -»• x in r X iff there exist n € f f , G -* x in X , and g < a

such that F 2: cly *G .

The family {r X} will be called the R-series (or regularity series)

of X . The smallest ordinal y such that r X = r ..X is called the

length of the R-series and denoted by IJC .

PROPOSITION 2.1. Let X be a space, a an ordinal number such that

IJC =: a .

Proof. Let F •+• x in r X . Then F 2 cl nG for some P < a ,

a rgx

n € A? , and G -»• x in X . c l yF > c l y d Y G > c l G , and so

by assumption; thus r X i s

c l (-
a

•* x in v
a+]

,X . But
L

r X =
a
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regular. Since X i s , by definition, the finest regular space coarser

than X , r X 5 X . On the other hand, i t is clear from the construction

of the i?-series that rJC > X for each ordinal 6 , and thus

Xr = V • "
P R O P O S I T I O N 2 . 2 . I f c l / = c l J l f o r a l l AcX, t h e n

V r a + l A

- and V ~ a + x •
Proof. Let F -»• x in r Jf . Then F > cl nG , where n € ff

a ^ ^a+ l^

and G •+• x in X . By assumption, F > c l „ G , and so F -»• x i n
a

COROLLARY 2 .3 . If X is a space such that •nX is regular, then

Proof. This follows immediately from Proposition 2.2 and the fact

that X and ~nX have the same closure operator. //

PROPOSITION 2.4. If X and Y are spaces on the same underlying

set with the same ultrafilter convergence, then r X and r Y have the

same ultrafilter convergence for all ordinals a , and the difference

between the lengths of their R-series cannot exceed 1 .

Proof. Let F ->• x in r X , where F is an ultrafilter. Then there

are n € N and G -»• x in X such that F > cl n G . By Lemma 1.1,

F 2 cl H , where H is an ultrafilter and H •* x in X . By assumption,

H -*• x in Y , and clv H = clv H , since X and Y have the same ultra-
A -if

convergence. Thus F •+ x in r Y . By reciprocity, r.X and r.Y have

the same ultrafilter convergence. This reasoning extends by induction to

al l ordinals a . The last assertion follows easily with the help of

Proposition 2.2. / /

Certain complications in the study of convergence spaces stem from the

fact that a compact Hausdorff space can fail to be regular. The results
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that follov shov that a local ly compact .R-Hausdorff space i s "nearly"

regular , whereas a compact Hausdorff space which i s not i?-Hausdorff can be

highly non-regular.

THEOREM 2 .5 . If X is locally compact and R-Hausdorff, then

Vs1-
Proof. By Proposition 2.2, i t suffices to show that cl = c l .

Let x € c l yA . Then there i s an u l t r a f i l t e r F such that A € F and

F > cl™ G , where G •+• x in X . By assumption, G contains an X-closed

and compact set B . Let K be an u l t r a f i l t e r which contains the f i l t e r

base -U n cl^G : G Z GY . Since B ? K , K must converge in X . But

K > cl« G , and so K -»• x in r.X . Since r ^ i s Hausdorff, K •*• x in

X , and x € c lX^ * ^

In [ 8 ] , a space i s defined to be Vrysohn i f X i s Hausdorff, and,

whenever F ->• x and G •*• j / in X , with x # j / , then

c l ^ F v c l ^ G = 0* . Note that AT i s Urysohn i f f r±X i s Hausdorff.

The next observation follows immediately from th i s observation and Theorem

2.3 .

PROPOSITION 2.6 . Each R-Hauadorff space is Urysohn. A locally

compact space is Vryeohn iff it is R-Hausdorff.

An example follows of a compact ?„ space with an J?-series of length

at leas t 3 .

EXAMPLE 2.7. For each k € N , l e t 5fe = {x^ „ : i € ff, «/ € iV} . We

assume that each S. i s well-ordered so as to have the order type of N

(although the method of well-ordering i s i r r e l evan t ) , and that x . . , = x-

tj/c Umn

iff i = 1 , j = m , and k = n . Let x, j / , a be three points not in

any of the S . ' s , and l e t X = (U{Sfc : k € N}) U {X, y, a} . For

convenience, define 4 .-. = {x. ., : i € ff} ; 4 . , can be visualized as the

j t h row of the in f in i t e square matrix 5. .
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The convergence structure for X is defined to be the finest subject

to the following conditions:

(1) each free ultrafi l ter containing A ., converges to the j th

term in the well ordering of S,.-. >

(2) each free ultrafi l ter containing S , but not containing

A . for any j , converges to x ;

(3) each free ultrafi l ter containing 5. , for k > 1 , but not

containing A ., for any j , converges to y ;

(U) each free ul trafi l ter containing U{S, : k £ N} , but not

containing S* for any k , converges to z .

From this construction, i t follows that X is compact and T . We will

outline a proof that l^X S 3 .

Let F be a free ultrafilter on S. for some i d N . Since

S. c cly^S- , i t follows from Lemma 2.1 of [101 that there is an ultra-

f i l ter G containing S such that F 2 cl G . It is clear that G
(J A

cannot contain any set of the form A . , and consequently G -*• x in X .

Thus F •+ x in r X . If H is an ultrafil ter which contains no S, but

has the property that each set H € H has an infinite intersection with

infinitely many 5, 's , then i t follows from the preceding argument that

x' 2 cl YH . Since H -»• z in A" i t follows that x •+ z in r X , and
r ^ 2

*

th is leads to the result that z •* x in i? A' . It remains only to show

that z' \ x in R X . This follows from the fact that z £ cl "SQ for

a l l w € A? , a result which can be easily established by induction on

n . II
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3. Regular compactifications and completions

Various investigations of compactifications of convergence spaces and

completions of such related structures as uniform convergence spaces,

convergence groups, and Cauchy spaces have consistently shown that

regularity is an essential ingredient in obtaining extension theorems for

canonical maps. (See, for instance, [6], [77], [13], 1141, [75], and

[7 7].) In this section ve show that given any strict compactification

(Y, /) of a space X , the i?-series can be employed to obtain a strict

regular compactification [Y , /) of the regular modification X of X .

An analagous result is also obtained for completions of totally bounded

convergence groups.

PROPOSITION 3.1. Let f : X •* Y be a continuous function. Then

f : r X -*• r Y is continuous for all a . In particular, f : X •*• Y is

continuous.

Proof. For a = 0 , the result is given. Assume that / is

continuous for 8 < a . If F -* x in r X , then F ; cl nG , for some

3
n € N , 6 < a , and G ->• x in X . Since / : roX -*• r,Y is continuous,

p C>

/fcl y
nGJ > cl v

nf{G) . Since f(G) -* fix) in Y , it follows that

/(F) + f(x) in raY . //

A subset B of a space X is said to be strictly dense if

clyS = X , and, whenever F -»• x in X , there is G •+ x such that B (. G

and F > clyG . If X is a topological space, then all dense subsets are
A.

strictly dense. A compactification (7, /) of a topological space is

called strict if f(X) is strictly dense in Y . The term strict

completion (say, of a convergence group) is defined analagously. As far as

we know, all compactifications and completions constructed to date in the

literature have been strict, although they are not usually so designated.

The significance of "strictness" in the study of regular completions and

compactifications is pointed out in [7 7].

THEOREM 3.2. Let (Y, f) be a strict compactification of X . Then

[r Y, f) is a strict compactification of r X for all a. . In
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particular, OLf) i-8 a strict compaatifioation of X .

Proof. By Proposition 3.1, / : rX •*• r Y is continuous for al l a .

Since the r
a^'s form a descending ordinal series, each r Y is compact,

and f[r x) is s tr ict ly dense in r Y for al l a . It remains only to

show that / " : r Y\ „ •*• r X is continuous for al l a . Noting that
ot i\an j u

for a. — 0 the result is given, we proceed by induction on a . Assume

that (rgy, /) is a strict compactiflcation of rJC for 6 < a . Let

G •*• y in r Y , where G is a fi l ter on Y containing Ran / , and

y € Ran / . Then G 2 cl "H , for some n € N , B < a , and H -»• y in

Y . By the strictness condition, there is a fi l ter F + j in Y such

that Ran f Z F and H > clyF . Thus G > cl "(cl F) > cl "+1F .
1 r£T X r B

Since f~ : ̂ D^IT^ f "*" rQ% ^ s continuous,

and /""""(F) -• /"1(y) in X . Thus, /"1(G) •+ / ^ ( J / ) in r ^ , and the

proof is complete.

COROLLARY 3.3. If X has a strict H-Hausdorff compactification,

then X has the same ultrafilter convergence as a Tychonoff topological

space.

Proof. If (T, / ) is a strict f?-Hausdorff compact if icat ion of X ,

then {Y , /) is a Hausdorff regular compactification of X . The

assertion then follows immediately from Theorem 1, [76]. / /

We use the term convergence group to mean an abelian group (using +

as the operation, 0 as the identity element) equipped with a convergence

structure which satisfies the following condition: F -»• x and

THEOREM 3.4. If X is a convergence group, then r X is a

https://doi.org/10.1017/S0004972700024229 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700024229


The r e g u l a r i t y s e r i e s 31

convergence group for all a . In particular, X is a regular

convergence group.

Proof. Assume that rJC i s a convergence group for 6 < a . Let

F -• x and G ->• y in r X . Then F > c l nH and G > c l kK , for
a r^x iy*

some n and fc in N , (5 and y l ess than a , and H •+ x , K. •*• y in

X . With no loss of generali ty, assume 3 > Y and n > fc . Then

F - G > cl MH - c l "K . Using the hypothesis that rJL i s a
r e * r 3 A p

convergence group, we have F - G > cl „ (H-K) , and H - K •*• x - y .

Thus we ot>tain F - G -*• x - y . II

The preceding theorem gives a method for constructing the regular

convergence group which best approximates a given convergence group. It

also leads to the following theorem concerning completions of totally

bounded convergence groups.

A convergence group is totally bounded if each ultrafilter F is

Cauahy (that is, if F - F -»• 0 in X ), and complete if every Cauchy

filter converges.

THEOREM 3.5. if (I, f) is a strict completion of a totally bounded

convergence group X , then (r X, f) is a strict completion of r X for

all a . In particular, [l , f) is a strict regular completion of X .

Proof. By Theorem 3-̂ » r Y is a convergence group; it is clearly

totally bounded, and therefore complete, since a Cauchy filter F is

necessarily convergent if there is a convergent ultrafilter G > F . By

Proposition 3.1, r Y is complete for all a . It remains only to show

that / is continuous, and this argument is identical to that given in

the proof of Theorem 3.2. //

4. Quotient maps

In this section, we investigate the behavior of the i?-series relative

to certain types of quotient maps. Let f : X -*• I be a map; that is, a
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continuous, onto function. If Y has the finest convergence structure

relat ive to which / is continuous, then / is called a convergence

quotient nap. I t is noted in [9] that f is a convergence quotient map

iff, whenever F -»• y in Y , there is x (. f~ (y) and G •* x in X such

that f(G) = F . / i s said to be a proper map if, whenever F is an

ul t raf i l te r on Y , V -*• y in Y , and G is an ultrafil ter on X which

maps on F , then there is x € f (y) such that G •+• x in X . A proper

convergence quotient map will tie called a perfect map.

THEOREM 4.1 . If f : X + Y is a proper map, then f : raX •* rj is

proper for all a , and IJl S IJC + 1 .

Proof. Assume that / is proper for al l ordinals g < a . Let F

be an ul t raf i l ter such that F •* y in r Y . Then there is G •*• y in Y

such that F i cl „ G , for some n € N and 3 < a . Using Lemma 1.1, we
V

can assume without loss of generality that G is an ul traf i l ter . Let H

be an ul trafi l ter on X which maps on F . By the induction hypothesis,

f : rnX •* roY is proper, and i t is shown in Proposition 3.2, [9], that
p P

proper maps preserve a l l iterations of the closure operator. Thus

H i / " cl Y G = cl Y f G . Applying Lemma 1.1 again, there is an
^ 6 ' 3

ul t raf i l ter K 2 /~16 such that H > cl y
WK . Since K is an ultra-

f i l t e r which maps on G and f : X -*• Y is proper, there is x (. f (y)

such that K -*• x in X . Thus H •+• x in r X , which proves that

/ : r X •*• r Y is proper.

Finally, le t y = l^X . Then / : r X -*• r Y is proper, and r X is

regular. I t is easy to check that r Y has the property described in

Proposition 1.2, and so p(r Y] is regular. Thus, by Proposition 2.U,

lR{r Y) 5 1 , and i t follows that lR{Y) 2 y + 1 . / /

COROLLARY 4 .2 . The properties Urysohn and R-Hausdorff are preserved

by proper maps.
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Proof. Let / : X •*• Y be a proper map. If X i s Urysohn, then r X

i s Hausdorff, and r Y , being the image of a Hausdorff space under a

proper map, i s also Hausdorff (see [9 ] ) . Thus Y i s a Urysohn space. The

same argument can be used if X i s i?-Hausdorff, replacing r.X by X

and r±Y by Yp . //

COROLLARY 4 .3 . If f : X -»• Y is proper and X is R-Hausdorff,

then lo{Y) and lo(X) differ by at most 1 . •
n n

Proof. Let Y = Z_J . By Proposition 2.2, i t is sufficient to show
K

that r X and r X have the same u l t r a f i l t e r convergence. Let F be

an u l t r a f i l t e r such that ¥ -*• x in r
y+-\% > "then /(F) -»• fix) = y in

r 7 = r Y . Since f : r X ->• r Y i s a proper map, there i s 3 € f~ (y)

such that F -»• 3 in r X . But r
Y+T^ i s H a u s d o r f f l > a n ( i s 0 z ~ x • II

The condition that X i s i?-Hausdorff cannot be deleted in Corollary

U.3. For if X i s the space of Example 2 .7 , Y the space consisting of a

single point , and f the constant map from X onto Y , then / i s

proper, but l~X > 3 , whereas Z-_Y = 0 .

THEOREM 4.4. If f : X •* Y is a perfect map, then f : r X •+ r Y

is perfect for all a . In particular, f : X -> Y is perfect, and

V
Proof. Assume t h a t / i s pe r fec t for a l l g < a . Then

/ : p X -*• r Y i s proper by Theorem U.I, and i t remains only to show that

i t i s a convergence quotient map. Let F ->• y in r Y . Then there i s

G •*• y in Y , n € N , and & < a such that F > c l y 6 . Since

V
/ : X -*• Y is a convergence quotient map, there is x € / (y) and H + x

in ^ such that f{H) = 6 . Since f : r^J -»• rDy is proper, and thus
p p

c losu re -p re se rv ing , / [ c l "H] = c l "G . Let K = /~ 1 (F) v c l nH .

Then K. ->• x in r r̂ and /(K) = F ; t he re fo re / : r > X * r Y i s a
a a a
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convergence quotient map.

It is easy to verify that regularity is preserved under perfect maps.

Thus the image of X under / is regular, and consequently equal to

Y . From this I Y 5 IJC follows immediately. / /

A continuous map f : X -*• Y is called a retraction if Y is a

subspace of X and / reduces to an identity map when restricted to Y .

THEOREM 4 .5 . If f : X •*• Y is a retraction, then f : r X •* r Y is

a retraction for all a . In particular, f • X •* Y is a retraction,

and 1RY 2

Proof. Assume that / is a retraction for g < a . We will first

show that r Y is a subspace of r X . Let F •* y i n r Y ; then therea ^ a a a

are n t N , 3 < a , and G -*• y in Y such that F > cl „ G . But

clr /G > ci
 nGri rx , where G denotes the filter on X generated by G

y x

(which can be regarded as a f i l t e r base on X ) , and so F -*• y i n r x\y .

On t h e o t h e r hand, l e t F ->• y in r A'ly . Then t h e r e a re n € tf ,

6 < a , and G ->• y in J such t h a t F > c l v
nG . Since / : r0X •*• vaY

A raA p p
P

is a retraction, F = f[T ) > / c l „ G > cl „ /(G) . Also,
I V J 3

f(G) -> /(!/) =1/ in y , and so cl y
nf(G) •* y in r y . Thus

3 a

a a ' y "

Proposition 3.1 establ ishes that f : r X -*• r Y i s continuous, and

hence a re t rac t ion . If y = IJX , then r Y i s a subspace of r X and is
x y y

therefore regular. Thus r Y = Y , and so l-Y < Z-̂JT . / /
Neither convergence quotient maps nor open maps (see [9]) are "well-

behaved" relative to the i?-series. In the former case, i t can be shown

that each space is the image of a regular topological space under a

convergence quotient map. There are also examples of spaces X and Y
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such that f : X ->• Y i s an open map, but / : r X ->• r Y is not open.

5. Subspaces

Theorem U.5 shows that certain types of subspaces, namely retracts ,

behave in a predictable fashion relative to the i?-series. This section

shows that the relationship between the i?-series of a space and that of an

arbitrary subspace tends to be rather errat ic .

This f i rs t part of the proof of Theorem U.5 can be applied to prove

the following lemma.

LEMMA 5 .1 . If X is a subspace of Y , then r X > r Y\ .

PROPOSITION 5.2. The R-Hausdorff property is hereditary.

Proof. Let X be a subspace of an /?-Hausdorff space Y , and let

Y = ijfK . Then Xp = ryX > ryY\x 2 Yp\x , by Lemma 5.1. Since Yp is

Hausdorff, X must also be Hausdorff. / /

THEOREM 5.3. Each Hausdorff space X is a ctosed subspace of a

Hausdorff space Y , where 1RU) = 1 •

Proof. Let a be the cardinal number of X ; le t

X = {x. : 3 € i"} , where I is an index set of cardinality a . Let

A = {a~ : 3 € i) be a set of cardinality a which is disjoint from X ,

and let Y = A u X . Let C = {B c A : cardinality of B is a} . For

each B € C , choose a collection {F : g € l\ , where fnn is a free
op ' Dp

ul t raf i l ter on Y , B € F for a l l 3 € J , and F Q = F iff B = C
op op Cy

and 3 = Y • Let x be an arbitrary point in X .

Next, we equip X with the finest convergence structure which

satisfies the following conditions:

(a) for each B € C and 3 € I , FDO ->- a:. ;

(b) for each free ultrafilter G on Y which contains .4 and

is not one of the F 's , F •* xn ;

DP 0

(c) if F is any filter on Y which contains X , then F •*• x
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in. Y iff x € X and F ^ •* x in X .

To show that l^Y = 1 , we will show that r Y is regular. First , we

describe the r Y-convergent f i l te rs .

( i) If F is a f i l te r on Y which contains A and has the property

that each F € F has cardinality a , then X c cl^F , for a l l F i F ,

and hence cly.F = F n X . Since no f i l ters containing X can Y-converge

to any point of A , cl^"F = F n X , for a l l n € N . Each such f i l ter

F ^-converges to a unique point x € X , and it follows that F 2\.F-

converges only to x .

( i i ) If G is any f i l te r containing X , then G > cl»F_Q = F n x'
I DP DP

for each B € C and 3 € -T . Since each point in X has a f i l ter of the

form F . converging to i t , i t follows that G r 7-converges to each

point in X .

( i i i ) If H is any free ultrafi l ter on Y which contains a subset

B of A of cardinality less than a , then H n X'Q > c l ^ > H n X* , and,

because of ( i i ) , c l r H = H n x' . It is easy to see that H r I-

converges only to x . For any fixed ul traf i l ter a , for a € A , i t is

clear that a converges only to a in r^ Y .

For the f i l t e rs F, G, H , and a discussed in ( i ) , ( i i ) , and ( i i i ) ,

i t can be easily verified that cl F = F n x' , cl G = x' ,

cl Ji = H n x' , and cl jx' = a' . Thus the r AT-closures of the

f i l t e r s exhibit the same convergence in r• X as the f i l ters themselves,

and i t follows that r X is regular. / /

If X is the space of Example 2.7, and Y is constructed as in

Theorem 5-3, then X is a closed subspace of f , l^X 2 3 , and

V =x •
COROLLARY 5.4. 4 closed subspace of a Hausdorff space can have a
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longer R-series than the space itself.

We conclude t h i s section with tvo more examples. The f i r s t shows that

a space X , with Z^-i - 3 , can have a Hausdorff compactification Y

such that lrJn - 2 . The second shows the reverse s i tuat ion: a regular

space X which has a Hausdorff compactification X such that IJC 2 3 •

EXAMPLE 5.5. Let X~ be the subspace of the space X constructed

in Example 2.7 obtained by deleting from X the point {y} . The

reasoning of Example 2.7 shows that ^p^n — 3 .

Letting X play the role of X in Theorem 5-3, construct Y as

described in the proof of that theorem. Let A = {a : n € N, n > l} .

Define JQ to be the space with the same underlying set as Y , and

equipped with the finest convergence structure which sa t i s f i e s the

following conditions:

(a) i f F -»• y in Y , then F -»• y in Y ;

(b) if F is a free ultrafilter on Y which contains S ,
n

for n > 1 (see Example 2 .7 ) , and F| -* y in X , then

F -»• a in y. .
n 0

I t i s not d i f f icul t to show that rp^ri ^s *^e indiscrete space, and

so IRYQ - 2 < irrX . I t is easy to see from the above construction that

Y , along with the identity embedding, is a Hausdorff compactification of

x o -

EXAMPLE 5.6. Let X. be the subspace obtained from the space X of

Example 2.7 by deleting the elements x, y , and z from X . Then X

is a regular, Hausdorff space (̂ D̂ -, = o) , an(i X is a Hausdorff

compactification of X with l^C > 3 • //
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6. Products and d i s j o i n t sums

Let {X. : i 6 j} be a family of spaces over an arbitrary index set

I . The product space, with the product convergence structure, is denoted

by X ; X = T T \x. : i € J} . Let P. : X ->• X. be the i-th projection
If (s %r

map; the product convergence structure (that is, the structure of point-

vise convergence) is the coarsest on X relative to which all of the

projection maps are continuous.

PROPOSITION 6.1. Let X = ]~T {X. : i € j} . Then, for any ordinal
Is

number a 3 r X > I I {r X. : i € l\ . Furthermore, IJ( > IJC. , for all

i Z I .

Proof. Assume tha t rJC > ~\~[ {rp^-} for a l 1 3 < a . Let F -*• [xS]
in r T̂ . Then there are n t. N , y < a , and G -• (x.) in T̂ such that

F > c l "G . Thus P.F i c l „ "P.G , and so P.F •+• x . in r 2T. , forrX ^ r X̂  i ' i ^ a ^

a l l i d , Therefore F -»• (x.) in ] \ {rJC-} . The las t assertion

follows from Theorem U.5, since P . : X •*• X. i s a retract ion for each

i i I . II

If each X^ i s i?-Hausdorff, then ]~T { ( ^ ) r
 : ^ € J} i s Hausdorff,

and i t follows from Proposition 6.1 that X is Hausdorff. Thus we have

COROLLARY 6.2. A product of R-Hausdorff spaces is R-Hausdorff.

THEOREM 6.3 . Let X = T~T {*• • i *• A > where I is a finite index
Is

set. Then r X = ] f {r,A • i i i} • In particular,
CL Ot is

Xr = TJ{{Xi)p : i t 1} , and l^X = s

Proof. Assume roX = ]~T {r
Q^- • i Z i] is valid for B < a . Let

F -»• (x.) in ] f {r X.} . Then, for each i (. I , there are n. e W ,

n.
g . < a , G. -»• x . i n X. such t h a t P.F > c l „ VG. . Letî ' t r i i. raX. %

n = sup{n. : i e 1} , 3 = sup{6. : i € l} , and G = T T {G. : i € J} .

https://doi.org/10.1017/S0004972700024229 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700024229


The r e g u l a r i t y s e r i e s 39

Then F > c l *G , where G •+ [x.) in X , and so T * [x.) in rX .
r pji I* v ex

This result, along with Proposition 6.1, establishes the first equality;
the second is immediate. The third equality follows from Proposition 6.1
and the fact that a product of regular spaces is regular. / /

A space X is the disjoint sum of the family \X. : i € J} if:

(1) X is the union of the X.'s ;

(2) the X.'s are pairwise disjoint;

(3) F •+ x in X iff F contains the set X. which contains

x , and F| „ -»• x in X. .xi ^

We omit the straightforward proof of the next proposition.

PROPOSITION 6.4. If X is the disjoint sum of {x. : i (. l} , then

rX %8 the disjoint sum of {r X. : i € l\ for all ordinals a , and

7. F i rs t countable spaces

A convergence space X is said to be first countable if, whenever
F •* x , there is a fi l ter 6 -»• x such that G has a countable fi l ter base
and F > G .

PROPOSITION 7.1. If X is a first countable space, then r^X is

first countable for all ordinal numbers a .

Proof. Assume that the proposition is valid for 6 < a . Let F •+ x

in X such that F 2 cl MG . Since X is first countable, we can assume

V
that G has a countable filter base. Thus cl "G is a filter which has

a countable filter base, r .̂ -converges to x , and is coarser than F .

Thus r X is first countable. //

For any space X , let X be the space with the same underlying set,
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and with convergence defined as follows: F •*• x in X iff F •* x in X

and there is a f i l ter G with a countable base such that G -»• x in X

and F > G . X is the coarest first countable space finer than X , and

is called the first countable modification of X .

PROPOSITION 7.2. If X is a regular space, then X° is regular.

Proof. Let F •*• x in X , and let G be a countable base filter

such that F i G and G ->• x in X . Then cl F > cl^G , and cl^G is

a countable base f i l ter which converges to x in ? , since X is

regular. / /

It is obvious that [XJ ° < (X°) for any space X . If AT is an

uncountable set with the cofinlte topology, then [x 1 is indiscrete,

whereas [x ) is discrete.

We shall next show that, for any first countable space X ,

tjJC 2 u). + 1 , where to, is the first uncountable ordinal.

LEMMA 7.3. Let X be a first countable space, and let

{A : 0 £ a < (o } be a collection of subsets of X such that A E ̂ c

for 0 5 a S 6 < w . Then

wl

Proof. Consider the case n = 1 . Let I E cl „ Ll(4 ) ; then

there is y < to and F •*• x in X such that F has a countable base

{F } and c l W F | V (u{/la : B < 0). }) f 0". For each fe > 1 , there i s

c l F. n L # 0 . Let a = sup{Bi, : k € N} .

y J PV

Then a < io , and cl „ F v A -t 0 • Let 6 be the larger of the
1 rv a
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o r d i n a l s Y a n d a ; t h e n c l V F V A . # 0 ° , and so x € c l -A-.^
r~A 0 2*r. - X 0+1o o+l

Thus cl y{U A ) cU cl „ A \ . Inclusion in the other direction is

clear.

Finally, assume that the assertion of the lemma is valid for k .

Thpn c l k+ 1fll A ) - .-I L i Kfij A ) \ = c\ U c l A
inen cl 1 U V c l

r x r X ^ Aa} \ r X \[ r X Aa II "to tn

Since the sets cl „ A satisfy the conditions assumed in the lemma we
0

have cl „ (U A ) = U cl „ A \ , and the proof i s complete. / /
X^ JL O I 2^ JL O Iu *• a >

THEOREM 7.4. If X is a first countable space, then IJ( £ u^ + 1 .

Proof. By Proposition 2.2, it suffices to show that

cl JL = cl JL . Let x € cl Jl ; then there is F •+ x in X

with a countable filter base \F } such that cl _WF v A' #0*. For
1 n' [ r X I

each k > 1 , cl F, n i4 # 0 . By Lemma 7-3> there is for each k ,
I 2* A rv I1 to >

[ n 1
cl y F, n A ̂  0 . Let 6 = sup{a,} ; then

k

cl „ F V A t 0 , and so x € cl yA . Consequently
I r§A ) 6+1

0) + 1 (1)

A space AT is said to have the countable intersection property if,

whenever F •+ x , there is a filter G -»• x such that F > G and G has a

filter base which is closed under countable intersections. The next

theorem can be established using arguments similar to those of the

preceding theorem; we omit the details.

THEOREM 7.5. If a space X has the countable intersection property,
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then ITX £ a) + 1 (where to denotes the first infinite ordinal).

8. The P-ser ies

The decomposition series {n X] of a convergence space X was

defined in [7 0] to be the ordinal series of pretopologies corresponding to

the distinct iterations of the closure operator of X . The term

"decomposition series" will be shortened to D-series. The length of this

series, which we will denote here by n̂(-̂ ) > is the smallest ordinal y

Y Y+lsuch that cl '.4 = cl ' A , for a l l A c X . The D-series terminates in
A. A —

the topological modification XX of X .

A non-regular topological space has a D-series of length 0 , but the

length of i t s i?-series must be at least 1 . The spaces (S, r) and

(5, q) of Example 2.10, [7 0], have infinitely long D-series; however

these spaces are regular, and hence have i?-series of length 0 . It is

not easy^to find relationships between ZnW and ^ D W '•> however the

next proposition establishes such a relationship for a certain class of

spac es.

PROPOSITION 8 . 1 . If X is a space such that Xp > XX and

ln(X) > 1 , then ln{X) is infinite.

Proof. Assume that I.AX) = n < (0 . Then, for each f i l t e r G on

X , c l MG = clwG . Thus F -»• x in r X iff there i s G -*• x in X

such that F > el , v G . Since 2>X - XX by assumption, cl „ G = cl,vG
AA X r^ X AA

is also valid for al l f i l ters G on X . By the definition of rJC , i t

follows that r.X = rJC , and consequently ln(X) = 1 , a contradiction. / /

We conclude by making some comparisons between the i?-series and

D-series. There is no predictable relationship, in general, between the

length of the D-series of a subspace and that of the original space;

however, if the subspace is either open or closed, the length of the

D-series of the subspace cannot exceed that of the original space. In the

case of the i?-series, the unpredictable behavior extends even to closed
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and open subspaces. The length of the 5-series for a disjoint sum of

spaces i s the supremum of the lengths of the Z?-series for the component

spaces; the same i s t rue for the i?-series. The i?-series i s well behaved

re la t ive to f in i t e products; the 0-series i s not. The upper bounds

established in Section 7 for the i?-series of f i r s t countable spaces and

spaces with the countable intersection property are essent ial ly the same as

those obtained for the D-series for the same classes of spaces in [JO].
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