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The regularity series of a

convergence space

G.D. Richardson and D.C. Kent

The regularity series, or briefly HR-series, of a convergence
space is an ordinal sequence of spaces leading to the regular
modification of the space. The behavior of this series is
studied relative to such basic constructs as products, subspaces,
and various quotient maps. Upper bounds on the length of the
R-series are obtained for several classes of spaces. This series
can be employed to construct regular completions and

compactifications.

Introduction

The definition of convergence space used here is the same as that used
in [&8], (9], [101, [11], and is a little more general than that introduced
by Fischer [4]. This paper is a further addition to the list of papers
(see references) concerned with the study of regularity in convergence
spaces. The point of view taken here is, however, quite different from
other papers on this subject; its nearest generic relative in the
literature is a paper on the decomposition series published by the same
authors (see [10]).

Fischer, [4], defined a space to be regular if, whenever F + z ,
¢l F+>x ("cl" denotes the first iteration of the closure operator).
Later, Cook and Fischer [3] introduced a more complicated definition of
regularity which was shown by Biesterfeldt [1] to be equivalent to
Fischer's original definition. Other authors have introduced other

versions of regularity for convergence spaces (see, for example, [5], [7],
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(81, and [12]). We will use the term regular as it was originally defined
by Fischer.

Following a preliminary section on notation and terminology, there is
a short section stating some simple propositions about regular spaces and
introducing the concept of an R-Hausdorff space. The next section defines
the regularity series (or R-series). Later sections study the properties
of this series and show how it can be applied in the study of regular
compactifications and completions. A brief concluding section compares the
R-series with the D-series (that is, decomposition series) which was

investigated in [10].

0. Preliminaries

The term space will mean convergence space unless otherwise indicated.
If AcXx, A# 9, then A" will designate the filter consisting of all
oversets of 4 ; the symbol z  will be used in place of {z}’ , for
x € X . Given two filters F and G on X such that FnG# ¢ , for
all Fe€F, Ge€G, weuse F v G to denote the filter generated by
{FnG: FeF, Ge G . The statement "Fv G = ¢." means that there is
Fe€F and G €G suchthat FnC =@ ; the symbol @ does not

represent a proper filter, however.

A pretopological space (celled a closure space in [2] and a principal
space in [4]) is a space in which, for each point x , the neighborhocd

filter Ux(x) at x converges to x . (The neighborhood filter at =z is

obtained by intersecting all filters which converge to x .) A pseudo-
topological space is characterized by the property F + x whenever each
ultrafilter finer than F converges to =z .

Let X be any space. The topological modification AX of X is the
finest topological space on the same underlying set coarser than X . The
pretopological modification 7X and the pseudo-topological modification
pX are defined analagously. DNote that X, AX, X , and pX all have the
same closed sets; X, TX , and pX have the same closure operators, and X

and pX¥ have the same ultrafilter convergence.
The set of all natural numbers (including O ) will be denoted by N ;

®w will denote the first infinite ordinal number, and u)l the first
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uncountable ordinal number. Let X be a space, A C X , and o an
ordinal number. The oath iteration of the closure of A 1is defined

a-1

recursively to be cl{clx A] if a -1 exists, and is defined to be

U{chsA : B < a} if o is a limit ordinal. For any filter F on X ,

n € N, we define chnF to be the filter generated by {chnF : F € F} .

A space is Hausdorff if each ultrafilter converges to at most one
point, and compact if each ultrafilter converges to at least one point. A
space with the property that every convergent filter contains a compact set
is said to be locally compact. A space is first countable if, whenever
F >z , there is a filter G with a countable base such that G » x and
F=6G.

1. R-Hausdorff spaces
LEMMA 1.1. Let X be a space, let F be an ultrafilter on X , and

let G be a filter on X such that F = ch”G « Then there is an ultra-

filter H =G such that F = ch"H .

Proof. Let Z = {K : K a filter on X, F = chnK , and K= G} 3

let I 7De partially ordered by set inclusion. By Zorn's Lemma, Z
contains a maximal element H , and a straightforward argument establishes
that H is an ultrafilter. //

PROPOSITION 1.2. Let X be a space with the property that, whenever
F is an ultrafilter and F » x , then chF +x . Then pX 1ie regular.

In particular, pX is regular whenever X <ig regular.

Proof. Let F->x in pX . 1If cleF fails to converge to x in
pX , then there is an ultrafilter G = cleF which fails to converge to «x
in X . Since ch = cle N
H=F such that G = c1XH . But H>2x in X , and so chH +2 in X

there exists, by Lemma 1.1, an ultrafilter

by assumption: Thus G+ x in X , & contradiction. //

PROPOSITION 1.3. If {X&} i8 a set of regular spaces on the same
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underlying set X , and X, = sup{Xa} » then X_ 1is regular.

0
Proof. If F >z in Xo,then F+zx in X0£ for all a .

Consequently, cl, F+ =2 in X for all & , and, since ecl, F > cl_ F
Xa a Xo Xa

for all a , chF+2: in X //

0 0

From Proposition 1.3, it follows immediately that, for any space X ,
there is a finest regular space Xr on the same underlying set which is
coarser than X ; Xp is the supremum of all regular spaces coarser than

X and will be called the regular modification of X . A space X is

defined to be R-Hausdorff iff Xr is Hausdorff.
7

In (8], a space X is defined to be T2 if distinct points « and

y have disjoint neighborhoods (that is, if UX(x) Y Ux(y) =g )
PROPOSITION 1.4. A compact R-Hausdorff space is T, .

Proof. Suppose there is an ultrafilter F = Ux(x) v UX(y) . Since X
is compact, there is =z € X such that F > z . Thus chF + 2 in Xr .
But F = UX(-’L') =z > chF , and so z + 2z and y. + 2z in Xr . Since

X is assumed to be Hausdorff, xz =y =3z , and X is T2 . //

In the following example, we show that a locally compact, first
countable, R-Hausdorff space can fail to be T2 .

EXAMPLE 1.5. ILet X = [0, 1] , and let X be equipped with the
finest convergence structure subject to the following conditions:

(1) each free sequence that converges in the usual topology to

1/n , for some positive integer n , converges to 1 in X ;

(2) each free sequence which converges to 0 in the usual
topology and contains at most finitely many terms from the

set {i/n:n=1,2, ...} converges to 0 in X .

Since convergence is defined entirely in terms of sequences and X is

clearly Hausdorff, it follows that X is regular, R-Hausdorff, locally
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compact, and first countable. But X is not T2 s Since 0 and 1 do
not have disjoint neighborhoods. //

A compact T2 space which is not R-Hausdorff is constructed in
Exanmple 2.7.

2. The R-series
Let X ©be a space. An ordinal family {raX} is defined recursively

on the same underlying set.

F+x in r.X iff there exist n € N and G+ a2 in X such that
F = chnG 3
F+2 in r,X iff there exist n € N and G+ x in X such that

n
F= ClrlX G,

F+2z in r X iff there exist n €W, G+zx in X , and B <a

such that F = c1_ .G .
rBX

The family {raX} will be called the R-series (or regularity series)

of X . The smallest ordinal Y such that rYX = rY+1X is called the

length of the R-geries and denoted by ZRX .

PROPOSITION 2.1. Let X be a space, o an ordinal number such that
ZRXZO.. Then raX=Xr

Proof. Let F+x in r X . Then F=cl_ G for some B < a ,
o rBX
ntl

. n
n €N ,and G>2a in X . ClraXF > clraxclrsx G > ClraX G , and so

ClraXF > 2 in ror.+lX . But raX = ra+lX by assumption; thus raX is
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regular. Since Xr is, by definition, the finest regular space coarser

than X , raX = Xr . On the other hand, it is clear from the construction
of the R-series that rBX > Xr for each ordinal B , and thus
Xr = raX . //

PROPOSITION 2.2. If ClraXA = clraﬂxd for all Ac X, then

ra+1X-ra+2X’ and ZRXS.a+l .

Proof. Let F+2x din » X . Then F =cl nG,where n €N
a+2 r X
a+l
and G~»x in X . By assumption, cmlr XnG , and so F =+ x in
o
r X . //

o+l
COROLLARY 2.3. If X <is a space such that =X <s regular, then
ZRX =1l.

Proof. This follows immediately from Proposition 2.2 and the fact

that X and 7X have the same closure operator. //

PROPOSITION 2.4. If X and Y are spaces on the same underlying
set with the same ultrafilter convergence, then r X and r Y have the

same ultrafilter convergence for all ordinals o , and the differeﬁce

between the lengths of their R-series cannot exceed 1 .
Proof. Let F -+ in rlX , where F is an ultrafilter. Then there

are n € § and G-+ x in X such that FchXnG. By Lemma 1.1,

F=z chnH , where H is an ultrafilter and H > x in X . By assumption,

g , since X and Y have the same ultra-

. n
H>x in Y , and chH=c1Y

convergence. Thus F + x in rlY . By reciprocity, rlX and rl.Y have

the same ultrafilter convergence. This reasoning extends by induction to
all ordinals oo . The last assertion follows easily with the help of
Proposition 2.2. //

Certain complications in the study of convergence spaces stem from the

fact that a compact Hausdorff space can fail to be regular. The results
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that follow show that a locally compact R-Hausdorff space is "nearly"
regular, whereas a compact Hausdorff space which is not R-Hausdorff can be

highly non-regular.
THEOREM 2.5. If X <8 locally compact and R-Hausdorff, then
ZRX =1.

Proof. By Proposition 2.2, it suffices to show that clr X = ch .
1
Let x € cl,, XA . Then there is an ultrafilter F such that A € F and
1

-

F = chnG , where G+ zx in X . By assumption, G contains an X-closed
and compact set B . Let K ©be an ultrafilter which contains the filter

base {A n chnG : G € G} . Since B ¢ K, K must converge in X . But

K= c1,76 ,and so K-> x in rlX . Since rlX is Hausdorff, K -+ & in

X
X ,and x €cld . //

In (8], a space is defined to be Urysohn if X 1is Hausdorff, and,
whenever F+ 2 and G+y in X , with x #y , then
[ch"F] v [ch"G] =@ . Note that X is Urysohn iff r X is Hausdorff.

The next observation follows immediately from this observation and Theorem

2.3.

PROPOSITION 2.6. Each R-Hausdorff space is Uryeohn. A locally
compact space i8 Urysohn iff it i8 R-Hausdorff.

An example follows of a compact T2 space with an R-series of length
at least 3 .

EXAMPLE 2.7. For each k € N , let 5, = {""i,jk :1 €N, J €N} . Ve
assume that each Sk is well-ordered so as to have the order type of N
(although the method of well-ordering is irrelevant), and that xijk = men
iff 1 =1, j=m,and k=n. Let =z, y, 3 be three points not in

any of the S 's , and let X = (U{Sk : k €n}) v {z, y, 2} . For

convenience, define Ajk = {zijk 11 € N} H Ajk can be visualized as the

Jth row of the infinite square matrix Sk .
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The convergence structure for X 1is defined to be the finest subject

to the following conditions:
(1) each free ultrafilter containing Ajk converges to the jth

term in the well ordering of Sk+1 H

(2) each free ultrafilter containing §. , but not containing

0
AjO for any J , converges to =z ;
(3) each free ultrafilter containing S, , for k = 1 , but not

containing Ajk for any J , converges to Yy ;

(4) each free ultrafilter containing U{Sk : k € N} , but not

containing Sﬁ for any k , converges to =z

From this construction, it follows that X 1is compact and T2 . We will
outline a proof that ZRX < 3.
Let F be a free ultrafilter on Si for some 7 € N . Since

Si E_chLSO , it follows from Lemma 2.1 of [10] that there is an ultra-

filter G containing SO such that F = clsz . It is clear that G
cannot contain any set of the form Ajo , and consequently G-+ x in X .

Thus F > x in rlX . If H is an ultrafilter which contains no Sk but

has the property that each set H € H has an infinite intersection with

infinitely many S,'s , then it follows from the preceding argument that

J
z = clp XH . Since H~+ 2z in X it follows that x = z in P2X , and
1
this leads to the result that z +x in R3X . It remains only to show
that 2 +z in R2X . This follows from the fact that =z § Clr ano for
1

all 7n € N , a result which can be easily established by induction on

n . //
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3. Regular compactifications and completions

Various investigations of compactifications of convergence spaces and
completions of such related structures as uniform convergence spaces,
convergence groups, and Cauchy spaces have consistently shown that
regularity is an essential ingredient in obtaining extension theorems for
canonical maps. (See, for instance, [61, (1711, [131, [14]1, (15], and
[17].) In this section we show that given any strict compactification
(Y, f) of a space X , the R-series can be employed to obtain a strict

regular compactification (Y}, fj of the regular modification Xr of X .

An analagous result is also obtained for completions of totally bounded

convergence groups.

PROPOSITION 3.1. Let f : X > Y be a continuous function. Then
f: rX> raY ig continuous for all o . In particular, f : X, > r, 18
continuous.

Proof. For o = 0 , the result is given. Assume that f is

continuous for B <a . If F-+zx in raX , then F > Clr "G , for some

B

n€N, B<a,and G->2x in X . Since f : r X -+ r,Y is continuous,

B B

f[clrsan) > cerYnf(G) . Since f(G) » f(x) in Y , it follows that
f(F) » flx) in r¥. //

A subset B of a space X is said to be strictly dense if
chB = X , and, whenever F > x in X , there is G -+ x such that B € G

and F = chG . If X 1is a topological space, then all dense subsets are

strictly dense. A compactification (Y, f) of a topological space is
called striet if f(X) 4is strictly dense in Y . The term strict
completion (say, of a convergence group) is defined analagously. As far as
we know, all compactifications and completions constructed to date in the
literature have been strict, although they are not usually so designated.
The significance of "strictness" in the study of regular completions and

compactifications is pointed out in [171].

THEOREM 3.2. Let (Y, f) be a strict compactification of X . Then
(r 2> f) s a strict compactification of r X forall a. In

https://doi.org/10.1017/50004972700024229 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700024229

30 G.D. Richardson and D.C. Kent

particular, (¥ zf) i8 a strict compactification of X, .

Proof. By Proposition 3.1, f : r*aX > ra.Y is continuous for all o .
Since the z'a.Y's form a descending ordinal series, each raY is compact,

and f(ruX) is strictly dense in raY for all o . It remains only to

show that f+ > r ¥ is continuous for all a . Noting that

: raYIRa.n f
for a =0 the result is given, we proceed by induction on o . Assume

that (rBY, f‘] is a strict compactification of rBX for B <o . Let

G+y in raY . where G is a filter on Y containing Ran f , and

nH,forsome né€EN, B<a,and H+y in

Yy € Ran f . Then G = clrey

Y . By the strictness condition, there is a filter F+y in Y such
4
that Ran f € F and Hzcl,F. Thus Gzecl "1 F) = c1 e 2
rB.Y Y rBY
i

Since f_l : rBYlRan f-> rBX is continuous,

PO [Clpsy"ﬂF] > cl,,BX"ﬂ(f‘l(F)) :

and FHF) > fHy) in X . s, £7N(G) » fN(y) in r X, and the
proof is complete.

COROLLARY 3.3. If X has a strict R-Hausdorff compactification,
then X, has the same ultrafilter convergence as a Tychonoff topological

space.

Proof. If (Y, f) is a strict R-Hausdorff compactification of X ,
then (Yr’ f) is a Hausdorff regular compactification of Xr . The

assertion then follows immediately from Theorem 1, [16]. //

We use the term convergence group to mean an abelian group (using +
as the operation, 0 as the identity element) equipped with a convergence
structure which satisfies the following condition: F > x and

G+y=F-G+rzx-y .

THEOREM 3.4, If X < a convergence group, then r X is a
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convergence group for all o . In particular, X, i8 a regular
eonvergence group.

Proof. Assume that I'BX is a convergence group for B < a . Let

n k
H and G = cl
BX rYX

some n and k in N, B and Y 1less than o , and H+2 , K>y in

F>x and G+y in r,X . Then cmlr K , for

X . With no loss of generality, assume B =Y and n =k . Then

F-G= cl, " - cl, "K . Using the hypothesis that rBX is a

8" B

convergence group, we have F - G = cl, Xn(H—K) ,and H=-K+zx -y .

B
Thus we obtain F - G+ 2z -y . //

The preceding theorem gives a method for constructing the regular
convergence group which best approximates a given convergence group. It
also leads to the following theorem concerning completions of totally

bounded convergence groups.

A convergence gfoup is totally bounded if each ultrafilter F 1is
Cauchy (that is, if F < F >0 in X ), and complete if every Cauchy

filter converges.

THEOREM 3.5. I1f (Y, f) is a strict completion of a totally bounded
convergence group X , then (raY s [ ) i8 a strict completion of r X for

all o . In particular, (Yr, f) is a strict regular completion of X, .

Proof. By Theorem 3.k, raY is a convergence group; it is clearly

totally bounded, and therefore complete, since a Cauchy filter F is
necessarily convergent if there is a convergent ultrafilter G = F . By

Proposition 3.1, r*aY is complete for all o . It remains only to show

that f-l is continuous, and this argument is identical to that given in
the proof of Theorem 3.2. //

4. Quotient maps

In this section, we investigate the behavior of the R-series relative

to certain types of quotient maps. Let f : X > Y be a map; that is, a

https://doi.org/10.1017/50004972700024229 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700024229

32 G.D. Richardson and D.C. Kent

continuous, onto function. If Y has the finest convergence structure
relative to which f 1is continuwous, then f is called a convergence

quotient map. It is noted in [9] that f is a convergence quotient map

iff, whenever F »y in Y , there is « € f.l(y) and G-+ x in X such
that f(G) = F. f 1is said to be a proper map if, whenever F is an
ultrafilter on ¥, F->y in Y, and G is an ultrafilter on X which

maps on F , then there is x € f_l(y) such that G-+ x in X . A proper

convergence quotient map will be called a perfect map.
THEOREM 4.1. If f : X+ Y is a proper map, then f : rX>rY is
proper for all o , and ZHY = ZRX + 1.

Proof. Assume that f is proper for all ordinals B <o . Let F
be an ultrafilter such that F >y in »r Y . Then there is G >y in ¥

such that F = el Y”G , for some n € ¥ and B < a . Using Lemma 1.1, we

B
can assume without loss of generality that G is an ultrafilter. Let H
be an ultrafilter on X which maps on F . By the induction hypothesis,
f rBX > rBY is proper, and it is shown in Proposition 3.2, [9], that

proper maps preserve all iterations of the closure operator. Thus

H= f—l [cerYnG] =cl, an_lG . Applying Lemma 1.1 again, there is an
B

ultrafilter K = f-lG such that H = cl,, XnK . Since K is an ultra-
8

filter whichmapson G and f : X > Y is proper, there is x ¢ f-l(y)
such that K+ 2 in X . Thus H -+ x in r'aX s, Wwhich proves that
f I*OLX > raY is proper.

Finally, let vy = ZRX . Then f : r*yX - er is proper, and rYX is

regular. It is easy to check that rYY has the property described in
Proposition 1.2, and so p(rYY) is regular. Thus, by Proposition 2.k,

A rYy) =1, and it follows that I.(¥) =y +1 . //

g

COROLLARY 4.2. The properties Urysohn and R-Hausdorff are preserved
by proper maps.
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Proof. Let f : X > Y be a proper map. If X is Urysohn, then rlX

is Hausdorff, and rlY , being the image of a Hausdorff space under a

proper map, is also Hausdorff (see [9]). Thus Y is a Urysohn space. The
same argument can be used if X 1is R-Hausdorff, replacing rlX by Xr

and rlY by .Yp . //

COROLLARY 4.3. If f: X~ Y 1is proper and X is R-Hausdorff,
then ZR(Y) and ZR(X) differ by at most 1 .
Proof. Let vy = ZRY . By Proposition 2.2, it is sufficient to show

that r'YX and PY+1X have the same ultrafilter convergence. Let F be

an ultrafilter such that F +> x in rY+lX , then f(F) » flx) =y in
. . 1
r Y=rY . Since :» X >r Y is a proper map, there is 3z €
v+l . ace f:r, v prop D ()
such that F > z in PYX . But PY+1X is Hausdorff, and so z2=x . //

The condition that X is R-Hausdorff cannot be deleted in Corollary
4,3, For if X 1is the space of Example 2.7, Y the space consisting of a
single point, and f the constant map from X onto Y , then f is
proper, but ZRX > 3 , whereas ZRY =0 .

THEOREM 4.4, If f : X » Y 4is a perfect map, then f : r X~ raY
18 perfect for all o . In particular, f : Xr - Yr is perfect, and
ZRY = ZRX .

Proof. Assume that f 1is perfect for all B8 < a . Then

f: raX > raY is proper by Theorem 4.1, and it remains only to show that

it is a convergence quotient map. Let F -y in raY . Then there is

G+y in Y, n € ¥, and B <o such that cmernG. Since
8

f + X>Y is a convergence quotient map, there is x € f_l(y) and H > x

in X such that f(H) = G . Since f : rBX > rBY is proper, and thus

~1 n
Let K=fFf"(F) vel H .
PB rBX

F ; therefore f:r X+>r Y is a
o o

|
[e]
=

S
(9]

closure-preserving, f[cl nH] =
gt

Then K-> 2 in r'aX and f(K)
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convergence quotient map.

It is easy to verify that regularity is preserved under perfect maps.

Thus the image of Xr under f 1is regular, and consequently equal to
Yr . From this ZRY = ZRX follows immediately. //
A continuous map f : X + Y 1is called a retraction if Y is a
subspace of X and f reduces to an identity map when restricted to Y .
THEOREM 4.5. If f : X >~ Y 1s a retraction, then f : rX>rY 18
a retraction for all o . In particular, f : X, > Yr 18 a retraction,

and ZRYf ZRX .

Proof. Assume that f 1is a retraction for B < a . We will first
show that raY is a subspace of raX . Let F>y in raY 3 ‘then there
are n €V, B<a,and G-y in Y such that cmernG. But

B
el %6 > c1. )G , where G_ denotes the filter on X generated by G
I‘BY I‘SX XY X

(which can be regarded as a filter base on X ), and so F+>y in raXIY .

On the other hand, let F >y in raX|Y . Then there are n € N ,

B<oa,and G+y in X such that F, 2 cl "G . Since f : r X > r Y
rBX B B

is a retraction, F = f'(FX) > f(cerXnG] > CerYnf(G) . Also,

f(G) » fy) =y in Y , and so cl, Ynf(G) +y in r'aY . Thus
B
Y = .

r raX| v

Proposition 3.1 establishes that f : raX -+ raY is continuous, and
hence a retraction. If vy = ZRX , then rYY is a subspace of rYX and is

= <

therefore regular. Thus I‘Y.Y Yr , and so ZRY < ZRX . //

Neither convergence quotient maps nor open maps (see [9]) are "well-
behaved" relative to the R-series. In the former case, it can be shown

that each space is the image of a regular topological space under a

convergence quotient map. There are also examples of spaces X and Y
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such that f : X Y 1is an open map, but f : rlX - rlY is not open.

5. Subspaces

Theorem 4.5 shows that certain types of subspaces, namely retracts,
behave in a predictable fashion relative to the R-series. This section
shows that the relationship between the R-series of a space and that of an

arbitrary subspace tends to be rather erratic.

This first part of the proof of Theorem 4.5 can be applied to prove

the following lemma.

LEMMA 5.1. If X s a subspace of Y, then r Xz raYlX .

PROPOSITION 5.2. The R-Hausdorff property is hereditary.

Proof. Iet X ©be a subspace of an R-Hausdorff space Y , and let

Y = 1pX . Then Xr=rYX2rYY|X x s

Hausdorff, Xr must also be Hausdorff. //

> le by Lemma 5.1. Since Yr is

THEOREM 5.3. Each Hausdorff space X 1is a closed subspace of a
Hausdorff space Y , where ZR(Y) =1.

Proof. Let a Dbe the cardinal number of X ; let
X

{zs : B € I} , where I 1is an index set of cardinality a . Let
A= {aB : B € I} be a set of cardinality a which is disjoint from X ,

and let Y=4 uX. Let C={BCA : cardinality of B is a} . For

each B € C , choose a collection {FBB : B € I} , where FBB is a free

for all B € I , and FB =F iff B=C

ultrafilter on Y , B € FB 8 oy

B

and B=Y . Let z, be an arbitrary point in X .

Next, we equip X with the finest convergence structure which

satisfies the following conditions:

(a) for each B€C and B €I, F__-=x

Bg "~ %’

(b) for each free ultrafilter G on Y which contains A4 and
is not one of the FBB'S , F=~> zy s

(c¢) if F 1is any filter on Y which contains X , then F -+ =z

https://doi.org/10.1017/50004972700024229 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700024229

36 G.D. Richardson and D.C. Kent

in. Y iff x € X and F|X+x in X .

To show that ZRY =1 , we will show that rlY is regular. First, we

describe the rl.Y-convergent filters.

(i) If F is a filter on Y which contains 4 and has the property
that each F € F has cardinality o , then X C clYF , for a1l F € F ,

and hence clYF =Fnx . Since no filters containing X can Y-converge

to any point of 4 , clYnF =Fnx , for a1l »n € N . Each such filter
F Y-converges to & unique point & € X , and it follows that F rlY—

converges only to x .

g . . s > F _ =F
(ii) If G 4is any filter containing X , then G = ClY B8 B8 nx

for each B € C and B € I . Since each point in X has a filter of the

form FBB converging to it, it follows that G rlY-converges to each

point in X .

(iii) If H 1is any free ultrafilter on Y which contains a subset

B of A of cardinality less than o , then H n zy = chH >Hnx , and,
because of (ii), ch2H =Hnx . It is easy to see that H rlY-

converges only to &« For any fixed ultrafilter a , for a € 4 , it is

0"
clear that a converges only to a in rl.Y .

For the filters F, G, H , and a’  discussed in (i), (ii), and (iii),

it can be easily verified that cl_ F=FnX , cl_ G=x ,

rlX rlX
ClI’lXH =HnX , and Clrlf =a . Thus the rlX—closures of the

filters exhibit the same convergence in rlX as the filters themselves,

and it follows that rlX is regular. !/

If X 1is the space of Example 2.7, and Y 1is constructed as in

Theorem 5.3, then X is a closed subspace of Y , ZRX >3, and

ZRY=1.

COROLLARY 5.4. A closed subspace of a Hausdorff space can have a
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longer R-series than the space itself.

We conclude this section with two more examples. The first shows that

a space Xl s With ZRXl > 3 , can have a Hausdorff compactification YO

such that ZRYO = 2 . The second shows the reverse situation: a regular

space XO which has a Hausdorff compactification X such that ZRX =3 .

EXAMPLE 5.5. Let X, be the subspace of the space X constructed

in Example 2.7 obtained by deleting from X the point {y} . The
reasoning of Example 2.7 shows that ZRXO = 3.

Letting XO play the role of X in Theorem 5.3, construct Y as
described in the proof of that theorem. Let A4 = {an c:n €N, n= l} .
Define YO to be the space with the same underlying set as Y , and
equipped with the finest convergence structure which satisfies the

following conditions:

(a) if F+>y in Y, then F+y in YO 3

(b) if F 1is a free ultrafilter on Y which contains Sn s
for n>1 (see Example 2.7), and F|X +y in X , then
F > a, in YO .
It is not difficult to show that r2Y0 is the indiscrete space, and

50 ZRYO =2« ZRX . It is easy to see from the above construction that

Y along with the identity embedding, is a Hausdorff compactification of

o Hd

XO .
EXAMPLE 5.6. Let X, be the subspace obtained from the space X of

Example 2.7 by deleting the elements z, ¥y , and =z from X . Then Xl

is a regular, Hausdorff space (ZRXl = 0) , and X is a Hausdorff

compactification of X with I.X = 3. //
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6. Products and disjoint sums

Let {Xi : 1 € I} be a family of spaces over an arbitrary index set

I . The product space, with the product convergence structure, is denoted
by X3 x=7] {Xi : 2 €I} . Let P, : X > X, be the i-th projection

mép; the product convergence structure (that is, the structure of point-
wise convergence) is the coarsest on X relative to which all of the

projection maps are continuous.

PROPOSITION 6.1. Let X =T {x; : ¢ € I} . Then, for any ordinal
rnumber o , rXz TT {raXi : 1 € I} . Purthermore, ZRX > ZI-?Xi s for all
i €I.

Proof. Assume that roX 2 TT {"Bxi} for all B8 <a . Let F - (xi)

in I‘aX . Then there are n € N, Yy<a , and G~ (:x:‘b] in X such that

F>c1 6. Thus P.F=cl "p G, and so P.F>x. in » X, , for
rYX 7 r X. 1 7 7 oz
Y N
all % €I . Therefore F » (a:?,) in ] {rBXi} . The last assertion
follows from Theorem 4.5, since Pi : X > Xi is a retraction for each
7 €I, //
If each X; is R-Hausdorff, then | | {{X;), : 7 € I} is Heusdorff,

and it follows from Proposition 6.1 that Xr is Hausdorff. Thus we have

COROLLARY 6.2. A4 product of R-Hausdorff spaces is R-Hausdorff.
THEOREM 6.3. Let X = | {x; : < €I} , where I is a finite index
set. Then r X = TT {raXi : 1 € Il . In particular,
Xr=T—r{(Xi)r : 4 €I}, and ZRX= sup{ZRX : 4 €I} .
Proof. Assume rgX = TT {rBXi : 1 € I} is valid for B < o . Let
F > (X,L) in T_r {rotXi . Then, for each 7 € I , there are n, €N,

n,
B.<a , G.+x. in X. such that P.F = cl G, . Let
1 1 1 7 r, X 1

n=sup{ni:i€I}, B=sup{6i:i€I},and G=]_r{G7::i€I}.
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Then F = ceran s where G > (3:1’) in X, and s0o F >+ (.'c‘l) in rX.

This result, along with Proposition 6.1, establishes the first equality;
the second is immediate. The third equality follows from Proposition 6.1
and the fact that a product of regular spaces is regular. //

A space X is the disjoint sum of the family {X‘i 1€ I} if:

(1) X is the union of the Xi's 3
(2) the X.'s are pairwise disjoint;

(3 F+2 in X 1iff F contains the set Xi which contains

z , and F|X +x in Xi'
i

We omit the straightforward proof of the next proposition.
PROPOSITION 6.4. If X ie the disjoint sum of {Xi : 1 €I}, then
r X 18 the disjoint sum of {raXi : 1 € I} for all ordinals o , and

X = sup{ZRXi : 41 €I} . //

7. First countable spaces

A convergence space X is said to be first countable if, whenever
F >z , there is a filter G + x such that G has a countable filter base
and F=>6G .

PROPOSITION 7.1. If X 1i8 a first countable epace, then r X is
first countable for all ordinal numbers o .
Proof. Assume that the proposition is valid for B <a . Let F -+ g

in X such that F = 011' XnG . Since X is first countable, we can assume

B

that G has a countable filter base. Thus CIr XnG is a filter which has
B

& countable filter base, raX-converges to & , and is coarser than F .

Thus rax is first countable. //

For any space X , let XO be the space with the same underlying set,
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and with convergence defined as follows: F -+ x in Xo iff F>2a2 in X
and there is a filter G with a countable base such that G+ x in X

and F26. x° is the coarest first countable space finer than X , and

is called the first countable modification of X .
PROPOSITION 7.2. If X ig a regular space, then x° is regular.

Proof. Let F -+ =x in XO , and let G be a countable base filter

such that F > G and G->x in X . Then cl OcmlXG,and chG is
X

a countable base filter which converges to & in X , since X is

regular. //
. . 0 XO .

It is obvious that (Xr) < ( )r for any space X . If X 1is an
uncountable set with the cofinite topology, then (Xr_)o is indiscrete,
whereas (XO) is discrete.

r

We shall next show that, for any first countable space X ,

ZRX = u)l + 1 , where wl is the first uncountable ordinal.

LEMMA 7.3. Let X be a first countable space, and let
{Ac : 00« wl} be a collection of subsets of X such that A, <_:_AB

for 0o =8<uw Then

=
n = n .
cl, 4 (U4 : o< o }) U{cerXAo :0< “’1} .

w

1
Proof. Consider the case n =1 . Let x € cl, & U(Ac) 5 then
w
1

there is vy < w and F-+>x in X such that F has a countable base

{Fn} and [cerXnF] v (U{AB : B < wl}) # @ . Foreach k =1 , there is
< w;, such that [cl nF] ﬁAB #0 . Let o= sup{Bk : k €N}
k

8
k 1 rY}( k

Then a < w s and clr XnF v Au. # @ . Let 8 be the larger of the
Y
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X ) n gt
ordinals Y and o ; then ClY’GX Fv AG £pP, and so x € Clr6+l){46+l

n ; . . . :
Thus el X(U Ao] c U[C1I’OX Ac) . Inclysion in the other direction is

Wy

clear.

Finally, assume that the assertion of the lemma is valid for k .

k+1 _ k _ k
Then cl, ,  (U4y) =ecl, X[clrw 5 AG)J = clrw X(U[clrox Ac” .
! ! 1 1

k

Since the sets Clr X Ao satisfy the conditions assumed in the lemma we
(o]
k+l(
rw X
1

U Ao) = k+l.40] , and the proof is complete. //

U[CII’OX
THEOREM 7.4. If X s a first countable space, then ZRX Sw +1.

Proof. By Proposition 2.2, it suffices to show that

cl, X4 = Clr }(4 . Let =x € clr XA 3 then there is F +x in X
u)l+1 wl wl+l

with a countable filter base {Fn} such that [Clr X"F] va #¢ . For
w

1
each k=1, [Clr Xan] NnA#@ . By Lemma 7.3, there is for each k ,
w
1
n - .
o) < w such that (clro X Fk] NA#9 . Let & sup{ok} ; then
% .
n L] { ]
[clP X F} VA #@ ,and so x € cl, 4 - Consequently
) §+1
cl, XA = Clr r‘l . //
ml+1 wl

A space X 1is said to have the countable intersection property if,
whenever F + x , there is a filter G+ x suchthat F2 G and G has a
filter base which is closed under countable intersections. The next
theorem can be established using arguments similar to those of the

preceding theorem; we omit the details.

THEOREM 7.5. If a space X has the countable intersection property,
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then ZRX <w+ 1 (where w denotes the first infinite ordinal).

8. The D-series
The decomposition series {HaX} of a convergence space X was

defined in [10] to be the ordinal series of pretopologies corresponding to
the distinct iterations of the closure operator of X . The term
"decomposition series”" will be shortened to D-series. The length of this
series, which we will denote here by ZD(X) , is the smallest ordinal Y

Y Y+l . . .
such that ch A = c1X A, forall ACX . The D-series terminates in
the topological modification AX of X .

A non-regular topological space has a D-series of length 0 , but the
length of its R-series must be at least 1 . The spaces (S, ») and
(5, q) of Example 2.10, [10], have infinitely long D-series; however
these spaces are regular, and hence have H-series of length 0 . It is

not easy %o find relationships between ZD(X) and ZR(X) 3 however the

next proposition establishes such a relationship for a certain class of

spaces.
PROPOSITION 8.1. If X <sa space such that X, 2 MX and

ZR(X) > 1, then ZD(X) i8 infinite.
Proof. Assume that ZD(X) =n < . Then, for each filter G on

n . . . .
X, chG=cluG. Thus F > z in r'lX iff there is G-> a2 in X

. . n, _
G . Since rlX > M by assumption, CJ'rlX G = cl)\XG

is also valid for all filters G on X . By the definition of 1/'2X , 1t

>
such that F = ClAX

follows that rlx = r2X , and consequently ZR(X) =1 , a contradiction. //

We conclude by making some comparisons between the R-series and
D-series. There is no predictable relationship, in general, between the
length of the D-series of a subspace and that of the original space;
however, if the subspace is either open or closed, the length of the
D-series of the subspace cannot exceed that of the original space. In the

case of the HR-series, the unpredictable behavior extends even to closed

https://doi.org/10.1017/50004972700024229 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700024229

The regularity series 43

and open subspaces. The length of the D-series for a disjoint sum of
spaces is the supremum of the lengths of the D-series for the component
spaces; the same is true for the R-series. The R-series is well behaved
relative to finite products; the D-series is not. The upper bounds
established in Section 7 for the R-series of first countable spaces and
spaces with the countable intersection property are essentially the same as

those obtained for the D-series for the same classes of spaces in [10].
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