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Physics of neutrinos

13.1 Neutrino masses

Neutrinos as elementary particles have remarkable properties. They have only weak
and gravitational interactions, which allows them to travel through matter making
very few interactions. They carry a global quantum number, known as lepton num-
ber, which can be broken without disturbing the conservation of electric charge.
The breaking of lepton number resides on the mass matrices which we introduce
in this section.

Their unique properties have led to several discoveries, the newest among them
being neutrino oscillations, which provide information on their mass differences
and mixing parameters. Neutrino oscillations also create new questions concerning
their properties, which are now under active investigation.

Masses for quarks and leptons were introduced in Chapters 8 and 9 through
Yukawa couplings to the Higgs doublet. The neutrino remained massless because
interactions of right-handed neutrinos had not been observed. This is a unique and
unfamiliar situation, because all other fermions have right-handed components. In
this chapter we shall describe the properties of neutrinos and introduce right-handed
neutrinos NR, which are singlets under SU(2)L. The representation content for the
electron family is

�L =
(

ν

e

)
L

, NR and eR, (13.1)

with eR,L = 1
2 (1 ± γ5)e. We should have written the right-handed state as νR; how-

ever, right-handed neutrinos will play later a special role (Majorana), so we decided
to denote them NR. There is an analogous classification of the leptonic states for
the muon and tau families.

A mass term of the form

mDν̄L NR + h.c. (13.2)
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13.1 Neutrino masses 137

is possible and is generated from the Yukawa coupling

Lν
Y =

∑
fll ′�̄

l
L�̂Nl ′

R + h.c., (13.3)

where � is the standard Higgs doublet and

�̂ = iτ2�
∗ =

(
�0

−�−

) −→
breaking

(
�0 + v

0

)
. (13.4)

We call this the Dirac mass term. The discussion so far is similar to that of quarks
and charged leptons. However, the observed extreme smallness of neutrino masses
seems to require a special treatment. It is possible to introduce another term, known
as the Majorana mass term, which brings special properties and is a candidate for
explaining the small masses.

Before we proceed with new properties of the neutrinos, it is instructive to point
out which spinors correspond to the above states. The identification is helpful when
we proceed with calculations. The Dirac equation has four solutions: two solutions
with E > 0 and two with E < 0, which describe particle and antiparticle states to
be denoted by u and v, respectively. We follow standard textbook notation with

ψ1,2 = ui e
−ip·x and ψ3,4 = vi e

ip·x for i = 1, 2, (13.5)

where, for particles moving in the z-direction, the four spinors are

u1 =
√

E + m

2m

⎛
⎜⎜⎜⎝

1
0
pz

E + m
0

⎞
⎟⎟⎟⎠, u2 =

√
E + m

2m

⎛
⎜⎜⎜⎜⎝

0
1
0

−pz

E + m

⎞
⎟⎟⎟⎟⎠,

v1 =
√

E + m

2m

⎛
⎜⎜⎜⎝

pz

E + m
0
1
0

⎞
⎟⎟⎟⎠, v2 =

√
E + m

2m

⎛
⎜⎜⎜⎜⎝

0
−pz

E + m
0
1

⎞
⎟⎟⎟⎟⎠.

(13.6)

The normalization of the spinors is as follows: ui u j = δi j and viv j = −δi j .
For massless neutrinos the spinors are eigenfunctions of the operator γ5 and we

define the spinor for the neutrino as

ν =
(

1 − γ5

2

)
u2 (13.7)

and the spinor for the antineutrino as

ν̄ =
(

1 + γ5

2

)
v1. (13.8)
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138 Physics of neutrinos

In this limit we speak of left-handed neutrinos and right-handed antineutrinos. We
also notice that in the limit pz � m there are only two independent spinors.

For massive particles the situation is different. Considering the Hamiltonian of
a free Dirac particle,

H = c �α · �p + βmc2, (13.9)

where β �α = γi and β = γ0, we notice that γ5 does not commute with the Hamil-
tonian since [γ5, γ0] �= 0. Thus, for massive neutrinos, γ5 is not a good quantum
number; i.e. the spinors are not eigenstates of the γ5 operator. For the massive case
we introduce another operator, the helicity

h = 1

2

�p · �s
| �p| = 1

2
p̂i

(
σ i 0
0 σ i

)
. (13.10)

It is easy to verify that the spinors u1 und v1 are eigenfunctions with helicity 1
2 .

Similarly, u2 und v2 are eigenfunctions of the helicity operator with eigenvalues
− 1

2 . In a given Lorentz frame, helicity in a reaction is conserved. However, the
helicity of a massive particle depends on the frame, because, by moving very fast,
we can reverse the momentum of a particle, leaving its spin unchanged.

A new mass term of the form

1

2
Mm N̄ c

R NR + h.c. (13.11)

is allowed to be present, since it is Lorentz- and SU(2)L-invariant. This is known
as a Majorana mass term and is unique to neutrinos, which are neutral particles. A
Majorana mass term conserves electric charge but changes the lepton number by
two units. It may be introduced to the Langrangian as an additional term or as a
new interaction term, coupled to a new scalar particle which is an SU(2)L singlet.
A Majorana mass is generated by assigning to the new scalar particle a vacuum
expectation value. Consequently, we generate Dirac mass terms through Eq. (13.3)
and a Majorana term through Eq. (13.11). On collecting these terms together, one
obtains the neutrino mass matrix:

(
ν̄L N̄ c

R

)( 0 mD

mT
D Mm

)(
νL

NR

)
. (13.12)

Once we have introduced mass terms that do not preserve the original symmetry,
we must solve the problem again using the Lagrangian. This means that, after
introducing Dirac and/or Majorana mass terms, we should solve the problem using
the rules of the new Lagrangian (see Problem 13.3). For our specific case, we can no
longer use the eigenfunctions of Eq. (13.6). We must diagonalize the mass matrix
and use the new mass eigenstates (physical states) which will have components
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13.2 Neutrino oscillations 139

that couple the various flavors with each other and, in addition, couple particles to
antiparticles (when Majorana mass terms are present).

For Mm � mD the mass matrix of the form given in Eq. (13.12) has eigenvalues
with specific properties: one eigenvalue is large and the other is suppressed. This
method of introducing masses for neutrinos is known as the see-saw mechanism,
to which we shall return in the fourth section. In the meantime we shall discuss
neutrino oscillations in free space and in matter, which are active fields of research
nowadays.

13.2 Neutrino oscillations

The couplings of Dirac neutrinos to charged and neutral currents conserve the
lepton number, as has been tested in many experiments. Lepton flavor can be
violated in the mass matrix, with the appearance of off-diagonal elements. In this
case the eigenfunctions of the Hamiltonian are superpositions of neutrinos with
various flavor numbers. We shall call them the mass eigenstates and they have the
time development given below in Eq. (13.14). In a physical reaction, however, the
neutrinos that are produced have definite flavor number. Their time development
requires special attention because we must rewrite the flavor states in terms of mass
eigenstates, whose time development is that given in Eq. (13.14). This mis-match
between the production of flavor states and the time development of mass states
leads to an oscillation of lepton quantum numbers that will be described below.

We demonstrate the mixing phenomenon for two generations of neutrinos, for
which the algebra is simpler. We consider νe and νµ neutrinos with the mass matrix

i
∂

∂t

(
νe

νµ

)
= Hmass

(
νe

νµ

)
, with Hmass =

(
mee meµ

mµe mµµ

)
. (13.13)

The mass matrix mixes electron and muon neutrinos in a manner analogous to
atomic physics, where energy levels are mixed through the interactions with external
fields, such as magnetic fields. For the sake of simplicity, we assume that the
matrix elements are real and in addition that mµe = meµ. A symmetric matrix is
diagonalized by an orthogonal matrix to be denoted by O and has the eigenvalues
m1 and m2. A mass eigenstate with momentum p has the time development

|νi (t)〉 = |νi (0)〉e−iEi t , (13.14)

with i = 1 or 2 and Ei =
√

p2 + m2
i . To avoid confusion, we shall use two types of

subscripts, with numbers denoting physical eigenstates and letters denoting flavor
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140 Physics of neutrinos

states. Let us parametrize the orthogonal matrix as follows:

O =
(

cos θ sin θ

−sin θ cos θ

)
;

then the mass eigenstates are given by(
ν1(t)
ν2(t)

)
=

(
cos θ −sin θ

sin θ cos θ

)(
νe(t)
νµ(t)

)
. (13.15)

We can easily invert this equation to obtain(
νe(t)
νµ(t)

)
=

(
cos θ sin θ

−sin θ cos θ

)(
ν1(t)
ν2(t)

)
, (13.16)

which, with the help of Eq. (13.14), can be rewritten as

|νe(t)〉 = e−iE1t |ν1(0)〉cos θ + e−iE2t |ν2(0)〉sin θ,

|νµ(t)〉 = −e−iE1t |ν1(0)〉sin θ + e−iE2t |ν2(0)〉cos θ. (13.17)

The general structure of these equations is summarized by

|να(t)〉 =
∑

k=1,2

Uαke−iEk t |νk(0)〉,

with the unitary matrix Uαk defining the mixing between flavor and mass states.
The mixing matrix was introduced a long time ago and is referred to as the MNS
matrix (Maki et al., 1962).

On replacing ν1(0) and ν2(0) by the flavor eigenstates given in Eq. (13.15), we
obtain the final result

|νe(t)〉 = (cos2θ e−iE1t + sin2θ e−iE2t )|νe(0)〉
+ sin θ cos θ (e−iE2t − e−iE1t )|νµ(0)〉,

(13.18)|νµ(t)〉 = sin θ cos θ (e−iE2t − e−iE1t )|νe(0)〉
+ (cos2θ e−iE1t + sin2θ e−iE2t )|νµ(0)〉.

This shows explicitly that the flavor content of the wave function changes with
time. For example, at t = 0 the first equation contains only an electron neutrino.
In the course of time a νµ component develops. The second equation describes a
state which starts as νµ(0).

We consider a state that starts as νe(0) and compute the probability of finding a
νe(t). The masses of the neutrinos are small relative to their momenta and one can
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13.2 Neutrino oscillations 141

use the approximation Ei =
√

p2 + m2
i ≈ E[1 + m2

i /(2E2)] to arrive at

Pee(t) = |〈νe|νe(t)〉|2 = 1 − sin2(2θ )sin2

(

m2

4E
t

)
, (13.19)

with 
m2 = m2
2 − m2

1. Similarly, we compute the probability of finding a νµ at
time t ,

Pµe(t) = |〈νµ|νe(t)〉|2 = sin2(2θ )sin2

(

m2

4E
t

)
. (13.20)

The sum of the two probabilities is equal to unity. A mono-energetic neutrino
beam thus oscillates with amplitude sin2(2θ ) and wave-number 
m2/(4E). For
oscillations to occur, we need a non-zero θ and at least one non-zero mass. The
amplitude is maximal for θ = π/4.

In vacuum-oscillation experiments there is a redundancy in the values of the
mixing angle. The same numerical value of sin2(2θ ) appears eight times when θ

varies between zero and 2π. This means that in oscillation experiments it suffices to
consider angles in the interval between zero and π/4. In other situations for which
the mixing depends on cos(2θ ) the range for the mixing angle must be extended
from 0 to π/2, as we shall discuss at the end of the next section.

We can express the various quantities in useful units and substitute t 
 L , where
the speed of light c is set equal to unity,


m2 L

4E
= 1.27

L

km


m2

eV2

GeV

E
. (13.21)

This entity is a dimensionless quantity and we are free to use the units. The units
in Eq. (13.21) are now standard and convenient for terrestrial experiments. This
formula defines the sensitivity of an experiment, since oscillations occur when

m2L/E is of order unity. As a function of the baseline length, the maximum of
the oscillation occurs at L 
 2E/
m2.

The generalization to three or more families is straightforward and leads to the
transition probability

|〈νβ|να(t)〉|2 = δαβ − 2 Re

{∑
j>i

UαiU
∗
α jU

∗
βiUβ j

[
1 − exp

(
−i


m2
i j

2E
L

)]}
.

(13.22)

For two neutrino families, Uαi is a simple 2 × 2 orthogonal matrix. Upon substi-
tution the probabilities simplify to Eqs. (13.19) and (13.20). For three families a
hierarchy of the form 
m2

12 � 
m2
13 
 
m2

23 and the smallness of one mixing-
matrix element (Ue3) describes all existing experiments.
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142 Physics of neutrinos

Finally, we present a simple description of what happens in oscillations. A |να〉
is composed of various waves with different mi . At a given energy the heavier mass
states oscillate faster and the various |νi 〉 components come out of phase, so at a
certain distance they do not sum up to a |να〉. Since the oscillatory term comes from
an interference between the different mi , a common phase factor of the |νi 〉s plays
no role and can be ignored. This will be useful in the next section, when we turn to
oscillation in matter.

13.2.1 Oscillation in matter

The neutral-current interaction of neutrinos with matter is extremely weak, but
can nonetheless affect oscillations (Wolfenstein, 1978). The reason is that the mo-
mentum transfer to the target can have a large wavelength, such that the neutrino
interacts coherently with all the particles within its wavelength. At the same time
the difference E1 − E2 
 
m2

12/(2E) may correspond to a wavelength of the same
magnitude, so the time development of the mass eigenstates is influenced by the in-
teractions with the medium. In the medium the flavor eigenstates νe and νµ interact
with electrons and protons with different cross sections and modify the development
of the mass eigenstates.

The Hamiltonian on the mass basis is given by

i
∂�i

∂t
= H0�i = Ei�i 
 p

(
1 + m2

i

2p2

)
�i → m2

i

2E
�i , (13.23)

where after the arrow we omitted the term proportional to the unit matrix. This
term does not influence the oscillations because it can be eliminated by the trans-
formation νi → νi e−ipt common for all neutrinos. For this reason we can simplify
the Hamiltonian,

H0� = H0

(
ν1

ν2

)
= 1

2E

(
m2

1 0
0 m2

2

)(
ν1

ν2

)
. (13.24)

The interactions with matter, however, involve flavor states. For this reason
we transform the equations to the flavor basis where we include the interactions
with matter. The solution of the new eigenvalue problem describes the propagating
eigenfunctions. In the flavor basis

Hflavor ≡ 1

2E
U

(
m2

1 0
0 m2

2

)
U † = 1

4E

(
� − 
m2 cos(2θ ) 
m2 sin(2θ )


m2 sin(2θ ) � + 
m2 cos(2θ )

)
,

(13.25)

where � = m2
1 + m2

2, 
m2 = m2
1 − m2

2, and U is the mixing matrix in Eq. (13.16).
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In a medium there is an additional interaction Hamiltonian created by the neutral
and charged currents. Recall the interaction term from Chapter 8,

Hint = GF√
2

ψ̄ xγµ

(
gx

V − gx
Aγ5

)
ψx ψ̄νeγ

µ(1 − γ5)ψνe . (13.26)

Here x denotes weakly interacting particles in the medium, which in the Sun are
electrons, neutrons, and protons. For left-handed neutrinos (1 − γ5)ψν = 2ψν. The
term 〈ψ̄ xγµγ5ψx〉 reduces in the non-relativistic limit to the expectation value for
the spin operator. In an unpolarized medium, the states ψx occupy all possible spin
states and this term averages to zero. For the remaining term 〈ψ̄ xγµψx〉 the space
components are proportional to the momentum of the particles, which is small.
Consequently only the term 〈ψ̄ xγ0ψx〉 = nx survives and is equal to the density
of the particles nx . This term produces the potential gx

V

√
2GFnxψ

†
νeψνe which is

added to the Hamiltonian. Finally, we obtain the Schrödinger equation from the
Euler–Lagrange equation for ψ

†
νe .

We already know the couplings of neutrinos to electrons from Section 8.3, where
they are summarized in Table 8.1. The couplings to nucleons are obtained in a similar
way:

ge
V = 1

2 + 2 sin2θW for νe,

ge
V = − 1

2 + 2 sin2θW for νµ,
(13.27)

gp
V = 1

2 − 2 sin2θW for να,

gn
V = − 1

2 for να,

with α being either the electron neutrino or the muon neutrino. The difference
of 1 in the ge

V contribution between νe and νµ comes from the Fierz-transformed
charged-current term in the Hamiltonian. In an electrically neutral medium ne = np,
therefore

V =
√

2GF ×
{− 1

2 nn + ne for νe,

− 1
2 nn for νµ.

(13.28)

The new contribution from the scattering with matter must be added to the ee and
µµ elements of Hflavor, yielding a propagation equation

i
d

dt

(
νe

νµ

)
= 1

2E

(
m2

ee + 2
√

2EGFne m2
eµ

m2
eµ m2

µµ

)(
νe

νµ

)
, (13.29)
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with matrix elements

m2
ee = − 1

2 
m2 cos(2θ ),

m2
µµ = 1

2 
m2 cos(2θ ), (13.30)

m2
eµ = 1

2 
m2 sin(2θ ).

One sees that effects of matter become more important at higher energy. Note
that we ignored terms proportional to the unit matrix. Apart from the aforemen-
tioned fact that they can be transformed away, there is another justification: after
diagonalization the mixing angle and the difference between the eigenvalues are
independent of equal diagonal terms (see Problem 13.1). Exactly such terms ap-
pear in the formula (13.30) for the oscillation probability and have been omitted.
Diagonalization of the matrix gives the mass difference

m2
2M − m2

1M = 
m2
M = 
m2

√
[A − cos(2θ )]2 + sin2(2θ ), (13.31)

where

A ≡ 2
√

2EGFne


m2
,

and the mixing angle (Wolfenstein, 1978; Mikheyev and Smirnov, 1985)

tan(2θM) = sin(2θ )

cos(2θ ) − A
⇒ sin2(2θM) = sin2(2θ )

[cos(2θ ) − A]2 + sin2(2θ )
. (13.32)

In the limit ne → 0, we recover the formulas for oscillation in vacuum. The careful
reader will notice that there is a resonance effect when A = cos(2θ ) (Mikheyev and
Smirnov, 1985). For this value of A the mixing in the medium is maximal, even
though the mixing in the vacuum can be very small.

The angle θM expresses the matter eigenstates in terms of the flavor states(
ν1M

ν2M

)
=

(
cos θM −sin θM

sin θM cos θM

)(
νe

νµ

)
. (13.33)

We discuss two cases realized in the Sun. We know that electron-type neutrinos
are created in the interior of the Sun, where ne is very large. In that region

tan(2θM) 
 −2θ

A
and θM 
 π

2
, (13.34)

since tan(2θM) approaches zero from negative values. Equation (13.33) now gives
ν1M 
 −νµ and ν2M 
 νe, i.e. in the interior of the Sun the state with the heavier
effective mass is the electron neutrino. As the beam transverses the Sun, ne decreases
and tan(2θM) 
 tan(2θ ), therefore θM 
 θ and ν2M 
 νµ. The flavor content of the
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beam changes. This phenomenon is called the MSW effect. It will be interesting
to measure in terrestrial experiments the lepton-number content of the neutrinos
arriving from the Sun.

Next we discuss terrestrial experiments with a νµ beam going through the Earth.
This situation can be realized in long-baseline accelerator experiments or via at-
mospheric neutrinos. We assume that the νµ oscillates into another flavor state, as
reported from the Superkamiokande experiment. Two cases are of interest.

Case 1

The νµ mixes with the ντ. The interaction with matter proceeds with the exchange
of a Z0 boson and is identical for µ and τ neutrinos. It will thus add the same term to
the diagonal elements of Hflavor, which does not affect the oscillation. This means
that no effects of matter appear.

Case 2

The νµ mixes with a sterile neutrino νs. The interaction with matter in the transition
νµ → νµ proceeds through the exchange of a Z0 boson, but there is no such process
for the νs. We must add an interaction with matter only in the µµ element and the
propagation Hamiltonian has the form

Hflavor = 1

2E

(
m2

µµ − √
2EGFnn m2

µs

m2
µs m2

ss

)
. (13.35)

The notation is analogous to that in Eq. (13.30) with mass elements m2
µµ, m2

µs,
and m2

ss similar to those in Eq. (13.30). The angle θ now governs the oscillation
between νµ and νs. We note that the sign of the matter term is reversed and the
neutron density nn replaces the density of electrons.

Finally, Eqs. (13.31) and (13.32) depend on cos(2θ ) and the range 0 ≤ θ ≤ π/4
does not cover negative values of cos(2θ ). The range must now be extended to
0 ≤ θ ≤ π/2.

13.3 Experimental results

There has been a long search for neutrino oscillations. The experiments were
carried out with neutrino beams from nuclear reactors, the Sun, and accelerators,
and recently with atmospheric neutrinos. In recent years several experiments have
provided evidence for neutrino oscillation. We will not discuss the experiments in
detail but only summarize the main results. For an overview of the current status,
see Mohapatra et al. (2005).
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� Atmospheric neutrinos Compelling evidence for oscillation comes from experiments
with atmospheric neutrinos. They are produced in the atmosphere by meson decays,
which in turn are produced by the interaction of cosmic rays with nuclei of the atmos-
phere. Both electron and muon neutrinos are produced in pion and muon decays and the
ratio at production is roughly two muon neutrinos to one electron neutrino. Neutrino in-
teractions are detected in a huge underground target/detector – the Superkamiokande.
The experiment established that there is a decrease in the number of muon-type neutrinos
and no decrease in number of electron neutrinos. This implies that the νµ neutrinos
oscillate into another type, such as τ or sterile (see below) neutrinos. A zenith-angle
dependence of the disappearance is observed, whereby more of the neutrinos coming from
underneath the detector disappear. They are produced in the atmosphere and travel through
the Earth in order to reach the detector. These observations require a mass difference of

m2 
 2 × 10−3 eV2 and the mixing angle to be maximal.

� Solar neutrinos Nuclear reactions in the Sun produce a tremendous amount of heat,
which is radiated and at the same time produces electron neutrinos. The cycles which
produce them have been studied and the neutrino spectra have been calculated. For three
decades experiments measuring the flux of neutrinos from the Sun have observed deficits,
indicating that νe neutrinos, during their journey from Sun to Earth, oscillate into other
types of neutrinos. Previous experiments trying to verify this result with reactor neutri-
nos failed to find a deficit, indicating that the distance of 1 km from the reactors is too
small. The explanation of the solar deficit requires that it is either oscillation in vacuum
with a large mixing angle and 
m2 
 10−10 eV2 or oscillations inside the Sun where
effects of matter according to the MSW effect are important. The latter possibility gives
two solutions with either large mixing (LAMSW) or small mixing (SAMSW) and with

m2 
 8 × 10−5 eV2.

� Reactor experiments Reactor experiments search for a decrease of the antineutrino flux
far away from the reactor. The CHOOZ collaboration detected ν̄e at a distance of 1
km away but saw no deficit. These data restrict the mixing angle θ13, as we will discuss
below. The experiment KamLAND measured the flux of ν̄e neutrinos from distant nuclear
reactors. The experiment uses a target containing 1000 tons of liquid scintillator viewed
by more than 1800 light-detecting photomultiplier tubes. It detects electron antineutrinos
emitted by ∼70 nuclear reactors in Japan and South Korea arriving from an average
distance of 180 km. The ratio of the observed antineutrino interactions to the expected
number without disappearance of ν̄e is 0.611 ± 0.085 (statistical uncertainty) ± 0.041
(systematic uncertainty) for ν̄e energies >3.4 MeV. In the two-flavor analysis only the
“large-mixing-angle” solution is allowed. The best fit of their data gives 
m2

12 = 6.9 ×
10−5 eV2 and sin2(2θ ) = 1.0, which selects the large-mixing-angle solution.

� The Sudbury experiment The Sudbury Neutrino Observatory (SNO) detects 8B solar
neutrinos through the reactions

νe + d → p + p + e−,

νx + d → p + n + νx ,

νx + e− → νx + e−,
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where the subscript x denotes any type of flavor. Only electron neutrinos produce charged-
current interactions, while the neutral-current (NC) interactions and elastic scattering are
sensitive to all types of flavors. The NC reaction measures the total flux of all active
neutrino flavors produced in the Sun with energy above the threshold of 2.2 MeV. This
provides a measurement of the solar neutrino flux as

5.21 ± 0.27 (statistical uncertainty) ± 0.38 (systematic uncertainty) × 106 cm−2 s−1,

which is in agreement with the standard solar models. A global analysis of these and other
solar- and reactor-neutrino results yields 
m2 = 7.1 +1.2

−0.6 × 10−5 eV2 and θ = 32.5 +2.4
−2.3

degrees.
� Accelerator neutrinos The LSND experiment has found an electron-antineutrino excess

in a muon-antineutrino beam. The solution would be small mixing and a mass-squared
difference of 0.1–1 eV2. However, the very similar KARMEN experiment has found no
such effect, but it cannot rule out LSND’s complete parameter space. The LSND results are
referred to as the LSND anomaly because the large mass difference cannot be reconciled
with the three-family model. The MiniBoone experiment at Fermilab is currently running
with the aim of checking the LSND result.

� Long-base-line experiments There are several experiments that will use two detectors,
one close to the accelerator, where the neutrino beam is produced, and a second detector
at a distance of 200–400 km. The nearby detector will be used for calibration reasons to
determine the beam and properties of the neutrino reactions. The faraway detector will
be looking at the changes that take place because muon neutrinos oscillate to neutrinos
of another flavor. A small-scale experiment, K2K, operated in Japan and two others are
under construction, MINOS in the USA and OPERA in Europe.

For three flavors of neutrinos there are only two independent 
m2. If the result
from the LSND experiment is correct, then there must be a fourth flavor, which has
to be “sterile,” i.e. it does not couple to the gauge bosons and therefore does not
contribute to the Z0 width. The results of the other experiments are summarized as
follows:

(
m2 (eV2), sin2θ ) 

{

(2 × 10−3, 
0.5), atmospheric,

(7 × 10−5, 
0.3) LAMSW, solar, KamLAND.
(13.36)

We can now estimate the magnitude of the leptonic MNS matrix. Let us ignore
the LSND result and assume that there are two mass-squared differences govern-
ing the atmospheric and solar oscillation. They obey 
m2

� � 
m2
A. If we iden-

tify 
m2
21 = 
m2

� � 
m2
A = 
m2

31 
 
m2
32, then we have, for a short-baseline

reactor experiment such as CHOOZ (see Problem 2),

PCHOOZ
ee = 1 − 4|Ue3|2(1 − |Ue3|2)sin2
31, (13.37)
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where 
i j = 
m2
i j L/(4E) and L is the distance for the CHOOZ experiment. The

absence of disappearance of neutrinos in the experiment means that |Ue3| is either
small or close to unity. The probability for solar neutrinos is (Bilenky, 2003)

P�
ee = (1 − |Ue3|2)2

(
1 − 4

|Ue1|2|Ue2|2
(1 − |Ue3|2)2

sin2
21

)
+ |Ue3|4. (13.38)

Experimentally, P�
ee is significantly less than unity and also energy-dependent. On

combining the results of the CHOOZ experiment with the solar deficit, we conclude
that |Ue3|2 � 1. Finally, atmospheric neutrinos oscillate with

PA
µτ = 4|Uµ3|2|Uτ3|2 sin2
31. (13.39)

Note that oscillations of reactor and atmospheric neutrinos are triggered by the same

m2. If for the latter we use 
m2 = 3 × 10−3 eV2, CHOOZ gives |Ue3|2 <∼ 0.05.
As a first approximation we can assume |Ue3| 
 0, maximal atmospheric mixing,
and the LAMSW solution for solar mixing. With these results, we can approximate
the MNS matrix by

Uαi 

⎛
⎝ c s 0

−s/2 c/2 1/
√

2
s/2 −c/2 1/

√
2

⎞
⎠LAMSW, (13.40)

where c = cos θ , s = sin θ , and s2 
 0.3. Note that there can be a phase in the
matrix, resulting in CP violation as in the quark sector. However, for Ue3 = 0 the
theory is effectively a two-flavor theory. Only for a non-vanishing Ue3 element
could one establish CP violation in long-baseline experiments.

If neutrinos are Majorana particles (see below), then there are two additional
phases in the mixing matrix. They can be shown to have no influence on oscillation
physics and reveal their presence only in neutrinoless double beta decay, which we
will discuss below.

13.4 Majorana neutrinos

The results of the last section give strong evidence in favor of massive neutrinos.
The oscillations indicate that in the leptonic sector flavor number is not conserved,
i.e. muon neutrinos can become tau neutrinos, etc. This is a change from one
family to the next. So far there has been no discussion of a particle changing into
its antiparticle. The mixing among the families is produced when we introduce a
mass term of the form

LD =
∑
i, j

mi j
Dψ iψ j + h.c., (13.41)
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with i and j running over the families. For the electroweak theory, special attention
is required because the states are classified according to helicities – with left-handed
particles in doublets and right-handed particles in singlets of weak SU(2). The mass
term is now

LD =
∑
i, j

mi j
D ψ̄LiψR j + h.c. (13.42)

It is known as the Dirac mass term and is produced by the Higgs mechanism, as
described at the beginning of this chapter.

There is also the possibility of introducing new mass terms,

1

2
MR N̄ c

R NR and
1

2
MLν̄c

LνL (13.43)

and their Hermitian conjugates, which are called Majorana mass terms. Obviously,
Majorana mass terms can include mixing among the generations by introducing
indices i and j, as in Eq. (13.42). They also mix neutrinos with antineutrinos. The
new terms are Lorentz-invariant, and they carry lepton number two, thus introducing
violation of the lepton number. Again, special attention must be paid to the peculiar
property of the electroweak theory which classifies the states according to helicities.
This introduces special requirements on the terms which are allowed. For instance,
the Lorentz structure gives the identities N̄ R NR = ν̄LνL = 0 and N̄ Rνc

L = ν̄L N c
R =

0. A Majorana state is defined as one with equal components of particles and
antiparticles. It follows from the above identities that

(
N̄ c

R + N̄ R
)(

N c
R + NR

) = N̄ c
R NR + N̄ R N c

R,

which indicates that the mass terms introduced do indeed correspond to Majorana
particles.

Similarly, specific terms are permitted by the SU(2) symmetry. We can introduce
the term MR N̄ c

R NR, since it is Lorentz-invariant and SU(2) singlet. We cannot
introduce the term MLν̄c

LνL, because it is the direct product of a doublet with a
doublet, which decomposes into an SU(2) singlet plus a triplet. Their product with
the Higgs doublet cannot produce a singlet. Similarly, their product with a singlet
produces a singlet and a triplet. SU(2) symmetry dictates that ML = 0, unless we
introduce triplet representations of Higgses. The possible mass terms are a Dirac
mass term as in Eq. (13.42) and, in addition, a Majorana term appearing as the first
term in Eq. (13.43). We sum up these terms in a matrix notation:

Lmass =
(
ν̄L N̄ c

R

)( 0 mD

mD MR

)(
νc

L

NR

)
+ h.c. (13.44)
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We can diagonalize this mass matrix with an orthogonal transformation. The eigen-
values are

λ1,2 = 1

2

(
MR ±

√
M2

R + 4m2
D

)
, (13.45)

which for mD/MR � 1 become

λ1 = − m2
D

MR
and λ2 = MR + m2

D

MR
. (13.46)

The case we studied is called the seesaw mechanism (Gell-Mann et al., 1979;
Yanagida, 1979; Minkowski, 1977) because when one mass is large the other is
small. Now, since the neutrino masses are very small relative to lepton and quark
masses, for instance mν ≈ 10−2 eV, the seesaw mechanism supplies an explanation
provided that the Majorana mass, MR, is large.

The corresponding wave functions, omitting a normalization constant, are

ψ1 = νL + m

MR
N c

R,

(13.47)
ψ2 = − m

M
νc

L + NR,

indicating that ψ1 consists primarily of the normal neutrino with a small admixture
of N c

R. The other state ψ2 is the heavy state with a large component NR and a small
admixture of νc

L.

Identifying νL or ψ1 with the standard-model neutrinos explains their lightness by
introducing a heavy scale. It follows a hierarchical mass scheme for the neutrinos.
Neutrino masses mν 
 10−2 eV require mR 
 1016 GeV for a Dirac scale of 1 GeV.
This is a typical scale of grand unified theories, which is one of the reasons why
seesaw models are very popular.

13.5 Neutrinoless double beta decay

Much effort has been devoted to discovering the nature of the neutrino. The
experimental results on oscillations are independent of the Majorana character
of the neutrinos. They observe oscillation of flavors. Experiments also search for
evidence of Majorana neutrinos. A reaction that is conceptually simple concerns
the conversion

νe + N → e+ + hadrons,

which has, unfortunately, a very small cross section. Theoretical estimates indicate
that the rate for a neutrino with an energy of 1 GeV is 10−18–10−22 times smaller
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nuclear
physics

(A,Z) (A,Z + 2)

W W

e−
νi

e−

Figure 13.1. Neutrinoless double beta decay.

than the normal charged-current cross section. Experiments with neutrino beams
are far away from these limits.

A favorable reaction is

2n → 2p + (e−e−),

which is known as neutrinoless double beta decay and is indicated as 0νββ. The
process is shown in Fig. 13.1 where a nucleus with Z protons and A − Z neutrons
emits two W− bosons and decays into a nucleus with Z + 2 protons and A − Z −
2 neutrons. The two W− bosons interact with each other and convert into two
electrons. The lepton propagator is a Majorana neutrino containing both particles
and antiparticles. The amplitude for the process contains the leptonic tensor

Lαβ(0νββ) ∝ U 2
ei ēγαγ−

/p + mi

p2 − m2
i

γβγ+e = U 2
ei mi

1

p2
ēγαγ−γβe, (13.48)

where p is the momentum of the propagating neutrino, mi its mass, and e are the
electron fields. The element Uei gives the coupling of the electron to the i th neutrino
mass state. There is also a corresponding hadronic tensor W αβ , whose structure is
rather complicated. Its structure is unfortunately left out in most theoretical articles
and discussions in spite of the fact that it introduces considerable uncertainty in
the predictions. The decay rate of the process is obtained by first summing the
amplitudes over all intermediate states and then squaring the total amplitude to
arrive at

�(0νββ) = A

∣∣∣∣∣
∑

i

U 2
ei mi

∣∣∣∣∣
2

, (13.49)

where A is a non-trivial factor representing nuclear matrix elements. The quantity

mee =
∑

i

U 2
ei mi , (13.50)
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with the sum running over all neutrinos, is called the effective electron-neutrino
Majorana mass, or in short the effective neutrino mass. The neutrino masses in
the propagator are physical masses and are very small relative to q2 involved in
nuclear decays. The masses mi and the mixing elements Uei also appear in the
oscillations of neutrinos. Unfortunately, the oscillation experiments measure

m2

i j , i.e. mass differences, rather than absolute values for the masses. They also
measure the squares of the Uei , which in general are complex functions. Thus,
extracting mass differences and mixing angles from oscillation experiments, there
is still a large range of values possible for mee (Pascoli et al., 2005; Choubey
and Rodejohann, 2005). Processes depending on the effective Majorana mass have
branching ratios and cross sections that can be very small. The current limit for
mee comes from neutrinoless double beta decay of 76Ge and is approximately
0.2 eV. There is only one experiment (Klapdor-Kleingrothaus et al., 2004) in which
it has been claimed that the Majorana mass has been measured. The best value given
by the group is 〈mee〉 = 0.39 eV, but the data analysis of this experiment has been
criticized (Aalseth etal., 2004). There are plans to build improved experiments.
This is a difficult but very interesting and exciting field, regarding which the reader
can consult other articles (Aalseth et al., 2004).

Problems for Chapter 13

1. Show that the mixing angle θ in the matrix

U =
(

cos θ sin θ

−sin θ cos θ

)
which diagonalizes the symmetric matrix

M =
(

a b
b d

)
is given by

tan(2θ ) = 2b

d − a

and the eigenvalues

E1,2 = 1

2

[
(a + d) ± 2b

sin(2θ )

]
.

What happens to the mixing angle and the difference of the eigenvalues of M when one
adds a term proportional to the unit matrix to M?

2. For three generations there are only two independent mass differences. For this reason
the observation of two oscillations, e → µ and µ → τ, determines the mass-squared
differences


m2
� = 
m2

12,


m2
A = 
m2

23 = 
m2
31.
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For the CHOOZ experiment the distance is approximately a kilometer, so 
m2
12 L/E

is very small and does not contribute to the oscillation.
(i) Use Eq. (13.22) and approximations suggested by the description of this problem

to derive Eq. (13.39).
(ii) Use again Eq. (13.22), the same approximations, and the unitarity of the mixing

matrix to derive Eq. (13.37).
3. The general Lagrangian with Dirac and Majorana mass terms is

−L = ψ̄ ∂/ψ + MD
[
ψ̄LψR + h.c.

] + ML

2

[
(ψ̄L)cψL + h.c.

] + MR

2

[
(ψ̄R)cψR + h.c.

]
,

with ML and MR being Majorana mass terms for the left- and right-handed neutrinos.
(i) Show that it can be written in the form

−L = V̄ ∂/V + V̄ [M]V,

where V is a column matrix,

V = 1

2

(
ψL + (ψL)c

ψR + (ψR)c

)
,

and [M] is a symmetric matrix,

[M] =
(

ML MD

MD MR

)
.

[M] is the neutrino mass matrix. For ML = 0 it reduces to the seesaw case.
(ii) Let ψ1 and ψ2 be the eigenvector fields of the mass matrix with eigenvalues λ1 and

λ2, respectively. Then show that L can be rewritten as

−L = ψ̄1 ∂/ψ1 + ψ̄2 ∂/ψ2 + λ1ψ̄1ψ1 + λ2ψ̄2ψ2.

The physics content of the Lagrangian is now clear: it is the free Lagrangian for two
particles ψ1 and ψ2.

4. Consider the Dirac Lagrangian and add the term

ψ̄(x)γ5ψ(x)φ.

The Dirac equation now becomes

[i ∂/ − γ5φ − m]ψ(x) = 0.

When φ(x) is a function of xµ, the addition term represents the interaction of the fermion
with a scalar field. We may also consider φ to be a constant, i.e. independent of space
and time. Consider the latter case and search for plane-wave solutions

ψ(x) = u(p)e−ip·x .

(a) Which condition must pµ satisfy in order for solutions to exist?
(b) Once pµ satisfies the conditions, which are the linearly independent spinors?
(c) Find a chiral transformation T = eiγ5θ so that the Dirac equation is brought into the

form (i ∂/ − m̃)ψ(x) = 0.

Comment This exercise shows that, whenever φ is a constant, the term φψ̄(x)γ5ψ(x)
is a mass term. It also follows that the sign of the fermion mass can be changed by a
chiral transformation.
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