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Best Approximation in Riemannian
Geodesic Submanifolds of
Positive Definite Matrices

Yongdo Lim

Abstract. We explicitly describe the best approximation in geodesic submanifolds of positive defi-

nite matrices obtained from involutive congruence transformations on the Cartan-Hadamard man-

ifold Sym(n, R)++ of positive definite matrices. An explicit calculation for the minimal distance

function from the geodesic submanifold Sym(p, R)++ × Sym(q, R)++ block diagonally embedded in

Sym(n, R)++ is given in terms of metric and spectral geometric means, Cayley transform, and Schur

complements of positive definite matrices when p ≤ 2 or q ≤ 2.

1 Introduction

In this paper, we consider the best approximation and the minimal distance func-
tion for geodesic submanifolds of the Riemannian symmetric space Sym(n, R)++ of
positive definite matrices. The convex cone Sym(n, R)++ of n × n positive definite

matrices is a typical example of Cartan-Hadamard manifold and hence a Bruhat-Tits
space, complete metric space satisfying the “semiparallelogram law” ([6, 1]). The el-
ementary linear algebra fact that the space Sym(n, R)++ is obtained by bending the

inner product space Sym(n, R) equipped with the trace inner product via the ex-
ponential mapping and the nontrivial fact that the matrix exponential mapping is
distance nondecreasing (seminegative curvature) are fundamental in the study of the
cone as a Cartan-Hadamard or a Bruhat-Tits space in the geometric point of view

(see, e.g., [6, 7]).

If H is a finite dimensional inner product space, the parallelogram law holds with
respect to the distance given by the inner product, and hence H becomes a Bruhat-
Tits space. For a vector subspace K of H, the best approximation for K corresponds to

the projection theorem, and the problems finding xK ∈ K, the best approximation of
x out of K, and computing the distance ‖x− xK‖ are completely determined in terms
of the Gram determinant and matrix. The purpose of this paper is to study these
problems in the non-linear space Sym(n, R)++ for the Riemannian metric distance

δ replacing subspaces by geodesic submanifolds of Sym(n, R)++. Here, a set S =

exp(U ) of Sym(n, R)++ for a vector subspace U of Sym(n, R) is said to be a geodesic
submanifold if it contains the geodesic between any two of its points. The main
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problem we are considering related to the given geodesic submanifold S is to describe
explicitly the best approximation XS ∈ S such that δ(X, XS) = minA∈Sδ(X, A) and

the minimal distance function dS(X) = δ(X, XS) in terms of the give point X and
the geodesic submanifold S.

Although the projection theorem for arbitrary geodesic submanifolds (generally,
for any closed and geodesically convex subsets) of positive definite matrices follows

directly from the nonpositive curvature property of the Riemannian manifold
Sym(n, R)++, the problem describing explicitly the best approximation of a point
out of a geodesic submanifold S and its minimal distance is non-trivial because it is
closely related to the minimization problem

δ(X, A) → min, A ∈ S.

(See Remark 3.1 for a complete version associated to eigenvalue functions on the

space Sym(n, R).) In this paper, we restrict our attention to the geodesic subman-
ifold of positive definite matrices fixed by an involutive congruence transformation
of the form σW (X) = W XW,W = W T

= W−1. In [10, 11], the authors have stud-
ied a similar type of matrix approximation via the dualistic nature of the manifold

Sym(n, R)++ and its information theoretic implications. They considered two dual
affine connections ∇ and ∇∗ satisfying Ag(B,C) = g(∇AB,C) + g(B,∇∗

AC) for
the Riemannian metric g on Sym(n, R)++ and considered the optimization problems
defined on the intersection of the cone Sym(n, R)++ and an affine subspace for mea-

sures invariant under the congruent transformations X → MXMT , M ∈ GL(n, R).
They obtained an algorithm for the optimization problem with respect to the ∇∗-
divergence defined by D∗(P1, P2) := log det(P1P−1

2
) + tr(P−1

1
P2) − n and they asked

the optimization problem with respect to the Riemannian metric distance δ, the most

natural measures on the cone. The geodesic submanifolds arising from Jordan invo-
lutions are domains of doubly autoparallel ([11, Theorem 4.6]).

This paper is organized as follows. In section 2, we describe the Riemannian struc-
tures of the cone Sym(n, R)++ together with basic properties of (metric and spectral)

geometric means of positive definite matrices. In section 3, we describe the best ap-
proximation for geodesic submanifolds obtained from Jordan involutions in terms of
metric and spectral geometric means, and in section 4, we give an explicit formula
for the best approximation of the geodesic submanifold Sym(p, R)++ × Sym(q, R)++

block diagonally embedded in Sym(n, R)++. In section 5, we study the eigenval-
ues of matrices appearing in the best approximation theorem for Sym(p, R)++ ×
Sym(q, R)++ and give a formula for the distance function when either p ≤ 2 or
q ≤ 2. Finally, we establish in section 6 a relation between the best approximation

and the global tubular neighborhood theorem which produces a factorization of pos-
itive definite matrices with factors of geometric and spectral geometric means.

2 Riemannian Structures of the Positive Definite Cone

It is assumed that all matrices involved in this paper have real elements. The identity
matrix and the null matrix are denoted by I and 0, respectively, and their sizes are de-
termined by the context. A matrix X is symmetric if X = XT , where XT denotes the
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transpose of the matrix X. Let Sym(n, R) be the vector space of all n×n real symmet-
ric matrices. For X ∈ Sym(n, R), we recall that A is positive semidefinite, denoted

by 0 ≤ X, if xTXx ≥ 0 for all x ∈ R
n. Similarly, X is positive definite, denoted by

X > 0, if it is positive semidefinite and invertible. We denote the set of positive def-
inite (resp., semidefinite) matrices by Sym(n, R)++ (resp., Sym(n, R)+). We consider
two useful relations on Sym(n, R), the Löwner partial order on Sym(n, R) defined by

X ≤ Y if and only if Y − X is positive semidefinite, and X < Y if and only if Y − X

is positive definite. The set Sym(n, R)++ is an open convex cone of Sym(n, R) and is
a typical example of a Cartan-Hadamard manifold, complete simply connected Rie-
mannian manifold with seminegative curvature. We shortly review the Riemannian

structure of Sym(n, R)++. See, e.g., [6, 7] for more details.
The inner product 〈X|Y 〉 := tr(XY ) on the vector space Sym(n, R) which can be

identified with the tangent space of Sym(n, R)++ at I gives rise to a natural Rieman-
nian metric on Sym(n, R)++. The inner product on the tangent space of Sym(n, R)++

at A > 0 is given by 〈X|Y 〉A = tr(A−1XA−1Y ). The corresponding Riemannian
metric distance is completely measured by

δ(A, B) =

( n∑

i=1

log2 λi

) 1/2

,

where λ1, . . . , λn are eigenvalues of A−1B. Since A−1B is similar to A−1/2BA−1/2,
the eigenvalues of A−1B are all positive, and hence log λi is defined for each i. The
Riemannian metric is GL(n, R)-invariant and each member M of GL(n, R) acts as

an isometry on Sym(n, R)++ via the congruence transformation, X 7→ MXMT . Let
F(X) := − log det(X) be the standard barrier function of the cone Sym(n, R)++ (see,
e.g., [2, Chapter 3]). Then the Riemannian metric coincides with the Hessian metric
of F. Indeed, 〈X|Y 〉A = 〈F ′′(A)X|Y 〉I = tr(A−1XA−1Y ), for A ∈ Sym(n, R)++ and

X,Y ∈ Sym(n, R). The matrix inversion on Sym(n, R)++, A → A−1 is an involutive
isometry on Sym(n, R)++ and hence Sym(n, R)++ becomes a Riemannian symmetric
space. The unique geodesic curve joining A and B is given by

γ(t) := A1/2(A−1/2BA−1/2)t A1/2

and the geodesic middle A#B := γ(1/2) = A1/2(A−1/2BA−1/2)1/2A1/2 is known as
the geometric mean of A and B in matrix theory. The realization of the geometric

mean A#B as the geometric middle of the invariant Riemannian metric gives the
following well-known but non-trivial properties (the commutativity, inversion, and
transformation properties) which will be useful for our purposes (see [5, 7] for more
details):

A#B = B#A, A−1#B−1
= (A#B)−1(2.1)

M(A#B)MT
= (MAMT)#(MBMT)(2.2)

for all M ∈ GL(n, R). One remarkable and important property of the geometric
mean is that A#B is a unique positive definite solution of the Riccati equation (Riccati
Lemma)

(2.3) XA−1X = B.
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Proposition 2.1 Let A ∈ Sym(n, R)++. Then (A#B)2 > B for all B ∈ Sym(n, R)++

if and only if A > I.

Proof Suppose that (A#B)2 > B for all B ∈ Sym(n, R)++. Then with B = I we have
A = (A1/2)2

= (A#I)2 > I. Conversely, suppose that A > I. Then by the order
decreasing property of the inversion, A−1 < I. Let B ∈ Sym(n, R)++. Then by (2.1)

and by the Riccati Lemma, we have

(A#B)−1B(A#B)−1
= (B−1#A−1)B(B−1#A−1) = A−1 < I

and hence B < (A#B)I(A#B) = (A#B)2.

In [3] Fielder and Pták have introduced and developed a new positive definite
geometric mean of two positive definite matrices; the spectral geometric mean F(A, B)
of positive definite matrices A and B which is defined by

F(A, B) := (A−1#B)1/2A(A−1#B)1/2

By the Riccati Lemma (2.3), we immediately see that the spectral geometric mean
F(A, B) is a unique positive definite solution of the equation

(2.4) A−1#B = (A−1#X)2.

See [3] for the following properties of the spectral geometric mean and for more

details.

Proposition 2.2 Let A, B ∈ Sym(n, R)++. Then

(1) F(A, B) = F(B, A),

(2) F(A, B)−1
= F(A−1, B−1),

(3) F(A, B) = A#B if and only if AB = BA,

(4) (Spectral mean) F(A, B)2 is positively similar to AB.

As they mentioned in [3], the geometric mean A#B and the spectral geometric
mean F(A, B) are in general not comparable in the Loewner ordering, but property

(3) in Proposition 2.2 indicates that two means are equal if and only if A and B com-
mute which is a consequence of Fuglede-Putnam theorem (Lemma 5.1 and Theorem
5.2 of [3]). These basic properties of geometric and spectral geometric means of
positive definite matrices play a crucial role for our work.

3 Geodesic Submanifolds of Positive Definite Matrices

Throughout this paper, we denote V := Sym(n, R) and Ω := Sym(n, R)++ for

notational convenience. Let U be a vector subspace of V and let S = exp(U ) =

{exp(X) | X ∈ U}. We say that S is a symmetric submanifold of Ω if ABA ∈ S when-
ever A, B ∈ S. And S is said to be a geodesic submanifold of Ω if for all A, B ∈ S and
t ∈ R, A#t B := A1/2(A−1/2BA−1/2)t A1/2 ∈ S, that is, S contains the geodesic between
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A and B. By Theorem XII.3.7 of [6], S is a symmetric submanifold if and only if S is
a geodesic submanifold. Every geodesic submanifold S is a closed and (mid-point)

convex in the Cartan-Hadamard manifold Ω with respect to the Riemannian distance
δ and hence for each X ∈ Ω there is a unique point XS ∈ S of minimal distance to X

(see Corollary I.5.6 of [1]):

δ(X, XS) = δ(X, S) := infA∈Sδ(X, A).

The map X 7→ XS is called the projection onto S and it has Lipschitz constant 1. We

denote dS by the minimal distance function for the geodesic submanifold S;

dS : Ω → [0,∞), dS(X) = δ(X, XS).

Then it is continuous and is a convex function, that is, dS◦γ is convex for any geodesic
γ in Ω.

Remark 3.1 If S is a geodesic submanifold (e.g., the geodesic submanifold of di-
agonal matrices with positive entries) of Ω then it is closed under the inversion for

since I ∈ S and At ∈ S for all t ∈ R whenever A ∈ S. Observing that for A ∈ S,
δ(X, A−1) = δ(I, X−1/2A−1X−1/2) = δ(I, X1/2AX1/2) from the fact that the inver-
sion is an isometry, the problem of finding the best approximation XS in S turns to
be the minimization problem

min
A∈S

‖ log λ(X1/2AX1/2)‖ = min
Y∈X1/2SX1/2

‖ log λ(Y )‖

where ‖ · ‖ denotes the Euclidean norm on R
n and λ : Sym(n, R) → R

n denotes the
“eigenvalue map” of non-increasing order. The map

‖ log( · )‖ : R
n → [0,∞], x = (x1, x2, . . . , xn) 7→ ‖ log x‖ ∈ [0,∞]

is permutation-invariant and hence the function Y 7→ ‖ log λ(Y )‖ is an “eigenvalue

function” on Sym(n, R) (see [8, 9] for analysis of eigenvalue functions).

A linear invertible transformation σ : V → V is called a Jordan automorphism if

σ(XY + Y X) = σ(X)σ(Y ) + σ(Y )σ(X),

for all X,Y ∈ V . Observe that XY X = 2X ◦ (X ◦ Y ) − X2 ◦ Y and every Jordan
automorphism σ preserves the Jordan product X ◦ Y := 1

2
(XY + Y X). This im-

plies that σ(XY X) = σ(X)σ(Y )σ(X) for all X,Y ∈ V and σ(A−1) = σ(A)−1 for
any invertible matrix A. Furthermore, every Jordan automorphism acts as an isom-

etry on the Riemannian manifold Ω. Indeed, if A, B ∈ Ω then σ(A)−1σ(B) is sim-
ilar to σ(A)−1/2σ(B)σ(A)−1/2

= σ(A−1/2BA−1/2) which has the same spectrum of
A−1/2BA−1/2 by spectral decomposition. In particular, each Jordan automorphism
preserves the geometric mean: σ(A#B) = σ(A)#σ(B) for all A, B ∈ Ω.
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Let σ be a Jordan automorphism of V . Consider the ±1-eigenspaces of σ on V and
Ω, respectively:

V +

σ := {A ∈ V : σ(A) = A}, V−
σ := {A ∈ V : σ(A) = −A}

and

Ω
+

σ := {A ∈ Ω : σ(A) = A} = Ω ∩V +

σ , Ω−
σ := {A ∈ Ω : σ(A) = A−1}.

By observing that σ(exp X) = exp(σ(X)) for all X ∈ V and that exp : V → Ω

is bijective, we have that Ω
+

σ = exp(V +

σ ) and Ω
−
σ = exp(V−

σ ). Since σ(ABA) =

σ(A)σ(B)σ(A), it follows that ABA ∈ Ω
±
σ for all A, B ∈ Ω

±
σ and hence Ω

±
σ are

geodesic submanifolds of Ω.

Proposition 3.2 If σ is an involutive Jordan automorphism then

X
Ω

±
σ

= X#σ(X±1),(3.1)

F(X, σ(X±1)) ∈ Ω
±
σ .(3.2)

Proof It is immediate seen from (2.1) and (2.2) that for X ∈ Ω,

σ(X#σ(X)) = σ(X)#σ2(X) = σ(X)#X = X#σ(X)

and

σ(X#σ(X−1)) = σ(X)#X−1
= X−1#σ(X) = (X#σ(X−1))−1.

This implies that X#σ(X±1) ∈ Ω
±
σ . Since the Riemannian metric distance δ is invari-

ant under the inversion A 7→ A−1 and under the Jordan involution σ, we find that
δ(σ(A), σ(B)) = δ(A, B) = δ(A−1, B−1). Let X ∈ Ω. Then for any A ∈ Ω

±
σ ,

δ(X, X#σ(X±1)) =
1

2
δ
(
X, σ(X±1)

)

≤ 1

2

(
δ(X, A) + δ(A, σ(X±1))

)

=
1

2

(
δ(X, A) + δ(σ(A±1), σ(X±1))

)

=
1

2
(δ(X, A) + δ(A, X))

= δ(X, A).

which implies that X
Ω

±
σ

= X#σ(X±1).

Next, suppose that X ∈ Ω. Then

σ
(

F(X, σ(X±1))
)

= σ
(

(X−1#σ(X±1))1/2X(X−1#σ(X±1))1/2
)

= σ
(

(X−1#σ(X±1))1/2
)
σ(X)σ

(
(X−1#σ(X±1))1/2

)

= (σ(X−1)#X±1)1/2σ(X)(σ(X−1)#X±1)1/2

= F(X±1, σ(X)).

It follows from Proposition 2.2(2) that F(X, σ(X±1)) ∈ Ω
±
σ .
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If W is an involutive symmetric (orthogonal) matrix (that is, W 2
= I) then the

map σW defined by σW (X) = W XW is an involutive Jordan automorphism. Our

main interest in this paper is to describe explicitly the best approximation and the
distance function for the geodesic submanifold induced by the Jordan automorphism
σW ,W 2

= I. Note that every involutive symmetric matrix is orthogonally similar to

Jp,q =
( Ip 0

0 −Iq

)
for some p, and hence it is enough to restrict our interest to the

Jordan involution σp,q := σ Jp,q
. We observe that the involution σp,q : Sym(n, R) →

Sym(n, R) is given by
(

A B

BT C

)

7→
(

A −B

−BT C

)

.

In the following, we fix positive integers p and q such that p + q = n and denote
Ωp,q by the space Ω = Sym(n, R)++ together with the specified involution σp,q. By

X =
(

A B
BT C

)
∈ Ωp,q we shall mean that X ∈ Ω, A and C are p× p and q×q matrices.

We also denote Ω
+

p,q by the geodesic submanifold fixed by the involution σp,q and

similarly, Ω−
p,q. Obviously,

V +

σp,q
=

{(
A 0

0 C

)

: A ∈ Sym(p, R),C ∈ Sym(q, R)

}

,

V−
σp,q

=

{(
0 B

BT 0

)

: B is a p × q matrix

}

,

Ω
+

p,q =

{(
A 0
0 C

)

: A ∈ Sym(q, R)++,C ∈ Sym(p, R)++

}

.

Let dp,q : Ωp,q → [0,∞) be the minimal distance function associated to the involu-
tion σp,q:

dp,q(X) = minA∈Ω+

p,q
δ(X, A) = δ(X, X#σp,q(X)).

We note that

δ(X, X#σp,q(X)) =
1

2
δ(X, σp,q(X)) =

( n∑

i=1

log2 λi

) 1/2

where λ1, . . . , λn are eigenvalues of X−1σp,q(X), and that the function 2dp,q is the

displacement function of the elliptic isometry σp,q in the context of Hadamard man-
ifolds (cf. [1]).

4 Best Approximation in the Geodesic Submanifold Ω
+
p,q

The following result is well-known (cf. [4, Theorem 7.7.6]).

Proposition 4.1 Let X =
(

A B
BT C

)
. Then X is positive definite if and only if

A > 0,C > BTA−1B if and only if C > 0, A > BC−1BT .

One of our main results is the following explicit description of the best approxi-
mation for the geodesic submanifold Ω

+

p,q.
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Theorem 4.2 Let X =
(

A B
BT C

)
∈ Ωp,q. Then

XΩ+

p,q
= X#σp,q(X) =

(

A#(A − BC−1BT) 0

0 C#(C − BTA−1B)

)

and

F(X, σp,q(X−1)) =

(

F(A, (A − BC−1BT)−1) G(X)

G(X)T F(C, (C − BTA−1B)−1)

)

,

where G(X) =
(

A#(A − BC−1BT)
)−1/2

B
(

C#(C − BTA−1B)
)−1/2

. In particular,

AB = BC if and only if X
Ω

−
p,q

= F(X, σp,q(X−1)).

Proof Since X#σp,q(X) ∈ Ω
+

p,q, there exist positive definite matrices U ∈
Sym(p, R)++ and W ∈ Sym(q, R)++ such that

(
A B

BT C

)

#

(
A −B

−BT C

)

=

(
U 0
0 W

)

.

It then follows by the Riccati Lemma (2.3) that

(
U 0
0 W

)(
A B

BT C

)−1(
U 0
0 W

)

=

(
A −B

−BT C

)

.

By a direct computation, we find that

AU−1A = U + BW−1BT ,

CW−1C = W + BTU−1B,

CW−1BT
= BTU−1A,

and hence

U = U +
(

BW−1BT − BC−1(CW−1BT)
)

= U +
(

BW−1BT − BC−1(BTU−1A)
)

= (U + BW−1BT) − BC−1(BTU−1A)

= AU−1A − BC−1(BTU−1A) = (A − BC−1BT)U−1A.

This implies that UA−1U = A − BC−1BT and hence

(4.1) U = A#(A − BC−1BT)
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by the Riccati Lemma (2.3). Similarly, we obtain

(4.2) W = C#(C − BTA−1B).

Therefore

X#σp,q(X) =

(

A#(A − BC−1BT) 0

0 C#(C − BTA−1B)

)

.

Next, by (4.1) and (4.2) we have that

U−1/2AU−1/2
= F(A, (A − BC−1BT)−1),

W−1/2CW−1/2
= F(C, (C − BTA−1B)−1)

and we also have

F(X, σp,q(X−1)) = (X#σp,q(X))−1/2X(X#σp,q(X))−1/2

=

(
U−1/2 0

0 W−1/2

)(
A B

BT C

)(
U−1/2 0

0 W−1/2

)

=

(

U−1/2AU−1/2 U−1/2BW−1/2

W−1/2BTU−1/2 W−1/2CW−1/2

)

=

(

F(A, (A − BC−1BT)−1) G(X)

G(X)T F(C, (C − BTA−1B)−1)

)

,

where G(X) :=
(

A#(A − BC−1BT)
)−1/2

B
(

C#(C − BTA−1B)
)−1/2

.

Finally, one can see directly that AB = BC if and only if Xσp,q(X) = σp,q(X)X if
and only if Xσp,q(X)−1

= σp,q(X)−1X. By Proposition 3.2 and Proposition 2.2 (3), it
is equivalent to X

Ω
−
p,q

= X#σp,q(X−1) = F(X, σp,q(X−1)).

Remark 4.3 The matrices A − BC−1BT and C − BTA−1B are known as the Schur
complements of C and A in X =

(
A B

BT C

)
, respectively (cf. [4]).

5 The Distance Function dp,q

Recall that the distance function dp,q from the geodesic submanifold Ω
+

p,q is given by

dp,q(X) = inf
A∈Ω+

p,q

δ(X, A) = δ(X, X#σp,q(X)) =
1

2
δ(X, σp,q(X))

and it is determined by the eigenvalues of X−1σp,q(X).

Proposition 5.1 Let X =
(

A B
BT C

)
∈ Ωp,q. Then
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(1) det(X) = det(C) det(A − BC−1BT) = det(A) det(C − BTA−1B).

(2) the eigenvalues of X−1σp,q(X) occur in reciprocal pairs: If λ is an eigenvalue of

X−1σp,q(X) then so is 1/λ.

(3) (p = 1 or q = 1 cases):

X = σ1,n−1(X) if and only if det(X) =
(√

A det(C) ±
√

det(C) · BC−1BT
) 2

,

X = σn−1,1(X) if and only if det(X) =
(√

C det(A) ±
√

det(A) · BTA−1B
) 2

.

Proof (1) It follows from the fact that

(
I −BC−1

0 I

)(
A B

BT C

)

=

(
A − BC−1BT 0

BT C

)

,

(
A B

BT C

)(
I −A−1B

0 I

)

=

(
A 0

BT C − BTA−1B

)

.

(2) Note that X−1σp,q(X)x = λx if and only if X−1 Jp,qX Jp,qx = λx if and only
if Jp,qx = λX−1 Jp,qXx if and only if 1

λ Jp,qx = (X−1 Jp,qX Jp,q) Jp,qx. Therefore, λ is
an eigenvalue of X−1σp,q(X) with eigenvector x if and only if 1/λ is an eigenvalue of
X−1σp,q(X) with eigenvector Jp,qx.

(3) Suppose that p = 1 (q = 1 case is similar). In this case A is a positive real
number. By (1), det(X) = A det(C) − det(C)BC−1BT and hence we immediately

have that X = σ1,n−1(X) if and only if B = 0 if and only if BC−1BT
= 0 if and only if

A det(C) = det(X).

Proposition 5.2 Suppose that X =
(

A B
BT C

)
∈ Ωp,q such that X 6= σp,q(X) (that is,

B 6= 0). Then

(1) 1 is not an eigenvalue of X−1σp,q(X) if and only if rank(B) =
n
2

. This occurs only

when p = q and B is invertible. If either p 6= q or p = q and B is singular, then 1 is

always an eigenvalue of X−1σp,q(X) with its algebraic multiplicity n − 2 rank(B).

(2) For 0 < λ 6= 1, λ is an eigenvalue of X−1σp,q(X) if and only if (1 − λ/1 + λ)2 is

an eigenvalue of the p × p matrix A−1BC−1BT if and only if (1 − λ/1 + λ)2 is an

eigenvalue of the q × q matrix C−1BTA−1B.

(3) If p = 1 or q = 1 then the algebraic multiplicity of the eigenvalue 1 is n − 2 and

the remaining two distinct eigenvalues are

1

det(X)

(√

A det(C) ±
√

det(C) · BC−1BT
) 2

(if p = 1)

and

1

det(X)

(√

C det(A) ±
√

det(A) · BTA−1B
) 2

(if q = 1).
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Proof Let X =
(

A B
BT C

)
∈ Ωp,q. First, we observe that

(
A −B

−BT C

)(
x

y

)

= λ

(
A B

BT C

)(
x

y

)

if and only if

(5.1) (1 − λ)Ax = (1 + λ)By, (1 + λ)BTx = (1 − λ)C y.

In particular,
( A −B

−BT C

)( x
y

)
=
(

A B
BT C

)( x
y

)
if and only if By = 0 and BTx = 0.

Furthermore, the dimension of the subspace {(x, y) ∈ R
p × R

q : By = 0, BTx = 0}
is

(p − rank(B)) + (q − rank(B)) = n − 2 rank(B).

Therefore (1) follows.

(2) Let 0 < λ 6= 1. Suppose that λ is an eigenvalue of X−1σp,q(X) and (x, y)T

is an eigenvector of λ. Then since λ 6= 1 and since A,C are invertible, x and y are
non-zero vectors by (5.1). Furthermore, we have that

x =
1 + λ

1 − λ
A−1By =

( 1 + λ

1 − λ

) 2

A−1BC−1BTx,

y =
1 + λ

1 − λ
C−1BTx =

( 1 + λ

1 − λ

) 2

C−1BTA−1By

and hence (1 − λ/1 + λ)2 is a common eigenvalue of A−1BC−1BT and C−1BTA−1B.
Conversely, suppose that (1 − λ/1 + λ)2 is an eigenvalue of A−1BC−1BT and x ∈
R

p is an eigenvector. Set y := (1 + λ/1 − λ)C−1BTx ∈ R
q. Then (x, y)T satisfies

(5.1) and hence λ is an eigenvalue of X−1σp,q(X). By the same argument, one can
show that if (1 − λ/1 + λ)2 is an eigenvalue of C−1BTA−1B then it is an eigenvalue
of X−1σp,q(X).

(3) By (1), we may assume that n > 2. Suppose that p = 1 (and hence q =

n− 1). In this case, A is a positive real number. Then the algebraic multiplicity of the

eigenvalue 1 is n − 2 rank(B) = n − 2 by (1). For positive real number k,

( 1 − k

1 + k

) 2

=
BC−1BT

A

if and only if

(A − BC−1BT)k2 − 2(A + BC−1BT)k + (A − BC−1BT) = 0.

Solving the quadratic equation for k, we find that k is one of the following

(√
A det(C) ±

√

det(C) · BC−1BT
) 2

A det(C) − det(C)BC−1BT
=

(√
A det(C) ±

√

det(C) · BC−1BT
) 2

det(X)
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and they are distinct and different from 1 by Proposition 5.1. Let k be one of the
solutions (the other solution is 1/k). Set v =

(
1

1+k
1−k

C−1BT

)
∈ R × R

n−1. Then

σ1,n−1(X)v =

(
A −B

−Bt C

)( 1
1+k
1−k

C−1BT

)

=

(A − 1+k
1−k

BC−1BT

−Bt + 1+k
1−k

BT

)

=

(
k(A + 1+k

1−k
BC−1BT)

k(Bt + 1+k
1−k

BT)

)

= k
(

A B

BT C

)( 1
1+k
1−k

C−1BT

)

= k(Xv),

and hence v is an eigenvector of X−1σ1,n−1(X) with eigenvalue k. The proof for the

case q = 1 is similar.

Recall that the “real” Cayley transformation c : (0,∞) → (−1, 1) is given by
c(x) = 1 − x/1 + x. The map d(x) = c(x)2 maps (0,∞) onto [0, 1). Note that

c(x)2
= c(1/x)2. By Proposition 5.2 we have that for X =

(
A B

BT C

)
6= σp,q(X),

d
(
{0 < λ 6= 1 : λ is an eigenvalue of X−1σp,q(X)}

)

= {0 < λ < 1 : λ is an eigenvalue of A−1BC−1BT}.

In fact, the matrix A−1BC−1BT is similar to the symmetric p × p matrix

A−1/2BC−1BTA−1/2
= (A−1/2BC−1/2)(A−1/2BC−1/2)T .

By Proposition 4.1, we have A−1/2BC−1BTA−1/2 < I and hence the eigenvalues of

A−1/2BC−1BTA−1/2 lie in the interval [0, 1). If the rank of B is p then BC−1BT is
invertible and hence the eigenvalues of A−1/2BC−1BTA−1/2 must be in the interval
(0, 1). Similar argument goes to the matrix C−1/2BTA−1BC−1/2 and hence we get
natural functions Φp and Φq defined by

Φp : Ωp,q → [0, I)p,

(
A B

BT C

)

7→ A−1/2BC−1BTA−1/2,

Ψq : Ωp,q → [0, I)q,

(
A B

BT C

)

7→ C−1/2BTA−1BC−1/2

where [0, I)p denotes the Löwner order interval of Sym(p, R)++:

[0, I)p = {X ∈ Sym(p, R) : 0 ≤ X < I}.

Let cl(W ) = (I −W )(I + W )−1 be the Cayley transform on the cone Sym(l, R)++.
Then it maps the open order interval (0, I)l := {W ∈ Sym(l, R) : 0 < W < I} onto
itself. For l ≤ min{p, q}, we set

Ul :=

{(
A B

BT C

)

∈ Ωp,q : rank(B) = l

}

.
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Theorem 5.3 We have

(1) Φ
−1

p (0p) = Ψ
−1

q (0q) = Ω
+

p,q and if p ≤ q (resp. q ≤ p), then Φ
−1

p ((0, I)p) = Up

and Ψ
−1

q ((0, I)q) = Uq, respectively.

(2) If p ≤ q then Up is diffeomorphic to (0, I)p × F(p, q) × Sym(q, R)++, where

F(p, q) denotes the Stiefel manifold of p-frames in R
q, and the map Φp restricted

to Up is surjective onto the open order interval (0, I)p. The pre-image Φ
−1

p (W ) of

W ∈ (0, I)p is given by

Φ
−1

p (W ) =

{((
W−1#(BC−1BT)

) 2

B

BT C

)

: rank(B) = p, C ∈ Sym(q, R)++

}

which is diffeomorphic to F(p, q) × Sym(q, R)++. Furthermore, λ is an eigenvalue

of X−1σp,q(X) if and only if λ is an eigenvalue of cp(Φp(X)1/2) if and only if λ =

1−√
µ

1+
√

µ for some eigenvalue µ of Φp(X) = A−1/2BC−1BTA−1/2.

(3) If p = q and X =
(

A B
BT C

)
∈ Up, then Φp(X) and Ψp(X) are similar.

Proof (1) Straightforward.

(2) Suppose that p ≤ q. Then one can find a p × q matrix B such that BBT
= Ip.

Thus for any given p × p positive definite matrix W such that W < I, the matrix
(

W−1 B
BT I

)
is positive definite matrix by Proposition 4.1 and by the order reverting

property of the inversion, and is mapped to W by Φp. This shows that Φp restricted

to
{(

A B
BT C

)
∈ Ωp,q : rank(B) = p

}
is surjective onto the open order interval (0, I)p.

Let W ∈ (0, I)p and let X =
(

A B
BT C

)
∈ Ωp,q. Then Φp(X) = W if and only if

A−1/2(BC−1BT)A−1/2
= W if and only if A1/2

= W−1#(BC−1BT) by the Riccati
Lemma (2.3). Therefore,

Φ
−1

p (W ) =

{((
W−1#(BC−1BT)

) 2

B

BT C

)

∈ Ωp,q : rank(B) = p

}

and is equal to

{((
W−1#(BC−1BT)

) 2

B

BT C

)

: rank(B) = p, C ∈ Sym(q, R)++

}

by Proposition 2.1 and Proposition 4.1. Therefore, Φ
−1

p (W ) is diffeomorphic to
F(p, q) × Sym(q, R)++, where F(p, q) is the Stiefel manifold of p-frames in R

q. It
is easy to check from (2.3) and Proposition 2.1 that the function

(0, I)p × F(p, q) × Sym(q, R)++ → Up

given by

(W, B,C) 7→
((

W−1#(BC−1BT)
) 2

B

BT C

)
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is a diffeomorphism with its inverse

X =

(
A B

BT C

)

7→ (Φp(X), B,C).

The remaining part of proof follows from Proposition 5.2 (2).
(3) It follows from that (C−1BT)(A−1BC−1BT)(C−1BT)−1

= C−1BTA−1B.

Remark 5.4 If q ≤ p then Uq is diffeomorphic to (0, I)q × F(q, p) × Sym(p, R)++

and the map Φq restricted to Uq is surjective onto (0, I)q. The pre-image Ψ
−1

q (W ) of
W ∈ (0, I)q is given by

Ψ
−1

q (W ) =

{(
A B

BT
(

W−1#(BTA−1B)
) 2

)

: rank(B) = q, A ∈ Sym(p, R)++

}

which is diffeomorphic to Sym(p, R)++ × F(q, p).

Theorem 5.5 If either p or q is less than equal to 2 then the distance function dp,q

induced by the Jordan automorphism σp,q is completely determined: If p ≤ 2 (resp.,

q ≤ 2) then

dp,q(X) =
1√
2
δp(I, cp(Φp(X)1/2)) =

1√
2
δp(Ip + Φp(X)1/2, Ip − Φp(X)1/2)

and

dp,q(X) =
1√
2
δq(I, cq(Φq(X)1/2)) =

1√
2
δq(Iq + Ψq(X)1/2, Iq − Ψq(X)1/2)

respectively. Here δp and δq stand for the Riemannian metric distances on Sym(p, R)++

and Sym(q, R)++ respectively.

Proof If X = σp,q(X) then Φp(X) and Ψq(X) are zero matrices and dp,q(X) = 0,
and hence the statement is true. We assume that X 6= σp,q(X). Note that dp,q(X) =

δ(X, X#σp,q(X)) =
1

2
δ(X, σ(X)) and that for W ∈ Sym(l, R)++,

δl(I, cl(W )) = δl(I, (I −W )(I + W )−1) = δl(I + W, I −W )

by the invariance of the metric under the congruence transformations. Therefore

δp(I, cp(Φp(X)1/2)) = δp(I + Φp(X)1/2, I − Φp(X)1/2) =

( p
∑

i=1

log2
1 +

√
µi

1 −√
µi

) 1/2

where µi are eigenvalues of Φp(X). By the same argument, we have

δq(I, cq(Ψq(X)1/2)) = δq(I + Ψq(X)1/2, I − Ψq(X)1/2) =

( q
∑

i=1

log2
1 +

√
µi

1 −√
µi

) 1/2
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where µi are eigenvalues of Ψq(X).

Case p = 1 or q = 1 The eigenvalues of X−1σ1,n−1(X) are

{

1, · · · , 1
︸ ︷︷ ︸

n−2

,

(√
A det(C) ±

√

det(C) · BC−1BT
) 2

det(X)

}

,

by Proposition 5.2. Therefore

d1,n−1(X) =
1√
2

(

log
(
√

A det(C) +
√

det(C) · BC−1BT)2

det(X)

)

=
1√
2

(

log

√
A +

√
BC−1BT

√
A −

√
BC−1BT

)

=
1√
2

(

log
1 +

√
A−1BC−1BT

1 −
√

A−1BC−1BT

)

=
1√
2
δ1

(

1 + Φ1(X)1/2, 1 − Φ1(X)1/2

)

.

Similarly, we have dn−1,1(X) =
1√

2
δ1

(
1 + Ψ1(X)1/2, 1 − Ψ1(X)1/2

)
.

Case p = 2 We consider the rank of B. Suppose that rank(B) = 1. Then by

Proposition 5.2 (1) there exist only two distinct eigenvalues of X−1σp,q(X), say λ and
β which are different from 1. By Proposition 5.1, β = 1/λ. Hence

dp,q(X) =
1

2

(
log2 λ + log2 β

) 1/2

=
1√
2
| log λ|

which (by Proposition 5.2 (2)) is equal to

1√
2

(

log
1 +

√
µ

1 −√
µ

)

=
1√
2
δp(Ip + Φp(X)1/2, Ip − Φp(X)1/2)

where µ denotes the unique non-zero eigenvalue of A−1/2BC−1BTA−1/2
= Φp(X).

Next, suppose that rank(B) = 2. Let µ and ν be the eigenvalues of Φp(X). Then
they must be positive. If µ = ν then the four eigenvalues of X−1σp,q(X) distinct

from 1 are one of the form
1+

√
µ

1−√
µ ,

1−√
µ

1+
√

µ by Proposition 5.2 (2) and hence

dp,q(X) =
1

2
δ(X, σp,q(X)) =

1

2

(

4 log2
1 +

√
µ

1 −√
µ

) 1/2

=
1√
2

(

2 log2
1 +

√
µ

1 −√
µ

) 1/2

=
1√
2
δp(Ip + Φp(X)1/2, Ip − Φp(X)1/2).

If µ 6= ν, then the eigenvalues of A−1/2BC−1BTA−1/2 distinct from 1 are

1 +
√

µ

1 −√
µ

,
1 −√

µ

1 +
√

µ
,

1 +
√

ν

1 −√
ν

,
1 −√

ν

1 +
√

ν
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and thus

dp,q(X) =
1

2

(

2 log2
1 +

√
µ

1 −√
µ

+ 2 log2 1 +
√

ν

1 −√
ν

) 1/2

=
1√
2

(

log2
1 +

√
µ

1 −√
µ

+ log2 1 +
√

ν

1 −√
ν

) 1/2

=
1√
2
δp(Ip + Φp(X)1/2, Ip − Φp(X)1/2).

Case q = 2 Similar to the case p = 2 from Proposition 5.2 and Theorem 5.3.

Remark 5.6 It remains unanswered here whether the formula given in Theorem 5.5

holds true for arbitrary 1 ≤ p < n or not. Definitely it depends on the structure of
eigenvalues of X−1σp,q(X) or

X−1/2(U XU )X−1/2
= (X−1/2U X1/2)(X−1/2U X1/2)T ,

where U = U T
= U−1 involutive orthogonal matrix.

6 Global Tubular Neighborhood Theorem and AB = BC Criterion

The following result shows in particular that the positive definite cone Ω admits the
geometric and spectral geometric mean coordinates depending on Jordan involu-
tions.

Theorem 6.1 Let σ be an involutive Jordan automorphism of V . Then the map

T : Ω
+

σ × Ω
−
σ → Ω, defined by (A, B) 7→ A1/2BA1/2 is a differential diffeomorphism

with its inverse T−1(X) =
(
X#σ(X), F(X, σ(X−1))

)
.

Proof Let A1, A2 ∈ Ω
+

σ and let B1, B2 ∈ Ω
−
σ such that A1B1A1 = A2B2A2. Then

B2 = A−1

2
A1B1A1A−1

2
or B−1

2
= A2A−1

1
B−1

1
A−1

1
A2. Applying the map σ, we have

B−1

2
= σ(B2)

= σ(A−1

2
A1B1A1A−1

2
) = A−1

2
σ(A1B−1

1
A1)A−1

2

= A−1

2
A1σ(B1)A1A−1

2
= A−1

2
A1B−1

1
A1A−1

2
.

Thus A2A−1

1
B−1

1
A−1

1
A2 = B−1

2
= A−1

2
A1B−1

1
A1A−1

2
and hence

B−1

1
= (A1A−2

2
A1)B−1

1
(A1A−2

2
A1).

This implies that I = B#B−1
= A1A−2

2
A1 by the Riccati Lemma (2.3) and hence we

have A1 = A2 and so B1 = B2. This shows that the map T is injective.
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Let X ∈ Ω, and let A := X#σ(X) and B := A−1/2XA−1/2
= F(X, σ(X−1)). Then

A ∈ Ω
+

σ and B ∈ Ω
−
σ by Proposition 3.2. By Proposition 2.2,

B = A−1/2XA−1/2
= (X#σ(X))−1/2X(X#σ(X))−1/2

= F(X, σ(X−1))

and therefore X = A1/2BA1/2
= T(A, B). This implies that the map T is surjective.

Remark 6.2 One may see in similar way that the map S : Ω
−
σ ×Ω

+

σ → Ω defined by
(A, B) 7→ A1/2BA1/2 is a differential diffeomorphism with its inverse given by

S−1(X) = (X#σ(X−1), F(X, σ(X))).

Indeed, it is well-defined by Proposition 3.2.

We explicitly describe the global tubular coordinates for n = 2. In this case the
Jordan involution σ is given by

(
a b
b c

)
7→
(

a −b
−b c

)
and the associated geodesic sub-

manifolds are

Ω
+

σ =

{(
a 0

0 c

)

: a, c > 0

}

,

Ω
−
σ =

{(
a b

b a

)

: a > 0, a2 − b2
= 1

}

.

Let X =
(

a b
b c

)
∈ Sym(2, R)+. From Theorem 4.2, one sees that

T−1(X) =

(
√

det(X)

(√

a/c 0

0
√

c/a

)

,
1√

det(X)

(√
ac

√
b2√

b2
√

ac

))

and

S−1(X) =

((
cosh t sinh t

sinh t cosh t

)

,

(
x 0
0 y

))

=

(
1√

(a + c)2 − 4b2

(
a + c 2b

2b a + c

)

,

(
x 0
0 y

))

where

t = tanh−1(
2b

a + c
) = log

√

a + c + 2b

a + c − 2b
,

x =
a − c +

√
(a + c)2 − 4b2

2
,

y =
c − a +

√
(a + c)2 − 4b2

2
.
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The distance function is given by

d(X) =
1√
2

log
ac + b2

ac − b2
.

It is worth noting that ac+b2

ac−b2 =
1

2
tr(X−1σ(X)).

By applying Theorem 6.1 for the involution σp,q and Theorem 4.2, we have the

following.

Corollary 6.3 Let X =
(

A B
BT C

)
∈ Ωp,q. Then the following statements are equivalent:

(1) AB = BC,

(2) X
Ω

−
p,q

= F(X, σp,q(X−1)),

(3) T−1(X) = (XΩ+

p,q
, X

Ω
−
p,q

),

(4) S−1(X) = (X
Ω

−
p,q

, XΩ+

p,q
); X has the coordinates of best approximants,

(5) Xσp,q(X) = σp,q(X)X; X and σp,q(X) commute,

(6) X#σp,q(X−1) = F(X, σp,q(X−1)),

(7) X#σp,q(X) = F(X, σp,q(X)).
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