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HYPERBOLIC 3-MANIFOLDS AND
CLUSTER ALGEBRAS

KENTARO NAGAO, YUJI TERASHIMA

and MASAHITO YAMAZAKI

Abstract. We advocate the use of cluster algebras and their y-variables

in the study of hyperbolic 3-manifolds. We study hyperbolic structures on

the mapping tori of pseudo-Anosov mapping classes of punctured surfaces,

and show that cluster y-variables naturally give the solutions of the edge-

gluing conditions of ideal tetrahedra. We also comment on the completeness of

hyperbolic structures.

§0. Introduction

0.1 Cluster algebras

Cluster algebras were introduced by Fomin and Zelevinsky [FZ02] around

2000. Since then, many authors have uncovered beautiful connections

between the theory of cluster algebras and a wide range of mathematics

such as

• dual canonical bases and their relations with preprojective algebras and

quiver varieties [BFZ05], [Lec10], [Nak11a], [Kim12]

• total positivity [Fom10]

• (higher) Teichmüller theory and its quantization [FG06, FG07, FG09],

[Tes07, Tes]

• 2-dimensional hyperbolic geometry [GSV03], [FST08]

• cluster categories [Kel10], [Ami09], [Pla11]

• discrete integrable systems [Ked08], [KNS11]

• Donaldson–Thomas theory [KS], [Nag13]

• supersymmetric gauge theories [GMN], [CNV], [EF12].

The goal of this paper is to add yet another item to this list: the theory

of hyperbolic 3-manifolds. This paper is a companion to [TY14], which
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discusses the application of cluster algebras to the physics of 3d N = 2

supersymmetric gauge theories.

0.2 Hyperbolic 3-manifolds

A hyperbolic 3-manifold (with cusps) has a decomposition into ideal tetra-

hedra. This makes it possible for us to compute invariants of the 3-manifold,

such as the hyperbolic volume and the Chern–Simons invariant [NZ85,

Neu92].

An ideal tetrahedron is parametrized by a complex number called a

shape parameter. Given a topological decomposition of the 3-manifold into

ideal tetrahedra, we need to find shape parameters which satisfy edge-gluing

equations (§4.2) in order to obtain a hyperbolic structure on the 3-manifold.

Moreover, the cusp equations (§4.4) should hold for the complete hyperbolic

structure. In general, it is a rather nontrivial problem to systematically find

solutions of these equations.

In this paper, we study mapping tori Mϕ of mapping classes ϕ of a surface

Σ with punctures. We mainly discuss the case that the mapping torus admits

a hyperbolic structure.

The main results of this paper are summarized as follows:

• Solving the periodicity equation in Theorem 4.4 for cluster transforma-

tions, we get a solution of the edge-gluing equations of the mapping torus

Mϕ with an ideal triangulation induced by the cluster transformations.

• Shape parameters of tetrahedra are given by the cluster y-variables, where

the initial values of the y-variables are taken to be the solution of the

periodicity equation.

• The cusp condition is written as a simple condition on a product of the

initial values of the y-variables.

Remark 0.1. The complete hyperbolic structure gives a nonzero solu-

tion of the periodicity equation, thanks to the result of [KT15, Corollary

2.6].

Remark 0.2. This paper has grown up from our attempts to formulate

the results of [KN11] and [TY11, TY13] in mathematically rigorously.

In [TY11], the authors conjectured an equivalence of the partition func-

tion of a 3d N = 2 gauge theory on a duality wall and that of the SL(2, R)

Chern–Simons theory on a mapping torus. This is a 3d/3d counterpart of

the 4d/2d correspondence, known as the AGT relation [AGT10].

https://doi.org/10.1017/nmj.2017.39 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.39


HYPERBOLIC 3-MANIFOLDS AND CLUSTER ALGEBRAS 3

In [TY13], the authors demonstrated that a limit of the 3d N = 2 partition

function reproduces the hyperbolic volume of the mapping torus in the case

of the once-punctured torus by using quantum cluster transformations. The

key observation in [TY13] was that the shape parameters satisfying edge-

gluing equations (as previously analyzed in [Gué06]) appear at the saddle

point.

In [KN11], it was shown that classical dilogarithm identities [Nak11c]

naturally emerge from quantum dilogarithm identities [Kel11], [Nag11] by

the saddle-point method.

It will be interesting to learn from physics about the “quantum” aspects

of hyperbolic geometry of 3-manifolds.

Remark 0.3. There is a known relation between cluster transformations

and integrable systems [FZ03, Kel13, Nak11b, Ked08]. With this, our

theorem, which connects cluster transformations to 3-manifolds, gives a

natural explanation for mysterious and interesting relations between 3-

manifolds and conformal field theories/integrable systems, originally found

in [GT96, NRT93, DS94]. We illustrate this point by an example in the final

subsection (the corresponding 3-manifold is not hyperbolic).

The differences between the two setups, (a) integrable systems and (b)

hyperbolic 3-manifolds, can be stated in several different languages:

• We have periodicity conditions on the cluster y-variables both in (a) and

in (b). However, in (a), periodicity is imposed as identities of rational

functions on yi’s, whereas in (b) we solve the periodicity equations to

determine values of yi, which in turn determines the hyperbolic structure

of the mapping tori.

• In (a), the product of the quantum dilogarithms associated to the sequence

of mutations is equal to 1 (quantum dilogarithm identity [Kel11]). In (b),

the product gives a nontrivial action of the mapping class in the quantum

Teichmüller theory.

• In terms of surface triangulations and flips, after a sequence of flips, in (a)

we get the original triangulation (up to a permutation of vertices), while

in (b) we get the original triangulation pulled back by the mapping class.

• A mutation provides a derived equivalence of 3-dimensional Calabi–

Yau categories associated to quivers with potential [KY11]. In (a), the

composition of the derived equivalences is an identity functor, while in

(b) it gives the action of the mapping class on the derived category (see

[Nag]).
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Figure 1.

A loop (left) and an oriented 2-cycle (right) of a quiver.

• The derived equivalence induced by mutation corresponds to a wall

crossing in the space of stability conditions, and a sequence of mutations

gives a new chamber. In (a), the new chamber coincides with the original

one, while in (b) the chamber is obtained from the original one by the

action of the mapping class on the space of stability conditions. In other

words, the former is the wall crossing associated with a contractible cycle,

whereas the latter corresponds to a noncontractible cycle with nontrivial

monodromies (cf. [ADJM12]).

§1. Cluster algebras

1.1 Quiver mutation

In this paper, we always assume that a quiver has

• the vertex set I = {1, . . . , n}, and

• no loops and oriented 2-cycles (see Figure 1).

For vertices i and j ∈ I, we define

Q(i, j) = ]{arrows from i to j}, Q(i, j) =Q(i, j)−Q(j, i).

Note that the quiver Q is uniquely determined by the skew-symmetric

matrix Q(i, j) (or equivalently Q(i, j)) under the assumption above1.

For the vertex k, we define a new quiver µkQ (mutation of Q at vertex

k) by an antisymmetric matrix

µkQ(i, j) =

{
−Q(i, j), i= k or j = k,

Q(i, j) +Q(i, k)Q(k, j)−Q(j, k)Q(k, i), i, j 6= k.

1.2 Cluster variables

Given a sequence k = (k1, . . . , kl) of vertices and “time” parameters t=

0, . . . , l, we define

Q0 :=Q, Qt := µkt−1 · · · µk1Q (t > 0).

1In this paper, we restrict ourselves to cluster algebras associated with skew-symmetric
matrices.
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Figure 2.

We do not allow self-folded triangles as in this figure.

For initial values xi(0) = xi and yi(0) = yi, we define the cluster x-variables

xi(t) and the cluster y-variables (coefficients) yi(t) (i ∈ I) by

(1) xi(t+ 1) =

∏
j xj(t)

Qt(i,j) +
∏
j xj(t)

Qt(j,i)

xi(t)
,

and

(2) yi(t+ 1) =

{
yk(t)

−1, i= k,

yi(t)yk(t)
Qt(k,i)

(
1 + yk(t)

)Qt(i,k)
, i 6= k.

§2. Triangulated surfaces and quivers

Let Σ be a closed connected oriented surface and M be a finite set of

points on Σ, called punctures. We assume that M is nonempty and (Σ, M)

is not a sphere with less than four punctures.

We choose an ideal triangulation τ of Σ, i.e., we decompose Σ into

triangles whose vertices are located at the punctures. We will not allow

self-folded arcs (see Figure 2) in this paper.

2.1 Quiver associated to a triangulation

For a triangulation τ without self-folded arcs we will define a quiver Qτ
whose vertex set I is the set of arcs in τ .

For a triangle ∆ and arcs i and j, we define a skew-symmetric integer

matrix Q
∆

by

Q
∆

(i, j) :=


1 ∆ has sides i and j, with i following j

in the clockwise order,

−1 the same holds, but in the counter-clockwise order,

0 otherwise.

We define

Qτ :=
∑
∆∈τ

Q
∆
,
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where the sum is taken over all triangles in τ . Let Qτ denote the quiver

associated to the matrix Qτ .

For an arc i in the triangulation τ , we can flip the edge i to get a new

triangulation fi(τ). This operation is compatible with a mutation at vertex i:

Qfi(τ) = µi(Qτ ).

2.2 Mapping class group action

For a triangulation τ , we define

T = T (τ) := C(ye)e∈τ1 , T∨ = T∨(τ) := C(xe)e∈τ1 .

For a puncture m ∈M , take a sufficiently small circle around m and let

e1, . . . , en be the sequence of arcs which intersect with the circle, where

e1, . . . , en may have multiplicity. We define

ym :=
n∏
i=1

yei(3)

and

T = T (τ) := C[ye, y
−1
e ]e∈τ1

/
(ym)m∈M .

Let us fix a mapping class ϕ. Then the two triangulations τ and ϕ(τ) are

related by a sequence of flips, together with appropriate changes of labels.

More formally, there exists a sequence

k = (k1, . . . , kl) ∈ (τ1)l

such that the two triangulations τ and ϕ(τ) are related by the sequence of

flips associated to k (see [FST08, Proposition 3.8]). Note that a flip provides

a canonical bijection of the edges of the triangulations. We can represent

the composition of the bijections by a permutation σ ∈SI . We define the

automorphisms

CTϕ : T (τ) = T (ϕ(τ))
∼−→ T (τ), CT∨ϕ : T∨(τ) = T∨(ϕ(τ))

∼−→ T∨(τ)

by

CTϕ(ye) = yσ(e)(l), CT∨ϕ(xe) = xσ(e)(l).

Thanks to the result [FST08, Theorem 3.10] and the pentagon relation of

cluster transformations, CTϕ and CT∨ϕ are independent of the choices of the

sequences of flips and provides a well-defined action of the mapping class

group on T (τ).
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Figure 3.

A flip in a 2d triangulation can be traded for a 3d tetrahedron.

§3. Pseudo-Anosov mapping tori

Let τ , ϕ, k and σ be as in §2.2. We assume that no triangles are self-folded.

Let h= h(t) be the edge flipped at t and h′ be the edge after the flip. Let

a, b, c and d be the edges of the quadrilateral in the triangulations whose

diagonals are h and h′. We associate a topological tetrahedron ∆ = ∆(t)

whose edges are labeled by a, b, c, d, h and h′ (see Figure 3).

For any pseudo-Anosov mapping class ϕ, this provides a topological

tetrahedron decomposition of the mapping torus [Ago11]. A mapping class ϕ

is pseudo-Anosov if and only if the mapping torus has a hyperbolic structure.

§4. Equations for hyperbolic structure

4.1 Shape parameters

For an ideal tetrahedron in H3 with vertices 0, 1, z and∞ (Figure 4), we

associate the shape parameter z with the edge connecting 0 and ∞. For an

ideal tetrahedron, a pair of mutually nonintersecting edges has a common

shape parameter, and the shape parameters for the three pairs of mutually

nonintersecting edges are given by (Figure 5)

(4) z, 1− z−1,
1

1− z
.
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Figure 4.

An ideal tetrahedron with shape parameter z.

Figure 5.

The three shape parameters of an ideal tetrahedron.

We take a sequence of flips and associated topological decomposition of

the mapping torus as in §3. For t ∈ Z, let ∆(t) denote the tth tetrahedron,

where ∆(t) and ∆(t+ l) are identified for any t. Let Z(t) denote the shape

parameter of ∆(t) at the edge h(t), the edge flipped at time t. Note that
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the sequence (Z(t)) satisfies shape parameter periodicity

(5) Z(t+ l) = Z(t).

For a tetrahedron ∆, let ∆1 be the set of edges of ∆. We define

E :=
∐
t∈Z

∆(t)1.

Let Ẽ denote the set of all edges in the tetrahedron decomposition of Σ× R
and π : E→ Ẽ be the canonical surjection.

Given parameters (Z(t))t∈Z, we can define associated parameter Ze =

Ze(t) for any t ∈ Z and e ∈∆(t)1 as the shape parameter of ∆(t) on the

edge e, which is determined as in (4).

4.2 Edge-gluing conditions

Suppose that the shape parameters (Z(t))t∈Z give an ideal tetrahedron

decomposition2. This holds if and only if the following three conditions are

satisfied.

First, we need the shape parameter periodicity condition as already

discussed in (5). Second, we need

Im Z(t)> 0 for any t (positivity condition),

so that the tetrahedron is positively oriented. Third, for each edge g ∈ Ẽ,

the product of all the shape parameters associated to the elements in π−1(g)

must be 1 ([Thu79], see Figure 6):∏
ḡ∈π−1(g)

Zḡ = 1 (edge-gluing equation).

4.3 y-variables and gluing conditions

Proposition 4.1. Let e(t) ∈ τ(t)1 be the edge which we flip at t and

e′(t+ 1) ∈ τ(t+ 1)1 be the edge which appears after the flip. The edge-gluing

equation is satisfied for the shape parameters

(6) Z(t) :=−ye(t)(t)
(
=−ye′(t+1)(t+ 1)−1

)
.

2Here we do not require completeness. See §4.4 for complete hyperbolic structures.
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Figure 6.

The edge-gluing equation around an edge.

Figure 7.

An edge g in a tetrahedron decomposition appears at time t1 and disappears at

time t2.

Proof. Let g ∈ Ẽ be an edge which appears at the t1th flip at ḡ′ and

disappears at the t2th flip ḡ′′ (Figure 7). Let ḡ1 (resp. ḡ2) be the unique

element in ∆(t1)1 ∩ π−1(g) (resp. in ∆(t2)1 ∩ π−1(g)). The gluing equation
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associated with g is

1 =

t2∏
t=t1

∏
ḡ∈∆(t)1∩π−1(g)

Zḡ

= Z(t1)×

 t2−1∏
t=t1+1

∏
ḡ∈∆(t)1∩π−1(g)

Zḡ

× Z(t2).

For this equation, we will show

(7) Z(t1)×

 T∏
t=t1+1

∏
ḡ∈∆(t)1∩π−1(g)

Zḡ

=−yg0(T + 1)−1,

where g0 is the edge corresponding to g which τ(t) (t= t1 + 1, . . . , t2) have

in common. We show the equation above by induction with respect to T .

The claim for T = t1 trivially follows from the definition (6). Let us assume

the above statement for T → T − 1. To show the statement for T , we need

to show ∏
ḡ∈∆(t)1∩π−1(g)

Zḡ = yg0(t)/yg0(t+ 1).

We will show this by classifying the positional relation of g0 and e(t).

• g0 and e(t) have no triangle in common: both side of the equation above

is 1.

• g0 and e(t) have a single triangle in common:

– Qt(e(t), g0) = 1 (see Figure 8):

(LHS)
equation (4)

= 1− Z(t)−1 equation (2)
= (RHS),

– Qt(e(t), g0) =−1:

(LHS)
equation (4)

= (1− Z(t))−1 equation (2)
= (RHS),

• g0 and e(t) have two triangles in common:

– Qt(e(t), g0) =±2 (see Figure 9):

(LHS)
equation (4)

= (1− Z(t)∓)±2 equation (2)
= (RHS),

– Qt(e(t), g0) = 0: this cannot happen because we prohibit self-folded

edges in this paper (see Figure 10).
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Figure 8.

The case with Qt(e(t), g0) = 1.

Figure 9.

The case with Qt(e(t), g0) = 2.

4.4 Complete hyperbolic structures

Patching ideal tetrahedra with corners removed, we get a hyperbolic 3-

manifold with boundaries, each of which is isomorphic to a torus. Note

that such a boundary torus has two directions: the direction of “time”

parameter t (time direction) and the direction of the original surface (surface

direction)3.

The intersection of a removed corner and a boundary torus gives a triangle

on the torus with a shape parameter for each angle.

3We avoid to use the terms “longitude” and “meridian” to avoid a confusion.
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Figure 10.

The case with Qt(e(t), g0) = 0.

Figure 11.

A Dehn half-twist σ1 along a circle containing A and B.

Example 4.2. We take a five-punctured sphere. Let A, B, C, D, O be

the punctures and σ1 (resp. σ2 or σ3) be the Dehn half-twist along a circle

containing A and B (resp. B and C, or C and D) in the anticlock direction

(see Figure 11). Note that σ1, σ2 and σ3 generate the braid group B4. We

take

• σ1σ2σ
−1
3 as a mapping class;

• the triangulation as in Figure 13;

• 8, 9, 5, 7, 1, 8 as a sequence of edges which we flip4.

4Flipping at 8, 6 (resp. 6, 9, 5, 7 or 1, 8) corresponds to the half-twist σ1 (resp. σ2 or
σ−1
3 ). Canceling the doubled 6, we get the sequence above.
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Figure 12.

The link corresponding to σ1σ2σ
−1
3 .

Figure 13.

A triangulation of the five-punctured sphere.

The mapping torus is the complement of the two-component link in S2 × S1

(Figure 12), and hence we have two boundary components. We show the

triangulation of the universal cover of one of the components in Figure 14.

Fix a puncture m ∈M of the surface and a time parameter t0. Let Fi (i ∈
Z/nZ) be the triangle in τ(t0) which is adjacent to ei−1, m and ei, where

(e1, . . . , en) is the sequence of arcs around m as before.
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Figure 14.

The triangulation of the boundary torus. A triangle with number t represents

the tth tetrahedron ∆(t), whose modulus Z(t) corresponds to a dihedral angle

represented by a black dot.

On the boundary torus, ei represents a vertex and Fi represents an edge

connecting ei−1 and ei. The union of Fi’s provides a (piecewise linear) closed

curve on the boundary torus5. We call this a vertical line (see Figure 15).

The holonomy of along a cycle in the surface direction is given as follows.

A vertical line divides the boundary torus into two parts. We fix one of them.

For a vertex ei on the vertical line, we take all angles in the universal cover

which have ei as the vertex and which are on the given side of the vertical

line. We denote by Hi the product of the shape parameters associated to

these angles. Then we have

(the holonomy in the surface direction) =
∏
i

(−Hi).(8)

A hyperbolic structure given by a sequence of shape parameters is complete

if and only if the following condition holds:

5As a cycle, this represents the homology generator in the surface direction.
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Figure 15.

Vertical lines, drawn in the triangulation of Figure 14.

the holonomy along the surface direction of each boundary is trivial (cusp

condition, [NZ85]).

In Figure 7, we study the set of all tetrahedra which are adjacent to an

edge. In this setting, the vertical line divides the set of these tetrahedra into

two groups: tetrahedra which appear before/after t= t0. Hence we have

Hi = Z(t1)×

 t0−1∏
t=t1+1

∏
ēi∈∆(t)1∩π−1(ei)

Zēi

 .

By (7), the right hand side equals −yei(t0). Therefore the holonomy (8) is

equivalent with ym(t0) =
∏n
i=1 yei(t0) (recall (3)). We can show this product

is independent on the choice of t0, either by induction or by using the edge-

gluing conditions (vertical lines at different choices of t0 are homologous in

the triangulation of the boundary torus).

In summary, we get the following description of the holonomy:

Proposition 4.3. For a sequence of shape parameters determined by

the result of Proposition 4.1, the holonomy around a puncture m in the

surface direction is equal to ym.
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4.5 Main theorem

Let us summarize our results in the form of a theorem:

Theorem 4.4. Let (ye)e∈τ1 be nonzero complex numbers such that ym =

1 for any puncture m ∈M . Assume that yh(t)
∣∣∣
ye(0)=ye

is well defined for any

h and t and that the periodicity equation is satisfied

yσ(h) = yh(l)
∣∣∣
ye(0)=ye

.

Let us define the shape parameters Z(t) by

Z(t) :=−ye(t)(t)
∣∣∣
ye(0)=ye

,

where e(t) is the edge flipped at time t, and suppose that Z(t) 6= 0, 1 for

any t. Then (Z(t)) satisfies the edge-gluing equations in §4.2 and the cusp

condition in §4.4.

This theorem gives a systematic method to identify for hyperbolic

structures on mapping tori, formulated in the language of cluster algebras.

For a genuine hyperbolic structure we also need to verify Im(Z(t))> 0; see

the examples in the next section.

§5. Examples

In the last section, we demonstrate Theorem 4.4 in the case of a once-

punctured torus and of a five-punctured sphere. The examples are chosen

for the sake of simplicity, and the same methods apply to more general

mapping classes of more general punctured surfaces (recall Remark 0.1).

We also discuss an example of the six-punctured disc, to show that our

formulation covers the nonhyperbolic cases not covered in Theorem 4.4.

5.1 Once-punctured torus and LR

Let us start with a once-punctured torus. We take a sequence of two flips

as in Figure 16. This is the mapping class studied in [TY13, §3.1]. Then the

shape parameter periodicity conditions are

y1 = y−1
2

(
1 + y−1

1 (1 + y−1
2 )2

)−2
,

y2 = y3(1 + y2)2
(
1 + y1(1 + y−1

2 )−2
)2
,

y3 = y−1
1 (1 + y−1

2 )2,

https://doi.org/10.1017/nmj.2017.39 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.39


18 K. NAGAO, Y. TERASHIMA AND M. YAMAZAKI

Figure 16.

Example: once-punctured torus and LR.

and the cusp condition is

y1y2y3 = 1.

Solving these equations, we get a solution

y1 = 1, y2 =
−1−

√
−3

2
, y3 =

−1 +
√
−3

2
.

By Theorem 4.4, shape parameters

Z(0) = −y2(0) =−y2 =
1 +
√
−3

2
,
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Z(1) = −y1(1) =−y1(1 + y−1
2 )−2 =

1 +
√
−3

2
,

satisfy edge-gluing conditions. Moreover, the imaginary parts of Z(0) and

Z(1) are positive, and we obtain a complete hyperbolic structure on the

mapping torus. The parameters coincide with the ones in [TY13, §3.1].

5.2 Five-punctured sphere and σ1σ2σ
−1
3

Let us take the example of a five-punctured sphere in Example 4.2.

The cusp conditions are

y1y2y3y4y8y9 = y1y5 = y2y5y8y6 = y3y6y9y7 = y4y7 = 1,

and the shape parameter periodicity conditions are

y6 =
1

y1y5y28y9

(
(1 + y5 + y5y8) ((1 + y9 + y7y9)(1 + y9 + y8y9)

+ y5(1 + (1 + y7)(1 + y8)y9)(1 + (1 + y8 + y1y8)y9))
)
,

y1 = y2(1 + y5 + y5y8),

y2 =
y3y7y9(1 + y9 + y8y9 + y5(1 + y8)(1 + (1 + y8 + y1y8)y9))

(1 + y9 + y7y9)(1 + y9 + y8y9) + y5(1 + (1 + y7)(1 + y8)y9)(1 + (1 + y8 + y1y8)y9)
,

y9 =
y4(1 + (1 + y7)(1 + y8)y9)(1 + y9 + y8y9 + y5(1 + y8)(1 + (1 + y8 + y1y8)y9))

(1 + y5 + y5y8)(1 + y9 + y8y9)
,

y8 =
y1y8y9

1 + y9 + y8y9 + y5(1 + y8)(1 + (1 + y8 + y1y8)y9)
,

y5 =
y5y6y8

1 + y5 + y5y8
,

y4 =
(1 + y9 + y7y9)(1 + y9 + y8y9) + y5(1 + (1 + y7)(1 + y8)y9)(1 + (1 + y8 + y1y8)y9)

y7y8y9
,

y3 =
y8(1 + y9 + y8y9)

(1 + (1 + y7)(1 + y8)y9)(1 + y9 + y8y9 + y5(1 + y8)(1 + (1 + y8 + y1y8)y9))
,

y7 =
y1y5y7y8y9

(1 + y9 + y7y9)(1 + y9 + y8y9) + y5(1 + (1 + y7)(1 + y8)y9)(1 + (1 + y8 + y1y8)y9)
.

Solving the shape parameter periodicity conditions with cusp conditions,

we get 14 solutions. We take one of the solutions

y1 = 1.781241− 0.294452×
√
−1,

y2 = 1,

y3 = −0.304877 + 0.754529×
√
−1,

y4 = 0.460355 + 1.139318×
√
−1,
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y5 = 0.546473 + 0.0903361×
√
−1,

y6 = 1.155478 + 1.893847×
√
−1,

y7 = 0.304877− 0.754529×
√
−1,

y8 = 0.304877− 0.754529×
√
−1,

y9 = −0.14865− 0.664193×
√
−1.

Following the algorithm in Theorem 4.4, we get the following six parameters

0.754529×
√
−1− 0.304877,

0.754529×
√
−1 + 0.695123,

0.294452×
√
−1− 0.781241,

0.754529×
√
−1 + 0.695122,

0.475124×
√
−1 + 0.311704,

1.139320×
√
−1 + 0.460354,

whose imaginary parts are positive, which provide a complete hyperbolic

structure. The volume of the mapping torus computed from the parameters

above is6

4.851170.

This coincides with the value computed by SnapPea/SnapPy [CDW].

5.3 Nonhyperbolic example

Our formalism discussed in this paper applies to in general nonhyperbolic

3-manifolds which are themselves not covered in Theorem 4.4. To illustrate

this point, let us consider a disk with six points, and we consider the 1/6

rotation as a mapping class. The mapping class is realized as a sequence of

three flips as in Figure 17.

6The hyperbolic volume of an ideal tetrahedron with modulus z is given by the Bloch–
Wigner function

D(z) = Im(Li2(z)) + arg(1− z) log |z|,(9)

where Li2(z) =−
∫ z

0
(log(1− t)/t) dt is the Euler classical dilogarithm function. When a

3-manifold is triangulated by ideal tetrahedra, the hyperbolic volume of the 3-manifold is
the sum of the hyperbolic volumes of the tetrahedra.
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Figure 17.

A nonhyperbolic example, associated with the 1/6 rotation of the six-punctured

disc.

The periodicity conditions are

y1 = y1(3), y2 = y2(3), y3 = y3(3), y4 = y5(3), y5 = y6(3),

y6 = y7(3), y7 = y8(3), y8 = y9(3), y9 = y4(3).

Note that indices of edges in the boundary are rotated. The y-variables are

given by

y1(3) = y−1
1 (1 + y2)−1,

y2(3) = y−1
2 (1 + y1(1 + y2))(1 + y3(1 + y2)),

y3(3) = y−1
3 (1 + y2)−1,

y4(3) = y4(1 + y−1
1 (1 + y2)−1)−1,

y5(3) = y5(1 + y1(1 + y2)),

y6(3) = y6(1 + y−1
2 )−1(1 + y−1

1 (1 + y2)−1)−1,

y7(3) = y7(1 + y−1
3 (1 + y2)−1)−1,

y8(3) = y8(1 + y3(1 + y2)),

y9(3) = y9(1 + y−1
2 )−1(1 + y−1

3 (1 + y2)−1)−1.

A solution of the periodicity conditions is

y1 = 1
2 , y2 = 3, y3 = 1

2 , y4 =
√

3, y5 = 1√
3
,

y6 = 2√
3
, y7 =

√
3, y8 = 1√

3
, y9 = 2√

3
.

Shape parameters of three tetrahedra evaluated at the solution above are

Z(0) = −y2(0) =−y2 =−3,

https://doi.org/10.1017/nmj.2017.39 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.39


22 K. NAGAO, Y. TERASHIMA AND M. YAMAZAKI

Z(1) = −y1(1) =−y1(1 + y2) =−2,

Z(2) = −y3(2) =−y3(1 + y2) =−2.

Substituting shape parameters to the Rogers dilogarithm L(x), we have

(with Z(i)′′ = (1− Z(i))−1)

L(Z(0)′′) + L(Z(1)′′) + L(Z(2)′′) =
π2

6
,

which is the complexified volume of the 3-manifold. This is identified with

the central charge of ŝl(2) WZW model at the level 4 (see Remark 0.3).
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