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1. Introduction. The main theme of this paper can be described as a study of the
Drazin inverse for bounded linear operators in a Banach space X when 0 is an isolated
spectral point of the operator. This inverse is useful for instance in the solution of
differential equations formulated in a Banach space X. Since the elements of X rarely
enter into our considerations, the exposition seems to gain in clarity when the operators
are regarded as elements of the Banach algebra L(X).

An element a of a complex Banach algebra A is called regular (or relatively regular)
if there is x e A such that axa = a. Relatively regular elements have been extensively
studied in the case that A is the Banach algebra L{X) of all bounded linear operators on a
complex Banach space X\ they have been shown to generalize in certain aspects invertible
operators.

If a is relatively regular, then it has a generalized inverse, which is an element b e A
satisfying the equations aba = a and bab = b. (See [18] for a comprehensive account of
generalized inverses.) A relation between a relatively regular element and its generalized
inverse is reflexive in the sense that if b is a generalized inverse of a, then a is a
generalized inverse of b.

In 1958, Drazin [7] introduced a different kind of a generalized inverse in associative
rings and semigroups that does not have the reflexivity property but commutes with the
element.

DEFINITION 1.1. Let a, b be elements of a semigroup. An element b is a Drazin
inverse of a, written b = ad, if

ab = ba, b=ab2, ak = ak+lb, (1.1)

for some nonnegative integer k. The least nonnegative integer k for which these equations
hold is the Drazin index i{a) of a.

The Drazin inverse is an important tool in ring theory (see for instance Hartwig [12]).
In spite of not being reflexive, the Drazin inverse is very useful in matrix theory and
computations and in various applications of matrices [4,5,1,21,19], primarily because it
has a very desirable spectral property. The nonzero eigenvalues of the Drazin inverse are
the reciprocals of the nonzero eigenvalues of the given matrix, and the corresponding
generalized eigenvectors have the same grade [1, p. 167]. A generalized inverse a' of an
element a of a complex Banach algebra with the property that the nonzero spectrum of a'
consists of the reciprocals of the nonzero spectral points of a is often called a spectral
inverse [6]. The inverse matrix is a (commuting) spectral inverse.

Caradus [6], King [14] and Lay [16] investigated the Drazin inverse in the setting of
bounded linear operators on complex Banach spaces. Caradus [6] proved that a bounded
linear operator T on a complex Banach space has a Drazin inverse if and only if 0 is a
pole of the resolvent (A/ - T)'1 of T\ the order of the pole is equal to the Drazin index of
T. (See also King [14].) Marek and £itny [17] discuss the Drazin inverse in detail—for
operators as well as for elements of a Banach algebra. Harte [9] associated with each
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quasipolar operator T an operator Tx, which is an equivalent of the generalized Drazin
inverse studied here. He also investigated quasipolar elements of a normed algebra [10]
and extended the concept to this setting. In [11], Harte offered two candidates for
quasinilpotent elements in a general associative ring, and introduced the concept of a
quasipolar element and its Drazin inverse. Nashed and Zhao [19] investigated the Drazin
inverse for closed linear operators and applied it to singular evolution equations and
partial differential operators. Drazin [8] investigated extremal definitions of generalized
inverses that give a generalization of the original Drazin inverse.

In the theory of the Drazin inverse for matrices [1,4] an important role is played by
the index of a matrix A; this is defined as the least nonnegative integer k for which the
nullspaces of Ak and Ak+* coincide. The index of a matrix coincides with its Drazin index
[4]-

In operator theory, the concept corresponding to the index of a finite matrix is the
ascent (and descent) of a chain-finite bounded linear operator T [13,22]. An operator T is
chain-finite with the ascent (=descent) k if and only if 0 is a pole of the resolvent
(A/- T)~l of order k [13, Proposition 50.2]. If we want to translate results involving the
index or the chain-finiteness condition to a Banach algebra a we must interpret the index
of a E A to be 0 if a is invertible, and & if 0 is a pole of (Ae - a)"1 of order k.

2. The Drazin inverse in a ring. In this section A is an associative ring with a unit e.
First we give an equivalent definition of the Drazin inverse. By Inv(/1) and N(A) we
denote the set of all invertible and nilpotent elements in A, respectively.

LEMMA 2.1. In a ring A with unit, (1.1) is equivalent to

ab=ba, b=ab2, a-a2beN(A). (2.1)

The Drazin index i(a) is equal to the nilpotency index of a - a2b.
Proof. Suppose that the first two equations in (2.1) hold. Then the element

p = e - ab is an idempotent, as (ab)2 = a(ab2) = ab. Hence

ak - ak+1b = akp = (ap)k = (a(e - ab))k = (a- a2b)k,

for any k^l, and (1.1) is equivalent to (2.1).

Harte [11] defined quasinilpotent (and quasi-quasinilpotent) elements in an arbitrary
associative ring A. This concept can be used to define a generalized Drazin inverse in
rings.

DEFINITION 2.2. (See [11, Definition 2].) An element a of a ring A is quasinilpotent if,
for every x commuting with a, we have e -xa e Inv(y4). The set of all quasinilpotent
elements in a ring A will be denoted by QN(A).

Note that N(A) <= QN(A). In a Banach algebra A, the preceding definition coincides
with the usual definition ||fl/1||1/n-»0, which is equivalent to \e - a eln\(A) for all
complex A # 0.

DEFINITION 2.3. Let a eA. An element b e A is a Drazin inverse b = aD of a if

ab = ba, b=ab2, a-a2bsQN(A). (2.2)
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The Drazin index i(a) of a is the nilpotency index of a - a2b if a - a2b e N(A), and
i(a) = oo otherwise.

The inverse ad introduced by Definition 1.1 will be called the finite index Drazin
inverse.

LEMMA 2.4. In a ring A with unit, an element a has a Drazin inverse aD if and only if
there is an idempotent p commuting with a such that

ap E QN(A), a +p e ln\(A). (2.3)

The Drazin inverse aD is unique and is given by

aD = (a+p)-\e-p). (2.4)

Proof. Suppose that there is an idempotent p commuting with a and satisfying (2.3).
Set b = (a +p)~\e - p). Then ab = ba,

ab=a(a + p)~\e -p) = (a + p)(a + p)~\e - p) = e - p,

and ab2 = (ab)b = (e - p)b = b(e - p) = b. Finally,

a-a2b = a(e - ab) = ap e QN(A),

so that (2.2) hold.
Conversely, suppose that b satisfies (2.2). Set p =a - ab. Since (ab)2 = a(ab2) = ab, p

is an idempotent commuting with a, and ap =a -a2b e QN(A). Further,

(a + p)(b + p) = ab + ap + bp + p = e + ap e Inv(.4)

as ap e QN(A); then also a +p e Inv(y4). From (a +p)b = e -p it follows that b =
(a +p)~'(e — p), which proves the uniqueness of b.

We compare our definition of the Drazin inverse with that given by Harte [11] for
quasipolar elements of a ring A. An element a of a ring A is quasipolar [11, Definition 5]
if there exists b e A such that

b e comm2(a), ab = (ab)2, a(e - ab) e QN(A); (2.5)

here comm2(a) denotes the double commutant of a. An element b satisfying (2.5) and
b = ab2 is called a Drazin inverse of a in [11]. Clearly, a Drazin inverse in the sense of
Harte is also a Drazin inverse in the sense of Definition 2.3. Conversely however, it
cannot be guaranteed that the Drazin inverse b = aD defined according to Definition 2.3 is
in the double commutant of a. If A is not only a ring, but a Banach algebra, this fact
follows from topological and spectral considerations discussed in the next section; (see
also [11, Theorem 7.5.3]).

3. Isolated spectral points. From this point on, A denotes a complex unital Banach
algebra with unit e; Inv(/4), QN(A) and N(A) denote the set of all invertible elements of
A, the set of all quasinilpotent elements of A and the set of all nilpotent elements of A,
respectively. For each a e A, cr(a) denotes the spectrum of a, p(a) the resolvent set of a
and r(a) the spectral radius of a. We write iso a(a) for the set of all isolated spectral
points of a and ace <r(a) for the set of all accumulation points of a(a). By H(a) we denote
the set of all complex valued functions / , each defined and holomorphic in an open
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neighbourhood A(/) of a(a). If A is an open subset of the complex plane and K a
compact subset of A, we define a cycle y to be a (A, K)-cycle if y lies in A\K,
ind(y; A) = 0 for every A g A, and ind(y; A) = 1 for every \ e K. The functional calculus
for a G A is defined for any function / e H(a) by

where y is a (A(/), cr(a))-cycle. We recall that, in commutative Banach algebras, the
spectral radius is submultiplicative, subadditive and continuous. This fact will be used
throughout the paper usually without a further comment. For an element a G A we define
the spectral index s-ind(a) to be 0 if a is invertible and k if 0 is a pole of order k of the
resolvent (Ae-a)"1. (We do not use the word "index" because in operator theory it is
reserved for the difference dim T~\0) - codim T(X), where T is a bounded linear
operator on a Banach space X [13].) For spectral theory and functional calculus in Banach
algebras see Heuser [13, Chapter VII].

We start with a characterization of isolated spectral points of an element of A that
will provide the main tool for the development of the generalized Drazin inverse. The
result is a special case of a theorem obtained by the author [15].

THEOREM 3.1. Let a e A. Then 0 g ace a(a) if and only if there is an idempotent p e A
commuting with a and such that

ap G QN(A), p+ae lnv(A). (3.1)

Moreover, 0 e iso a(a) if and only if p ^ 0, in which case p is the spectral idempotent of a
corresponding to A = 0.

Proof. Clearly, a e A is invertible if and only if (3.1) holds with p = 0.
Let Oe iso cr(a). The spectral idempotent p of a is defined by p=f(a), where

/ G H(a) is such that / = 1 in a neighbourhood of 0 and / = 0 in a neighbourhood of
cr(fl)\{0}. Then p2 = p¥^0, p commutes with a, and ap = h{a), where h(X) = A/(A); as
cr(ap) = cr(/i(a)) = h(a(a)) = {0} by the spectral mapping theorem, apeQN(A). The
function g defined by g(A) =/(A) + A is in H(a) and is nonzero on the spectrum of o; so
g(a) = p +a G ln\(A).

Conversely, assume that there is a nonzero idempotent p commuting with a such that
(3.1) hold. For any A, we have

Ae - a = (Ae - ap)p + (Ae - (p + a))(e - p).

There is r > 0 (e.g. r = \\(p +fl)~1||~1) such that Ae - (p +a) e lnv(A) if |A|<r. Since
ap e QN(A), \e-ap e ln\(A), for all A # 0. Hence

{Xe - a)"1 = (Ae - apY'p + (Ae - (p + a)T\e - p), (3.2)

whenever 0 < |A| < r. Since p ¥^ 0, 0 E iso a(a). To show that p is the spectral idempotent
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of a corresponding to a, we pick a function / e H(a) with / = 1 in a neighbourhood of 0
and / = 0 in a neighbourhood of a(a)\{0}. By (3.2),

^-j {Xe-{p+a)T\e-p)d\

2mJy~o

where y is a ({A: |A| < r}, {0})-cycle.

Harte [10] obtained a similar result using the concept of a quasipolar element in a
Banach algebra. An element a of a Banach algebra A is quasipolar [10, p. 257] if there is
an idempotent q e A commuting with a such that

a(e - q) m QN(A), q e (Aa) n (aA). (3.3)

We give a proof using the preceding characterization of isolated spectral points.

THEOREM 3.2. (Harte [10, Theorem 9.7.6].) An element a E A is quasipolar if and
only ifO$ ace <r(a).

Proof. Suppose that a is quasipolar, satisfying (3.3). Write p =e -q. Then there are
u, v e A such that e — p = ua = av. A simple calculation shows that

{a + p)(uav + p) = e + ap = (uav + p)(a + p).

Since e + ap e Inv(/4), we have a+peln\(A). Then 0g acea(a) by the preceding
theorem.

Conversely, if 0 g ace a{a), the conclusions of the preceding theorem hold. Since
(a + p)(e - p) = a(e - p), we have

a(a +p)~l(e -p) = e -p = (a +p)~l(e -p)a.

Then (3.3) holds foiq = e-p.

NOTE 3.3. It is often useful to know that (3.1) can be replaced by

ap e QN(A), a + ap e la\(A), for some a ¥= 0.

Changes to the preceding proof are obvious.

NOTE 3.4. In view of the Laurent expansion for the resolvent (Ae-a)"1, Theorem
3.1 gives the following criterion: 0 is a pole of (Ae - a)'1 if and only if there is a nonzero
idempotent p commuting with a such that

ap e N(A), a +p e Inv(j4).

4. The Drazin inverse in a Banach algebra. In this section A is a complex unital
Banach algebra. By Inv(/i) and QN(A) we denote the sets of all invertible and
quasinilpotent elements of A, respectively. By definition, an element x of a Banach
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algebra A is quasinilpotent if ||JC" ||1/" —»0. As mentioned earlier, this is equivalent to the
Harte definition of a quasinilpotent (Definition 2.2).

DEFINITION 4.1. Let a E A. An element b e A is called a Drazin inverse of a, and is
denoted by aD, if it satisfies the conditions

ab = ba, b = ab2, a-a2beQN(A). (4.1)

If 0 e p(a), that is, if a is invertible, then aD = a"1. Even though the defining relations
(4.1) in a Banach algebra are the same as the defining relations (2.1) in a ring, topology
enters here via the definition of quasinilpotents which is dependent on the norm of A. In
particular, we shall see that in a Banach algebra the Drazin inverse of a is in the double
commutant of a; this is not always the case in a ring.

THEOREM 4.2. The following conditions on an element a e A are equivalent:
(i) 0 g acco-(a),
(ii) there is an idempotent p e A commuting with a satisfying (3.1),

(iii) a has a Drazin inverse.
In this case the Drazin inverse is unique, and is given by

aD = {a+p)-\e-p), (4.2)

where p is the spectral idempotent of a corresponding to 0.

Proof. Conditions (i) and (ii) are equivalent by Theorem 3.1, and (ii) and (iii) are
equivalent by Lemma 2.4. The explicit formula (4.2) was also obtained in Lemma 2.4.

Harte obtained the following result, defining in effect a Drazin inverse a* for a
quasipolar element a G A. (See the definition following Theorem 3.1.) We give an
alternative proof based on our definition of the Drazin inverse.

THEOREM 4.3. Harte [10, Theorem 7.5.3]. If a s A is quasipolar, then there are unique
elements a, ax G A such that

(e - d)a = a(e - a) e QN(A), axa = aax = a = a2, axd = dax = ax. (4.3)

Proof. A quasipolar element a satisfies 0 e ace a(a) (Theorem 3.2). Let p be the
spectral idempotent of a at A = 0, and define d = e—p, ax=aD which exists by the
preceding theorem. (4.3) is then verified using Theorems 3.1 and 4.2, which proves the
existence. Further, if a and ax satisfy (4.3), then

ax - a(ax)2 = ax(e - aax) = ax(e -d) = 0,
and

a - a2ax = a(e - aax) = a(e - d) e QN(A).

Then ax = aD and d = aaD = e — p, which proves the uniqueness.

The explicit formula (4.2) was given for matrices by Rothblum [20] in the form
ad = (a - p)~1(e -p). It can be deduced from the next theorem that aD satisfies a more
general equation

aD = (a + ap)~\e -p), a¥=Q. (4.4)

Theorem 4.2 shows that, in the case that 0 is a pole rather than just an isolated spectral
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point of (Ae — a)"1, the Drazin inverse aD reduces to the finite index Drazin inverse ad. In
this case, the Drazin index of a is given by

/(a) = s-ind(a).

The next result generalizes [17, Theorem 13.4]. It shows that aD is a spectral inverse
of a that lies in the double commutant of a.

THEOREM 4.4. 7/0 s iso a(a), then

aD =

where f e H(a) is such that f is 0 in a neighbourhood of 0 and /(A) = A"' in a
neighbourhood of cr(a)\{0}. Hence aD commutes with every element of A that commutes
with a, and

= {A-1:A E cr(a)\{0}}. (4.5)

Proof. Write the spectral idempotent p of a at 0 as p = g(a), where g s H(a), g is 1
in a neighbourhood of 0, g is 0 in a neighbourhood of a(a)\{0}, and set

By (4.2), aD = (a + p)~\e -p) =/(a); it is easy to check that/has the required property.
Equality (4.5) follows from the spectral mapping theorem.

5. Properties of the Drazin inverse. We start with a version of the Laurent series
for the resolvent of an element a of a Banach algebra A in a neighbourhood of an isolated
spectral point 0. The theorem generalizes a result of Caradus [6]. This was obtained for
operators under the additional assumption that 0 is a pole of the operator resolvent.

THEOREM 5.1. Let 0 e iso (r(a), and let b be the Drazin inverse of a. Then, on some
punctured disc {A :0 < |A| < r}, we have

(Ae - a)"1 = 2 \-"a"-\e - ab) - 2 An6n+1. (5.1)
n = l n=0

Proof. Let p be the spectral idempotent of a corresponding to A = 0; then
b = (a + p)~x(e - p ) , by (4.2). In some disc {A: |A| < r}, Ae - (a + p) is invertible; also ap is
quasinilpotent. According to (3.2), if 0 < |A| < r, then

(Ae - a)"1 = (Ae - ap)~lp + (Ae - (a +p))~\e-p)

= 2 A - V - ' p - 2 A"(a +p)-"-1(e -p)
n=\ n=0

OO 00

= 2 k-na"-\e-ab)- 2 knbn+\
n=l n=0

THEOREM 5.2. Let b-aD be the Drazin inverse of an element a e \n\{A). Then
s-ind(fc) = 1.
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Proof. The element p = e - ab is the (nonzero) spectral idempotent of a
corresponding to A = 0 with ap e QN(A) and a + p e Inv(/4). Then

bp = b(e-ab) = b-ab2 = 0
and

(a + p)(b + p) = ab + ap + p = e + ap e Inv(y4),

so that b+p e Inv(>l). By Theorem 3.1, 0 e isoa(b) with the spectral idempotent p;
since bp = 0, A = 0 is a simple pole of (Ae - b)~\

THEOREM 5.3. Let a ? Inv(>i). Then (aD)D = A if and only ifs-ind(a) = 1.

Proof. Suppose that b = aD and that 0 is a simple pole of (Ae - a)"1 with the spectral
idempotent p. Then a - a2b = a(e - ab) = ap = 0, and

ab = ba, b- ab2 = 0, a - a2b = 0.

This shows that bD — a. Conversely, if aD = b and bD =a, then the preceding equations
hold and signify that 0 is a simple pole of (Ae - a)"1.

In the case that 0 is a pole of (Ae - a ) " 1 , the Drazin inverse aD and the finite index
Drazin inverse ad of a coincide; if 0 is a simple pole, ad is then called the group inverse of
a, and in matrix theory it is usually denoted by a". The name was chosen because the
elements a and a* generate a multiplicative Abelian group in A; the idempotent aan plays
the role of the group identity.

The properties of the Drazin inverse stated in the following theorem are easily
verified by using Theorems 3.1, 4.2 and 4.4.

THEOREM 5.4. Suppose that a e A has the Drazin inverse aD and that p is the spectral
idempotent of a corresponding to 0. Then

(i) (a")D = (aDy for all n = 1,2,.. . ,
(ii) (aD)D = a2aD = a(e-p),
(in)((aD)D)D = aD,
(iv) aD(aD)D=aaD = e-p.

The next result deals with the inverse of a product, and gives an indication of the
usefulness of the Drazin inverse as it provides a short proof of the fact that 0 is an isolated
spectral point of ab if a, b commute and 0 is an isolated spectral point for both a and b.
The result is well known for matrices [4, Theorem 7.8.4].

THEOREM 5.5. Let a, b be commuting elements of A such that aD and bD exist. Then
(ab)D exists and

Proof. The elements a, b, aD, bD all commute. Then

ab(aDbD)2 = a(aD)2b(bD)2 = aDbD.

Further,

ab - {abfaDbD = (a- a2aD)(b - b2bD) + a2aD(b - b2bD) + b2bD(a - a2aD),
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and r{ab - (ab)2aDbD) = 0, as the spectral radius is subadditive and submultiplicative in
commutative subalgebras of A. Hence ab - (ab)2aDbD e QN(A).

This result is implicit in Harte [10, Theorem 7.5.4], where it is proved that the
product of commuting quasipolar elements is quasipolar.

The proof of the preceding theorem can be adapted to show that the product of two
commuting elements of a Banach algebra with a finite Drazin index has a finite index
Drazin inverse. Indeed, it is enough to observe that the product of commuting elements,
one of which is nilpotent, is also nilpotent, and the sum of commuting nilpotent elements
is nilpotent.

Bouldin [2] gives an example of two noncommuting bounded linear operators A,B
on a complex Banach space that have the finite index Drazin inverses Ad, Bd, but whose
product AB is not Drazin invertible [2, Example 4.1]. Bouldin also gives some conditions
under which the equation {AB)d = BdAd holds in the noncommutative case.

THEOREM 5.6. If aD exists, b E QN(A) and ab = ba, then also (a + b)D exists and

where p is the spectral idempotent ofaat\=0.

Proof. Let p be the spectral idempotent of a at A=0; the set {a,b,p} is
commutative, a +p e lnv(A) and ap e QN(A). Then

a + b+p = (a+p) + be lnv(A), (a + b)p = ap + bp e QN(A).

Hence 0 g ace a{a + b), by Theorem 3.1 and the explicit formula for the Drazin inverse of
a + b follows from (4.2).

The preceding result shows that if 0 e iso a(a), b e QN(A) and ab = ba, then
0 e iso o-(o + b). This is implicitly contained in Harte [10, Theorem 7.5.4] formulated in
terms of quasipolarity.

THEOREM 5.7. If aD,bD exist and ab =ba = 0, then also (a + b)D exists and

(a + b)D = aD + bD.

Proof. As in [7] we observe that a,b,aD,bD all commute, that abD = ab(bDf = 0
and aDb = ab(aD)2 = 0. Hence

(a + b)(aD + b°)2 = a(aD)2 + b(bD)2 = aD + bD,
and

(a + b) - (a + b)2{aD + bD) = (a - a2aD) + {b- b2bD) e QN(A),

which shows that (a + b)D = aD + bD.

6. Representations of the Drazin inverse. From the Laurent expansion we get a
limit representation of the Drazin inverse in a Banach algebra A.

THEOREM 6.1. Let 0 e iso a(a) with the corresponding spectral idempotent p. Then

aD = \im(a-\e)-\e-p). (6.1)
A-»0
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Proof. If we multiply both sides of (5.1) by e - p, we get

(\e-a)-\e-p)= - £ \"b"+\

where b = aD. The result then follows.

We give a representation of the Drazin inverse in two special cases. For the first case
we recall that much of the elementary spectral theory in a Banach algebra A depends on
the expansion

valid in the case that a" —> 0. There is a generalization of this expansion in the case that
a" -*p, where p need not be 0.

THEOREM 6.2. Let a"-*p in A. Then s-ind(e - a) ̂  1 and

(e-a)D=tan(e-p). (6.2)
n=0

Proof. We observe that p2 = p; if c is defined by c = a -p, then c" = (a -p)" =
a" - p -»0, and cp =pc = 0. Further, p is an idempotent commuting with e - a, such that
(e -a)p = 0 and e -a +p = e -c s Inv(,4); by Theorem 3.1, A = 0 is a resolvent point of
e — a or a simple pole of its resolvent. As a"(e -p) = (cn -p)(e — p) = c"(e —p),

lan(e-p)=2c"(e-p) = (e-cy\e-p)
n=0 n=0

= (e-a+py\e-p) = (e-a)D.

For the second case note that exp(to)—»0 (as t—* °°) implies

a~1= - I exp(ta)dt.
Jo

This generalizes to elements a for which exp(ra) converges, but not necessarily to 0.

THEOREM 6.3. Let exp(to)^p as t->». Then s-ind(a) ^ 1, a«d

oD= - f exp{ta)(e-p)dt. (6.3)

/Voo/. We have p2 = p. If c = a - p, then

exp(fc) = exp(ta)exp(-rp) = exp(ra)(e - p + e~'p)^p{e-p) = 0;

hence a(c) lies in the left half-plane, and c is invertible. Further,

1 fJ
ap = a lim - exp(ta) df = lim (exp(sa) - e) = 0,

which implies that pc = cp = - p . To conclude that 0 e ace cr(a), it is enough to observe
that a -p = c e Inv(/1) (Note 3.3).
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Finally, since exp(ta)(e — p) = exp(/c)(e -p) and since exp(/c)—»0 as f—»°°, we have

I exp(m)(e -p)dt= exp(rc)(e -p)dt = (e-p) exp(rc) dt
Jo Jo Jo

= -c~\e-p) = -(a -p)~\e-p)

by (4.4).

The following theorem generalizes the "core-nilpotent" decomposition A=A(I-
P)+AP of a square matrix [1, p. 175] to elements of a Banach algebra. An operator
version was given by King [14] in the special case that 0 is a pole of the operator
resolvent.

THEOREM 6.4. Let a eA. Then 0 G iso <r{a) if and only if there are x,y s A such that

a = x+y, xy=yx = 0, s-'\nd(x) = 1, y e QN(A). (6.4)

Such a decomposition is unique.

Proof. If (6.4) hold, then aD = (x +y)D = xD +yD =xD, by Theorem 5.7, and so
0 e iso cr{a), by Theorem 4.2. The decomposition is unique as x = (xD)° = (aD)D, by
Theorem 5.3.

Conversely, let 0 be an isolated spectral point of a with the corresponding spectral
idempotent/?, and let

x=a{e-p), y = ap.

Then y = ap e QN(A), xp = 0 and x + p = (a +p)- ap E lnv(A) (invertible minus quasi-
nilpotent). The last two conditions imply that s-ind(^) = 1.

The preceding result shows that the calculation of the Drazin inverse can be reduced
to the calculation of the finite index Drazin inverse, in fact of the group inverse, as

aD = (a(e-p))*.

Thus we have a complete description of elements which possess a Drazin inverse.

COROLLARY 6.5. An element a of a Banach algebra A has the Drazin inverse aD if and
only if it is the sum of an element x with a finite Drazin index and a quasinilpotent element
y such that xy =yx = 0. Then

In addition, aD = ad if and only if y is nilpotent.

7. The Drazin inverse for bounded linear operators. Let A' be a complex Banach
space and L(X) the Banach algebra of all bounded linear operators on X with the
operator norm

\\A\\ = sup ||i4x||.
IM=1
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We write N(A) for the null space of A e L(X), and R(A) for its range. The following
result was obtained by Lay [16] for the finite index Drazin inverse.

THEOREM 7.1. Let A e L{X) be such that 0 $ ace (T(A). If A° is the Drazin inverse of
A as an element of the algebra L{X), then X = R(ADA)®N(ADA), A=AX®A2 with
respect to this direct sum and

Proof. Let P be the corresponding spectral idempotent, so that P = / - ADA, and
X = N(P)®R(P) = R(ADA)®N(ADA). From Theorem 3.1 we can deduce that A =
Ai@A2 with Ax invertible in L(R(ADA)) and A2 quasinilpotent in L(N{ADA)). Observe
that P = 087. Then by (4.2)

AD = (A + P)~\I - P) = (A, © (A2 + 7))-'(7©0) = V ©0.

Campbell [3] gives an alternative generalization of the Drazin inverse of bounded
linear operators. Suppose that A E L(X) is such that the hyper-range

R(A") = n R(A")

is closed and complemented by a closed A -invariant subspace M. Then

A = U®V

with respect to the decomposition X = R(A°°)®M. If U is invertible, Campbell defines

Then
AAS=ASA, AS=A(AS)2, A-A2As = 0®V. (7.1)

As may exist when 0 $ iso o-(A); in this case AB need not be unique [3, Example 3].
If 0 is a pole of (\I-A)~\ then R(ADA) = R(Ak) = R(A") for k=s-ind(A). In this

case the inverses As, AD and Ad all exist and are equal.
If 0 is an essential singularity of (M-A)~\ then AD exists, but As need not. If, in

addition, R(A°°) = R(ADA), then As exists and As = (A,®A2)
S = A^ ®0 = AD.

From (7.1) we see that if As exists and V is quasinilpotent, then 0 E iso a(A) and
AD =AS. If AD and As both exist and are equal, then V in (7.1) is quasinilpotent. Note
that R(A°°) = R(ADA) whenever AD = As.

We close the section with an application to stability of differential equations in
Banach spaces that generalizes a result stated in [17, p. 111].

THEOREM 7.2. Suppose A e L(X) is such that {A") converges, and let

Then the differential equation

x(t) = Bx(t), x(0) = u (t>Q,ueX)

has a steady state solution as t—*<x>; that is, \im,_,wx(t) exists.

Proof. In the proof of Theorem 6.2 we established that the limit P of (An) is the
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spectral idempotent of A corresponding to A = 1. Write P = g(A), where g e H(A) is such
that g = 1 in a neighbourhood of 1 and g = 0 in a neighbourhood of <T(A)\{1}. Define also
/ e H(A) such that / is equal to 0 in a neighbourhood of 1 and to (1 + A)/(A - 1) in a
neighbourhood of cr'(y4)\{l}. Then B =f(A). We show that

BP = 0, B+Pe ln\(L(X)).

Indeed, BP=f(A)g(A) = (fg)(A) = 0, as fg = 0. Also, f + g^O on cr(A), so that
B + P -f(A) + g(A) is invertible. This ensures that 0 is a simple pole of the resolvent of
B. The function / maps the open unit disc D onto the open left half plane H of C. Since
a(A)\{l}cD, the spectral mapping theorem implies that

a(B)\{O}=f(cr(A)\{l})czf(D)czH.

The condition <r(B)\{0}<zH together with cr-ind(B)=sl guarantees that exp(sB) con-
verges as s -* oo. This proves the result, as the solution to the differential equation above
is given by x(t) = exp(tB)u.

8. Examples.

EXAMPLE 8.1. Define an operator B on the Banach space Z1 by the infinite matrix

0
1
0
0
0

0
0
\
0
0

0
0
0
i
0

0
0
0
0
A

Then B is a quasinilpotent (but not nilpotent) element of the Banach algebra L(/') of all
bounded linear operators on /' [22, p. 280]. The finite index Drazin inverse Bd does not
exist; the Drazin inverse BD is the zero operator.

EXAMPLE 8.2. Define a diagonal operator A on the Banach space /' by the infinite
matrix

0
0
0
0

0
a2

0
0

0
0
a3

0

0
0
0
a

where 0 < e ^ \an\ < M, for all n = 2,3,... Then A is an element of the Banach algebra
L(/') with the spectrum a(A) = {0} U cl{an :n = 2,3, . . .}, and, for any / e H(A),

n=2

where eu e2, • • • is the standard Schauder basis in Z1 [22]. It follows that 0 is a simple pole
of A with the spectral idempotent P(£n) = ^ex. By Theorem 4.4, the inverse AD = A** is
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given by AD =f(A), where /(A) is 0 in a neighbourhood of 0 and A"1 in a neighbourhood
of cr(y4)\{0}; hence AD is defined by the matrix

0
0
0
0

0
" 2 1

0
0

0
0

0

0
0
0

EXAMPLE 8.3. Let X = P@P and let T = A@B, where A and B are defined in the
preceding two examples. Set U = A ©0 and V = 0©fl; then T, U, V E L(X) and

T = U + V, UV = VU = 0.

U has a simple pole at 0 and V is quasinilpotent in L(X).
The spectrum of T is a(T) = cr(A) U o-(B) = a(A). See [22, p. 289]. By Theorem 6.4,

T has an isolated spectral point at 0, which is an essential singularity. Also T has the
Drazin inverse TD but not the finite index Drazin inverse Td. We have

EXAMPLE 8.4. Let A be the Banach algebra C[0,1] of all continuous complex valued
functions on [0,1] equipped with the supremum norm. The zero element 0 has the Drazin
inverse 0D = 0. Every ball centred at 0 contains an element x(t) = et for a sufficiently small
e > 0. Since a(x) = x([0,1]) = [0, e], 0 g iso cr{a) and xD does not exist. This shows that
the set of all elements of a Banach algebra which possess a Drazin inverse is not
necessarily open in the algebra.
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