
Proceedings of the Edinburgh Mathematical Society (1978), 21. 73-78 ©

ON STRONG INTEGRAL SUMMABILITY

by E. C. HEAGY and B. L. R. SHAWYER*
(Received 21st June 1976)

Strong summability has been studied by many authors, including Borwein and
Cass (1, 2) who have studied sequence-to-sequence transforms. Here we study
integral transforms; and due to the lack of a limitation theorem for such transforms,
some results do not follow directly as in the sequence cases. The strong methods
defined here can be applied to construct known and new strong summability methods.
We do not give details here, but refer the reader to (3) with the suggestion that the
natural scale operator method be used for Q and the named method for P. For
example, with the Cesaro methods, let P = (C, K, 5) and Q = (C, 8) to obtain [C, K]* =

Suppose throughout that f(x) exists for x g 0 and is integrable L over every finite
interval. Suppose further that the transform

0= p(x,t)f(t)dt
Jo

exists for all x > 0. If P(f; x)-»cr as x -»°°, then we shall say that / is limitable to a by
the method P and write /(x)-»o-(P). This general method includes many well-known
integral summability methods such as the Cesaro and Hausdorff methods.

We shall now define strong integral summability methods.

Definition. If P( |Q( / ; . ) - <x|A; x) exists for x >0 and tends to zero a s x ^ " , then
we shall say that / is strongly limitable P, Q with index A, to <r, and write /(*)-»
cr[P, Q]\. Note that this is the same as

p(x,t)\Q(f;t)-a\xdt^0 as x^°o.
o

Here, Q can be any summability method, either of sequence-to-function or of
function-to-function type.

In what follows we shall only consider methods P in which p(x, l ) £ 0 for all x and
t concerned. When we require more than one such method, we shall write them as Pt

and P2. We shall also suppose throughout that A > 0. Given any two summability
methods (of the same type) we write P D Q whenever any sequence or function (as
the case may be) summable by Q to cr is also summable by P to <r.

In the rest of this paper, we prove some inclusion relationships that involve
variations in the parameters P, Q and A. We prove a necessary and sufficient
condition for strong functional summability in terms of ordinary summability plus a
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condition, in a way that reflects the usual results of this type. We also prove some
consistency theorems and define a set of numbers which includes those values which
may be attained as strong limits of functions. All these results are comparable with
the results of Borwein and Cass (2) for sequence-to-sequence transformations.

Theorem 1. (i) If P and Q are regular, then so is [P, Q]k;
(ii) / / P, D P2, then [Pu Q]A D [P2, Q]A;
(iii) [P, Q]A is linear; that is, if /(x)-»<r[P, Q]A, g(x)-+T[P, Q]A and a and /3 are

constants, then a/(x) + /3g(;c)-»(acr+ /3T)[P, Q]A.

These all follow directly from the definitions.

Theorem 2. / / P2 is regular, if Pt is zero-preserving and A g 1, then [Pu P2Q]A D
[P1P2, QL-

Proof.
A

dt

A

dt

P, ( |P 2 Q( / ; . ) -o f ;y ) = f P i (y ,o | f p2(t, x)Q(f; x)dx - a
Jo I Jo

= f Pi(y,o|f P2(t,x){Q(f;x)-a-}dx
Jo I Jo

where, since P2 is regular, h(t)-»O as f-»°°,

=i2A f p,(y,o|f p2ax){Q(/;x)-(r}dx Tdt
Jo IJo I

+ 2A f p,(y,r)|h(O|Adt
Jo

= 2A(/, + J2).

Since P, is zero-preserving, we have that J2—»0 as y-»°°. And by Holder's
inequality,

s f p,(y,t)dt f p2{t,x)\Q(f;x)-a-\Kdx(\ p2(t,x)dxX '
Jo Jo \Jo /

•)-tr\ ;y))^-0 as y^-oo.

Note that Jo pi(t, x)dx is uniformly bounded is a consequence of the regularity of P2.

Theorem 3. If /<Tp(x, t)dt < M for allx^O and A > pi >0 , then [P, Q]M D [P, Q]A-

Proof. This result follows since

P(\Q(f;.)-o-r;x)= f p{x,t)\Q(j;t)-o-\»dt
Jo

g(Jo p(x,f)|Q(/;0-o-|Adt)"
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Corollary. If P is regular and \>n>0, then [P, (?]„ 2 [P, Q]x.

Theorem 4. If P is zero-preserving, then [P, Q]A 3 Q.

Proof. We have that Q(/;x)-»<r. Thus |Q(/;x)-o-|A-»0 and the result follows.

Theorem 5. Suppose that P is regular and that AS1 . Then /(*)-> tr[P, Q]A i/ and
on/y iff(x)^<r(PQ) and g(x)^0(P), where g(x) = \Q(f;x)-PQ(f;x)\\

Proof. Suppose that /(*)-» <r[P, QL. In view of Theorem 3, we may take A = 1,
and so we can easily deduce that /(x)-xr(PQ). Thus we get that \PQ(J;x) — cr|A-»O
and a fortiori that \PQ(f; x) - of ^O(P). Further, for y > 0, we have

P(g;y)=[ p(y,t)\Q(f;t)-PQ(f;t)\"dt
Jo

S 2 A f p ( y , f ) | Q ( / ; 0 - c r | A d f + 2 A f p(y, t)\PQ(f; t)-<x\xdt
Jo Jo
f

Jo

-*0 as y-»oo.

For the converse, we note that the given conditions are equivalent to

and

f p(y,t)\Q(f;t)-PQ(f;ttdt^O as
Jo

I p(y, t)\PQ(f;t)-cr\>'dt^O as
Jo

It easily follows that

I p(y,t)\Q(f;t)-<r\*dt^O as y^-°°,
Jo

that is, that /(x)-»o-[P, Q]x.

We now prove some consistency theorems.

Theorem 6. Suppose that lim supx_ra/o°°p(x, t)dt >O. / / / (x)-*a[P, Q]x

Proof. This follows since

| o - - r | A p(x,t)dt^2x\ p ( x , 0 | Q ( / ; 0 - < r | A ^ + 2 A p (x , t)\Q(f; t)- r\kdt.
Jo Jo Jo

We note the contrapositive, for it is of interest in its own right.

Corollary. / / /(x)-^o-[P, Q]A and f(x)->r[P,Q]x where v* r, then
x^fop(x, t)dt =0.
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Theorem 7. Suppose that limI_^,/^°p(x, t)dt = 0 and that a is any real number. If
f(x) is bounded on [0, <»), then /(x)-»<r[P, / ] A . (Here, I denotes the identity transform).

Proof.

as x -» oo.f p(;t, 01/0)-ofdtS sup {|/(0-of} f p(x,t)dt^O
Jo tso Jo

This theorem is not totally satisfactory because of the restriction on /, and in the
next theorem we shall consider unbounded functions.

Theorem 8. Suppose that f(x) is unbounded as x-*<*>, that limx-^Jo p(x, t)dt = 0,
and that Jo p(x,t)dt converges uniformly in x, for Jt^O. Then there is a positive
monotonic increasing unbounded step-function, t>(x), such that f(v(x))-*0[P, I]k.

For the proof of Theorem 8, we shall first prove a lemma.

Lemma. Suppose that F(x) is positive and unbounded as x-»°°, and that
Jop(x,t)dt converges uniformly in x for xSO. Then there is a positive monotonic
increasing unbounded sequence {Tn} with T0 = 0, and a positive monotonic increasing
unbounded step-function, v(x), with steps at Tn such that Tn(x) = /fn p(x, t)dt §
l/(2"F(B(T,)))/orflllx>0.

Proof. First we note that for any such step-function v(x), it follows that Tn(x)-»0
asn^<» uniformly in x for x S 0. Suppose then that v(x) has been chosen for x < Tn-t

with the required properties. Let T = Tn~\ + n and choose v(x) to be constant on
[T,-,, T).

Let T(X) = JTP(X, t)dt. If T(X) S l/(2"F(2t>(Tn-,))) then we may choose Tn = T and
v(Tn) = 2v(Tn-i). If T ( X ) > l/(2"F(2i)(Tn-,))) then we may choose T* > T, such that
v(x) is constant on [Tn-,, T*) and such that T*(X) = JT>P(X, t)dt ^ l/2nF(2i>(Tn-i))).
This is possible since T(X)-»0 as T->« uniformly in x. Now we may choose Tn = T*
and v(Tn) = 2v(Tn-{).

Proof of Theorem 8. By the lemma, we have that

Tn(x) = f p(x, t)dt S l/(2n|/d;(rn))|A). (1)
Jrn

Also,

f p(x, t)\f(v(t)tdt = 2 fr"" p(x, /)|/(t;(
Jo »=o Jrn

^ E TB(x)|/d;(rn))|
A.

n=0

By (1), this sum is uniformly convergent. Since limx_«» rn(x) = 0, the result follows.
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Corollary. Suppose that f(x) is unbounded as x->°°, that limx_^/0"p(jc, t)dt = 0,
and that fo p(x, t)dt is continuous in x for all positive x. Then there is a positive increasing
unbounded step-function, v(x), such that f(v(x))-+0[P, 7]A.

Proof. It is sufficient to show that if there is a positive monotonic increasing
unbounded sequence {Tn}, such that rn(x) = fjn p(x, t)dt is continuous in x in [0, °°)
and for all n, and if \imx^fo p(x, t)dt = 0, then /0°°pU, t)dt converges uniformly in x
for x g 0.

Suppose then that e > 0 is given. Then there exists Xo = X0(e) such that

( p(x,t)dt<e foralljc&Xo-
Jo

If we can now show that

p(x,t)dt<e for all x in [0, Xo] and some To=To(e)>0 (2)r
JTc

then we would have that J7 p(x, t)dt <e for all x S 0 and T g To, and a fortiori that
fo p(x, t)dt is uniformly convergent in x for x^O.

Assume then that (2) is false: thus there exists sequences {jcn}C[0, Xo] and {*„}
such that /„-»<», and such that

p(x,t)dt^e for all n. (3)

We may also assume that xn -» xo£ [0» Xo].
Since /0" P(JC0, O f̂ < °°, we have that /fn p(x0, t)dt < e/2 for some n0 = no(«)» and

since T^X) is continuous, we further obtain that

If, {p(xo,t)-p(xn,t)}dt\<el2 for all n g «0.

Hence

J | f p(x0, Odfl + lf {p(xnyt)-p(x0, t)}dt

< e for all n a n0,

J

which contradicts (3).

Finally, we prove a theorem which determines which numbers can occur as the
generalised strong limits of functions.

Definition. We call a- a limit value of f(x) at infinity (abbreviated LVI) if for
every positive number e and for every real y, there exists a real x, greater than y, such
that \f(x)-cr\<e.

Theorem 9. Suppose that f0
Y p(x,t)dt-*0 as x-»<» for every finite Y, and that

lim supx.«. Jo" p(x, t)dt = M > 0.
(i) Iff(x)^a[P, 7]A, then a is an LVI of f(x);
(ii) Iff(x) is bounded [P, / ] A , then f(x) has an LVI.

Proof, (i) Suppose that a is not an LVI of f(x). Then there is a positive number e
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and a real y such that for all t > y, we have \f(t) - <r\ a c, Thus

fpix, t)\f(t)-a\kdt g ek fp(x,
0 Jy

t)dt

so that lim supx^fo p(x, t)\f(t)- a\kdt g eAM >0, and this is a contradiction.
(ii) Suppose that f(x) had no LVI. It follows that \f{x)\-*°° as JC-»<», and further

that fo p(x, t)\f(t)\kdt is unbounded as JC-*°°, which again is a contradiction.
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