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ON STRONG INTEGRAL SUMMABILITY

by E. C. HEAGY and B. L. R. SHAWYER*
(Received 21st June 1976)

Strong summability has been studied by many authors, including Borwein and
Cass (1, 2) who have studied sequence-to-sequence transforms. Here we study
integral transforms; and due to the lack of a limitation theorem for such transforms,
some results do not follow directly as in the sequence cases. The strong methods
defined here can be applied to construct known and new strong summability methods.
We do not give details here, but refer the reader to (3) with the suggestion that the
natural scale operator method be used for Q and the named method for P. For
example, with the Cesaro methods, let P = (C, , 8) and Q = (C, 8) to obtain [C, ]} =
[(C, 8, x), (C, x))..

Suppose throughout that f(x) exists for x = 0 and is integrable L over every finite
interval. Suppose further that the transform

P(f;x) =J; p(x, )f (t)dt

exists for all x > 0. If P(f; x)—> o as x =, then we shall say that f is limitable to o by
the method P and write f(x)— o (P). This general method includes many well-known
integral summability methods such as the Cesaro and Hausdorff methods.

We shall now define strong integral summability methods.

Definition. If P(|Q(f;.)— o|'; x) exists for x >0 and tends to zero as x -, then
we shall say that f is strongly limitable P, Q with index A, to o, and write f(x)—>
o[P, Q],. Note that this is the same as

IP(LUIQ(f;U‘cI‘dt»O as x -,
0

Here, Q can be any summability method, either of sequence-to-function or of
function-to-function type.

In what follows we shall only consider methods P in which p(x, t)= 0 for all x and
t concerned. When we require more than one such method, we shall write them as P,
and P,. We shall also suppose throughout that A > 0. Given any two summability
methods (of the same type) we write P D Q whenever any sequence or function (as
the case may be) summable by Q to o is also summable by P to o.

In the rest of this paper, we prove some inclusion relationships that involve
variations in the parameters P, Q and A. We prove a necessary and sufficient

condition for strong functional summability in terms of ordinary summability plus a
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condition, in a way that reflects the usual results of this type. We also prove some
consistency theorems and define a set of numbers which includes those values which
may be attained as strong limits of functions. All these results are comparable with
the results of Borwein and Cass (2) for sequence-to-sequence transformations.

Theorem 1. () If P and Q are regular, then so is [P, Ql,;

(ii) If P\ Py, then [Py, Q)i D [P3, Qls;

(iii) [P, Q1. is linear; that is, if f(x)—>o[P, Qly, g(x)—~>7[P,Q), and a and B are
constants, then af (x) + Bg(x) = (ac + B1)[P, Ql..

These all follow difectly from the definitions.

Theorem 2. If P, is regular, if P, is zero-preserving and A = 1, then [P\, P,Q1, D
[P|P29 Q]A

Proof.

A
dt

P.(IPzQ(f;-)—crl‘;y)=J0 pl(y,t)U0 p2t, x)Q(f; x)dx— o

A
dt

=f pi(y, t) U pa(t, x){Q(f ; x) —o}dx + h(t)
0 o

where, since P, is regular, h(t)—>0 as t >,

A

dt

=2 f:pn(y, t) U: pAt, x{Q(f; x) —o}dx

+2* fo pi(y, Dlh@)|*dt
=21, + ).

Since P, is zero-preserving, we have that I,—0 as y—>c. And by Hélder’s
inequality,

=0 (J’mpu(y, t)dt r p2A(t, )|Q(f; x)— a!*dx)

0 0

=0 (P\PQ(U;.)—ol';y)—>0 as y-—>w.

Note that [q pa(t, x)dx is uniformly bounded is a consequence of the regularity of P-.
Theorem 3. If [¢ p(x,t)dt <M forallx =0 and A>p >0, then [P, Ql, D[P, Ql..
Proof. This result follows since

PAQU: ) —otix) = [ pex 00U - ol

= (F p(x, DQU; ) — al"dt)m<r p(x, t)dt)u_m

0 0
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Corollary. If P is regular and A > p. >0, then [P,Q], D[P, Qlx-
Theorem 4. If P is zero-preserving, then [P, Q), 2 Q.
Proof. We have that Q(f; x)—o. Thus |Q(f; x) — o|* = 0 and the result follows.

Theorem 5. Suppose that P is regular and that A = 1. Then f(x)— o[P, Ql, if and
only if f(x)— o(PQ) and g(x)~>0(P), where g(x) =|Q(f;x) — PQ(f; x)|".

Proof. Suppose that f(x)— [P, Q.. In view of Theorem 3, we may take A =1,
and so we can easily deduce that f(x)— o (PQ). Thus we get that |PQ(f;x)—o]* -0
and a fortiori that |PQ(f; x) — o}* > 0(P). Further, for y > 0, we have

P@&:n)= [ p0. 010U 0 - PQU; D

=2 fo p(y, DIQ(; 1) —ol'dt +2* J; p(y, DIPQ(; 1) —of'dt
-0 as y-—oo,

For the converse, we note that the given conditions are equivalent to
[ pe.nlagsn-Pog:pat >0 as yoe,
0
and

f p(y, DIPQ(U;)—o|’'dt >0 as y —>co.
[(]

It easily follows that

I p(,DIQ(f;t)~ol'dt>0 as y—>x,

0

that is, that f(x)— o [P, Ql,-
We now prove some consistency theorems.

Theorem 6. Suppose that limsup,..fo p(x,t)dt >0. If f(x)>o[P,Q), and
f(x)=>7[P, Ql,, then o = 1.

Proof. This follows since

©

Ia-*rl"rp(x,t)dté?f p(x,t)IQ(f;t)—ol‘dHZ"L p(x, QU ; 1) — r*dt.

0 [

We note the contrapositive, for it is of interest in its own right.

Corollary. If f(x)~>o[P,QY and f(x)>7[P,Q1, where o#1, then
lim,-. fo p(x, t)dt = 0.
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Theorem 7. Suppose that lim,_.. f¢ p(x, t)dt =0 and that o is any real number. If
f(x) is bounded on [0, ), then f(x)— o[P, I,. (Here, I denotes the identity transform).

Proof.

fp(x,t)lf(t)—ol‘dtésuv{lf(t)—al‘}f p(x,t)dt >0 as x>
[} =0 0

This theorem is not totally satisfactory because of the restriction on f, and in the
next theorem we shall consider unbounded functions.

Theorem 8. Suppose that f(x) is unbounded as x =, that lim,_. 5 p(x, t)dt =0,
and that [q p(x,-t)dt converges uniformly in x, for x =0. Then there is a positive
monotonic increasing unbounded step-function, v(x), such that f(v(x))—>O[P, I1,.

For the proof of Theorem 8, we shall first prove a lemma.

Lemma. Suppose that F(x) is positive and unbounded as x — o, and that
Jo p(x, )dt converges uniformly in x for x =0. Then there is a positive monotonic
increasing unbounded sequence {T,} with Ty =0, and a positive monotonic increasing
unbounded step-function, v(x), with steps at T, such that T,(x)= [T, p(x,t)dt =
1/2"F (v(Tv))) for all x = 0.

Proof. First we note that for any such step-function v(x), it follows that 7,(x)—->0
as n — o uniformly in x for x = 0. Suppose then that v(x) has been chosen for x < T,_,
with the required properties. Let T =T,_,+n and choose v(x) to be constant on
[Tn—h T)

Let 7(x)= [t p(x, t)dt. If 7(x)=1/(2"FQRv(T,-1))) then we may choose T, = T and
v(T,) =20v(T,-). If 7(x)>1/Q2"FQv(T,-))) then we may choose T* > T, such that
v(x) is constant on [T,—;, T*) and such that 7*(x) = [7x p(x, t)dt =1/2"F Qu(T.-1))).
This is possible since 7(x)—> 0 as T — « uniformly in x. Now we may choose T, =T*
and v(T,) = 2v(T,-1).

Proof of Theorem 8. By the lemma, we have that
= [ px 0di = U GTI). )
Also,

© i Tas
[ ptx olfoenpar =3, [ px olf e
0 n=0JT,

=

1M

Tpsy
Tt [ pex, nar
) T,

=2 (N (T

By (1), this sum is uniformly convergent. Since lim,_. 7.(x) = 0, the result follows.
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Corollary. Suppose that f(x) is unbounded as x > =, that lim,_. [¢ p(x, t)dt =0,
and that [¢ p(x, t)dtis continuous in x for all positive x. Then there is a positive increasing
unbounded step-function, v(x), such that f(v(x))—> 0[P, I],.

Proof. It is sufficient to show that if there is a positive monotonic increasing
unbounded sequence {T,}, such that 7,(x) = J7, p(x, t)dt is continuous in x in [0, ®)
and for all n, and if lim,_.. fo" p(x, t)dt =0, then [g p(x, t)dt converges uniformly in x
for x = 0.

Suppose then that € > 0 is given. Then there exists X, = Xq(€) such that
I:P(X. ndt <e for all x = X,.
If we can now show that
f: p(x,)dt <e forallxin [0,X,] andsome T,= Ty(e)>0 2)
0

then we would have that 7 p(x, t)dt <e€ for all x=0 and T = T,, and a fortiori that
I p(x, 1)dt is uniformly convergent in x for x =0.

Assume then that (2) is false: thus there exists sequences {x,}C [0, X,] and {t,}
such that ¢, >, and such that

f pix,t)dt =€ foralln. 3)

We may also assume that x, = xo € [0, X,].
Since fo P(x,,t)dt <o, we have that f;‘;op(xo, t)dt < €/2 for some nyo= nye), and
since 7,(x) is continuous, we further obtain that

f {p(x0, t) — p(x4, t)}dtl < €2 for all n = no.

no
Hence

U: p(xa, t)dtl = f: p(xo, t)dt| + “: {p (xn, t) — p(x0, 1)}dt

<e forallnz=n,,

which contradicts (3).

Finally, we prove a theorem which determines which numbers can occur as the
generalised strong limits of functions.

Definition. We call ¢ a limit value of f(x) at infinity (abbreviated LVI) if for
every positive number € and for every real y, there exists a real x, greater than y, such
that |[f(x)— o] <e.

Theorem 9. Suppose that [ p(x, t)dt -0 as x> for every finite Y, and that
lim sup . fo p(x, t)dt = M > 0.

) If f(x)>o[P, I],, then o is an LVI of f(x);

(i) If f(x) is bounded [P, I),, then f(x) has an LVL.

Proof. (i) Suppose that o is not an LVI of f(x). Then there is a positive number €
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and a real y such that for all t >y, we have |f(t) — o| = ¢, Thus

L P& OIf) - aPdi 2 & [ pix, e

so that lim sup,.. f5’ p(x, )|f(t) — o|*dt = €*M >0, and this is a contradiction.
(ii) Suppose that f(x) had no LVI. It follows that |[f(x)] > as x =, and further
that g p(x, H)|f(¢)]*dt is unbounded as x -» %, which again is a contradiction.
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