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Abstract 

In top-down design, optimal component requirements are difficult to derive, as the feasible components that 

satisfy these requirements are yet to be designed and hence unknown. Meta models that provide feasibility 

and mass estimates for component performance are used for optimal requirement decomposition in an 

existing approach. This paper (1) extends its applicability adapting it to varying design domains, and (2) 

increases its efficiency by active-learning. Applying it to the design of a robot arm produces a result that is 

1% heavier than the reference obtained by monolithic optimization. 

Keywords: topological optimisation, artificial intelligence (AI), data-driven design, systems 
engineering (SE) 

1. Introduction 
Designing systems with many interacting components can be a difficult task due to many disciplines 

and departments involved throughout the product development process. In classical top-down 

development, requirements are therefore first formulated on the system level and then passed on to 

lower levels and finally the respective components (Forsberg and Mooz, 1991). The components are 

then typically designed by separate engineering groups. This procedure is especially beneficial from a 

designer's perspective who may work on parts rather than the entire system at once (Eckert and 

Clarkson, 2005). However, since the detail level information is not a priori known, suboptimal system 

level decisions may lead to iterations or inferior designs (Zimmermann et al., 2017).  

In the context of design optimization, optimization architectures were developed to resemble this 

distributed development process. Distributed optimization architectures decompose a given system 

into smaller subproblems allowing for individual design by separate groups. However, most of these 

optimization architectures are not fully separable and rely on a coordination strategy to maintain 

consistency between shared quantities of components and the system (Martins and Lambe, 2013). For 

instance, Albers and Ottnad (2008) carried out a distributed optimization, where a static topology 

optimization of a humanoid robot arm was combined with a dynamic co-simulation of a multi-body 

simulation and a control scheme. Beernaert and Etman (2019) presented an automatic way of 

converting requirements into a distributed optimization problem and solving it for a multidisciplinary 

two-level power train design. Further, Kim et al. (2016) and Wang et al. (2019) decomposed structural 

optimization problems on the system level by decoupling the respective physical components using 

meta models allowing for independent component development. However, this decomposition is 

carried out iteratively with a feedback loop that is updating the system level with bottom-up 

information.  

By contrast, complete decoupling, i.e., horizontal decomposition between system and component level 

and vertical decomposition between different components, makes further coordination between 
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disciplines or components after the decomposition unnecessary. This kind of decoupling was 

introduced by Zimmermann and von Hoessle (2013) and was further developed into a design 

procedure in Zimmermann et al. (2017). However, missing detail level information can lead to 

suboptimal system level decisions and due to the complete decoupling to an exclusion of optimal 

designs (Krischer et al., 2020). Krischer and Zimmerman (2021) therefore established a design 

procedure for complete decoupling that uses meta models containing detail level information about 

component properties. A regression model estimates the lowest possible mass with respect to 

component stiffness. The component properties can therefore be assigned in a more mass-optimal 

way. A classification model allows for estimates of physical feasibility, i.e., the ability to realize a 

given component performance with a detail level design in a later stage. The developed procedure was 

referred to as Informed Decomposition. However, the process of establishing meta models is 

computationally expensive. Mechanical similarity analysis allows for higher applicability for same 

characteristic sizes of the components (Ramu et al., 2013). Nevertheless, sometimes a new training 

process is inevitable. A possible way to enhance the meta models further is to add input parameters 

that consider geometrical changes of the components explicitly. In this way, a meta model is valid 

over a wider range of different geometrical design domains. 

In this paper, the existing approach to design multi-component systems by a system optimization and 

completely decoupled component optimizations is extended to meta models for varying geometrical 

design domains. The meta models are trained by a 2-phase active-learning strategy, considering not 

only mechanical stiffness properties, but also different lengths of the components allowing for higher 

applicability. The procedure is applied to a three-component robot arm, where the components are 

designed via a 3-dimensional topology optimization. For the components, that all differ in length, only 

one regression model and one classifier model need to be trained. The paper is organized as follows: In 

Section 2, the design problem is introduced, Section 3 presents the proposed approach with the 

developed extension to varying geometrical design domains and the active-learning strategy. In Section 

4, results for 3-dimensional topology optimization are presented and compared to a full monolithic 

optimization. The results are then discussed in Section 5 and the conclusion is presented in Section 6. 

2. Design problem 
A seven degrees of freedom robot arm is to be designed. In particular, the weight-optimal shape of the 

components is to be determined. The arm consists of three components: upper arm (1), lower arm (2), 

and hand (3), with the lengths 𝑙(1) = 100 mm, 𝑙(2) = 200 mm and 𝑙(3) = 50 mm, respectively. The 

three degrees of freedom shoulder is realized with three subsequent revolute joints 1-3, whereas the 

elbow 4-5 and the wrist 6-7 possess two revolute joints each for the pitch and roll movement, see 

Figure 1 (a). The requirement on the system stiffness is: The robot arm must sustain a vertical load of 

F =  50 N with a maximum tip displacement of dc = 0.3 mm in a straight position. Under the 

assumption of rigid joints, the robot arm is clamped on the left side at the last shoulder joint 3, while the 

payload 𝐹 is applied on the right end of the robot arm, see Figure 1 (b). Each component is modelled 

with ABS as linear elastic (𝐸 = 1.91 GPa, 𝜈 = 0.36, 𝜌 = 1.07 g/cm3) and has two interfaces. Each 

interface possesses two degrees of freedom: one translational and one rotational, see Figure 1 (c).  

 
Figure 1. Three-component robot arm with seven degrees of freedom (a), the reference load 

case for the given requirement (b) and the component description with two interfaces and two 
degrees of freedom (c) 

Figure 2 (a) illustrates the dependencies between all relevant quantities that are needed to solve the given 

design problem. The design variable vector 𝑥(𝑖) includes all design details for component i on the 
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component-detail level (III). For a given material, the design variable vector 𝑥(𝑖) determines the detailed 

stiffness matrix 𝑲𝑑(𝑖) that can be represented by the component stiffness matrix 𝑲(𝑖) ∈ 𝑅4𝑥4 on the 

component-performance level (II). Under a given load 𝐹, the structure deforms resulting in a system tip 

displacement 𝑑. Similarly, the detailed description 𝑥(𝑖) also defines the mass 𝑚(𝑖) of each component 

and consequently the system mass 𝑚 = ∑ 𝑚(𝑖)
3
𝑖=1 . The monolithic optimization problem reads 

 min
𝑥(𝑖)

 ∑ 𝑚(𝑖)(𝑥(𝑖), 𝑙(𝑖))  

𝑠. 𝑡. : 𝑑(𝑥(𝑖), 𝑙(𝑖)) − 𝑑𝑐 ≤ 0  

 𝒙𝑙𝑏 ≤ 𝒙(𝑖) ≤ 𝒙𝑢𝑏 for 𝑖 = 1,2,3.

 (1) 

The results of this monolithic optimization problem serve us as a comparison for the optimality of the 

proposed approach in Chapter 3. 

 
Figure 2. Dependencies between all relevant quantities: on the system level (I), component-
performance level (II) and the component-detail level (III) in a monolithic approach (a) and for 

the proposed approach consisting of a system optimization (b) and component optimizations (c) 

3. Informed decomposition 

3.1. Systems design 

To enable a development process that is separated for three components, the given design problem of 

Chapter 2 is decomposed. The proposed systems design approach, see Figure 3 (a), consists of a 

system optimization and respective n completely decoupled component optimizations. 

 
Figure 3. Overview over the proposed approach consisting of systems design (a) and a 

procedure to establish meta models using an active-learning strategy (b) 

The system optimization decomposes the given design problem in a mass-optimal way utilizing meta 

models for estimates on mass 𝑚 and feasibility 𝑓, while satisfying the given system stiffness 

requirement on 𝑑, see Figure 2 (b). In contrast to Krischer and Zimmermann (2021), 𝜿 consists of 

three diagonal entries instead of the eigenvalues of the component stiffness matrix 𝑲 ∈ 𝑅4𝑥4 

𝜿 = [𝑘11, 𝑘22, 𝑘44]. (2) 
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It can be shown that for a given design domain and two interfaces with two degrees of freedom, this is 

a sufficient representation of 𝑲.  𝑘11 is hereby the stiffness with respect to translational deformations 

of the first interface, whereas 𝑘22 and 𝑘44 represent the stiffnesses with respect to rotational 

deformations of both interfaces, as shown in Figure 1 (c). The system optimization problem reads  

 min
𝜿(1),𝜿(2),𝜿(3)

∑ �̂�(𝜿(𝑖), 𝑙(𝑖))  

𝑠. 𝑡. : 𝑑(𝜿(i), 𝑙(𝑖)) − 𝑑𝑐 ≤ 0  

 −𝑓(𝜿(𝑖), 𝑙(𝑖)) ≤ 0  

 𝜿𝑙𝑏 ≤ 𝜿(𝑖) ≤ 𝜿𝑢𝑏  for 𝑖 = 1,2,3.

  (3) 

The system optimization does not solve the high dimensional system equations of the detailed stiffness 

matrices 𝑲𝑑(𝑖) related to 𝑥(𝑖), but only computes the displacement 𝑑(𝜿(i), 𝑙(𝑖)) for the low dimensional 

component stiffness matrices 𝑲(𝑖) ∈  ℝ4𝑥4 with the design variables 𝜿(𝑖), making the system 

optimization less expensive. For a given length 𝑙(𝑖), the functions �̂� and 𝑓 map the stiffness entries on 

mass and feasibility estimates for all three components. A particle swarm optimization is utilized to 

solve the given system optimization problem (Eberhart and Kennedy, 1995). The solutions 𝜿(𝑖) of 

Equation 3 are used as reference stiffnesses 𝜿0(𝑖) of the subsequent n=3 completely decoupled 

component optimizations.  

The component optimization between level (II) and (III), as shown in Figure 2 (c), determines the 

optimal design variable vector 𝑥(𝑖) for each component with minimum mass 𝑚(𝑖) for a given 𝜿0(𝑖). 

The associated optimization problem reads 

 min
𝒙(𝑖)

𝑚(𝑖)(𝒙(𝑖), 𝑙(𝑖))  

𝑠. 𝑡. : |𝜿(𝑖)(𝒙(𝑖), 𝑙(𝑖)) − 𝜿0(𝑖)| ≤ 0  

 𝒙𝑙𝑏 ≤ 𝒙(𝑖) ≤ 𝒙𝑢𝑏 for 𝑖 = 1,2,3 

 (4) 

where 𝒙𝑙𝑏 and 𝒙𝑢𝑏 are the lower and upper bounds on the detailed design variables 𝒙(𝑖), 𝜿(𝑖) is the 

representation of the candidate component stiffness matrix 𝑲(𝑖) associated with 𝒙(𝑖) for a given length 

𝑙(𝑖). The stiffness constraint |𝜿(𝑖)(𝒙(𝑖), 𝑙(𝑖)) − 𝜿0(𝑖)| is formulated for numerical processing as 

−𝜖 ≤ [
κj−𝜅𝑗,0

𝜅𝑗,0
]

 

≤ 𝜖    for 𝑗 = 1,2,3. (5) 

In the following, the design domain for each component is restricted to a height of ℎ =  100 mm and 

a width of 𝑤 = 25 mm, the connection to the interface is modelled as rigid. The modelling process 

consists of three steps (Figure 4): 

a) Discretization of the design domain with 3-dimensional brick elements 𝑲𝑒, 

b) Static condensation of the design domain with respect to the left and right side of the domain, 

c) Kinematic condensation with respect to the four interface degrees of freedom. 

 
Figure 4. Modelling process of the component stiffness matrix consisting of discretization (a), 

static condensation (b) and kinematic condensation (c) 
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The design domain for each component of length 𝑙𝑑(𝑖) is discretized with 𝑛𝑒 = 1024 3-dimensional 

brick elements 𝑲𝑒, see Figure 4 (a). For the design of the components, a 3-dimensional topology 

optimization based on the SIMP method is utilized (Bendsøe and Sigmund, 2004). The design variable 

vector for the component optimization of Equation 4 is therefore defined as the element densities 

𝒙 = [𝜌𝑒], (6) 

with a penalty factor of 𝑝 = 3 and a sensitivity filter radius of 𝑟 = √3. To ensure a planar 

deformation, planar-symmetry with respect to the x-y and x-z-plane is enforced. The detailed stiffness 

matrix reads 

𝑲𝑑 = ∑ 𝜌𝑒
𝑝

𝑲𝑒 .
𝑛𝑒
𝑒=1  (7) 

In order to determine the elastic deformation behaviour with respect to the interface degrees of 

freedom, first a static condensation (Guyan, 1965) is carried out to the master degrees of freedom for 

the left and right side of the design domain, Figure 4 (b). The remaining degrees of freedom of the 

design domain are then connected rigidly to the interface degrees of freedom using a kinematic 

condensation with a multi-point constraint, e.g. Liu and Quek (2013), see Figure 4 (c). The final 

component stiffness matrix is 

𝑲𝑟𝑔 = 𝑻𝑟
𝑇(𝑻𝑔

𝑇𝑲𝑑𝑻𝑔)𝑻𝒓,  (8) 

with the transformation matrices 𝑻𝒈 for the static and 𝑻𝒓 for the kinematic condensation. The 

optimization problem is solved utilizing the Method of Moving Asymptotes by Svanberg (1987).  

The derivatives with respect to the entries 𝜿 = [𝑘11, 𝑘22, 𝑘44] of the component stiffness matrix 

𝑲𝑟𝑔 ∈  ℝ4𝑥4 are 

𝜕𝑲𝑟𝑔

𝑑𝜌𝑒
= 𝑻𝑟

𝑇 (𝑻𝑔
𝑇 𝜕𝑲𝑑

𝑑𝜌𝑒
𝑻𝑔) 𝑻𝑟,          

𝜕𝑲𝑑

𝑑𝜌𝑒
= 𝑝 𝜌𝑒

𝑝−1 
𝑲𝑒 (9) 

and the mass gradients can be computed as 

𝜕𝑚

𝑑𝜌𝑒
= 𝜌𝐿𝑒𝐻𝑒𝑊𝑒 , (10) 

with 𝜌 as the density of ABS and 𝐿𝑒 , 𝐻𝑒 , and 𝑊e as the element dimensions. Since the problem was 

completely decoupled by the system optimization, the system stiffness measured by the total system 

displacement 𝑑 is assumed to satisfy the requirement 𝑑 ≤  𝑑𝑐, if the component optimizations are all 

feasible. 

3.2. Establishing meta models using an active-learning strategy 

When the feasibility estimator 𝑓 and the mass estimator �̂� are not available, meta models can be 

established following the procedure depicted in Figure 3 (b). First, the input sample data needs to be 

created by sampling the input space  [𝑘11 × 𝑘22 × 𝑘44 × 𝑙] ∈ ℝ4  

𝑿𝐴 = [𝑘11, 𝑘22, 𝑘44, 𝑙]A, (11) 

within the bounds [𝑿𝑙𝑏, 𝑿𝑢𝑏]. The sample output vector contains information about feasibility 𝑓𝐴 and 

mass 𝑚𝐴 

𝒀𝐴 = [𝑓, 𝑚]A. (12) 

The sample data [𝑿, 𝒀] ∈ ℝ𝑁 ×6 , can be used to train the feasibility estimator 𝑓and the mass estimator 

�̂� for the system optimization problem of Equation 3. However, most combinations of stiffness entries 

𝜿 = [𝑘11, 𝑘22, 𝑘44]𝐴 for a given length 𝑙𝐴 cannot be realized physically, i.e., are infeasible. According 

to Krischer and Zimmermann (2021), the following requirements must be satisfied to have a feasible 

input sample 𝑿𝐴: 

1. 𝑲 must be symmetric, 

2. rigid body deformations should result in zero forces, 

3. 𝑲 must be positive semi-definite, 

4. a detailed geometry 𝒙 must exist with an associated stiffness 𝜿 at length 𝑙. 
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For each 𝑿𝐴 a detail level design 𝒙𝐴 is computed using the component optimization problem of 

Equation 4. The requirements are satisfied if there exists a corresponding component-detail design 𝒙𝐴, 

i.e., if the optimization algorithm converges. The feasibility flag is then set to 𝑓𝐴 = 1 and added to the 

input sample together with the corresponding mass 𝑚𝐴, otherwise the sample point is infeasible 

𝑓𝐴 =  − 1 and no mass is assigned, 𝑚𝐴 = [ ]. Due to the imposed requirements on the stiffness 

matrix, any data set is assumed to have much more infeasible than feasible data points. This is not 

only disadvantageous for the training process of the classifier, but also makes the process less 

efficient, because infeasible data points can only be used for the feasibility estimator, but not for the 

mass estimator. Since each point is evaluated carrying out an optimization involving the high 

dimensional component-detail level, the sampling is computationally expensive.  

For this reason, Krischer and Zimmerman (2021) developed a special parametrization of stiffness 

matrices using eigenvalues and eigenvectors to reduce the amount of infeasible data. However, a 

generalization to arbitrary mechanical components in higher dimensions can be difficult. Another way 

of dealing with imbalanced training data are active-learning sampling strategies. Active-learning refers 

here to algorithms that automatically choose data points from which they learn, hence feasible regions 

can be sampled efficiently (Kremer et al., 2014; Ertekin et al., 2007). One specific class of active-

learning strategies is called uncertainty sampling, where the sample points are selected in regions 

where the classifier is most uncertain about, i.e., closest to the classification boundary. Support Vector 

Machines (SVM) are especially suited for this kind of sampling due to the underlying mathematical 

training concept of minimizing the distances to the separating classification hyperplane (Ertekin et al., 

2007; Kremer et al., 2014; Corinna Cortes and Vladimir Vapnik, 1995). Based on uncertainty 

sampling a two-phase active-learning strategy is proposed consisting of (i) classification sampling and 

(ii) regression sampling, see Figure 5 (a). 

 
Figure 5. Active-learning strategy: process (a), sample designs for training the feasibility 

estimator (b), and sample designs for training the mass estimator (c). Green and red dots in (b) 
show feasible and infeasible sample points, respectively, circles in (b) indicate proximity to the 

feasibility boundary, and red crosses in (c) mark infeasible designs that are ignored  

The classification sampling (i) approximates the hyperplane between feasible and infeasible designs 

by selecting sample points according to temporarily trained feasibility estimators 𝑓�̂�. In each iteration, 

𝑓�̂� is trained on an increasing set of training data to improve the selection quality of the sample points 

𝑿 ∈  ℝ𝑁𝐶 ×4 gradually. For the first iteration 𝐽 = 1, a physical seed 𝑿𝑝 is created, by randomly 

sampling the detail level design variables 𝒙𝑝 and the length 𝑙𝑝. Thus, all sample points of the first 

iteration exist and are therefore feasible, 𝒀𝑝 =  𝟏, ∀ 𝑿𝑝. Since only samples of one class (feasible 

designs) are created, a one-class SVM is trained to select the next input samples. For the consecutive 

iterations a binary SVM is trained (feasible/infeasible points). As illustrated in Figure 5 (b), for each 

iteration 𝐽, a random set of samples 𝑿𝑡 ∈ ℝ𝑁𝑡 ×4, is created and evaluated by the respective estimator 

𝑓�̂� (green and red dots). Afterwards, a subset of sample points 𝑿𝑠 ∈  ℝ𝑁𝑠 ×4, is taken (black circled 

dots) that have the closest distance to the estimated hyperplane, with 𝑁𝑡 ≫ 𝑁𝑠. For each iteration, the 
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sample size 𝑁𝑡 of the temporary samples 𝑿𝑡 is increased while the sample size 𝑁𝑠 of the subset 𝑿𝑠 is 

kept constant. Since the ratio 𝑁𝑡/𝑁𝑠 increases for each iteration, the selected subset of sample points 

𝑿𝑠 of iteration 𝐽 + 1 are likely to be closer to the trained hyperplane than the sample points of iteration 

𝐽. Each selected sample point 𝑿𝑠 is then evaluated using the component optimization of Equation 4. 

After a prescribed number of iterations 𝐶, a last classifier 𝑓𝐶 is trained on the whole sample data and 

phase (i) of the proposed active-learning strategy is completed.  

Next, the regression sampling (ii) is initiated, where 𝑁𝑀 mass samples are selected inside the feasible 

region of classifier 𝑓𝐶, as shown in Figure 5 (c). Note, that all feasible points of the previous phase (i) 

can be already added to the set of sample points. Each remaining sample point 𝑿𝐴 is created randomly 

within the bounds of the input space and is evaluated by the classifier 𝑓𝐶. If the sample point is 

classified as infeasible, the design is neglected, and a new point is created and evaluated. If it is 

feasible, the expensive component optimization is carried out to compute the respective mass and 

recheck the feasibility. If the predefined number of sample point 𝑁𝑀 is achieved, phase (ii) is 

completed, and the sample data can be utilized for the training of the final meta models �̂� and 𝑓 with 

respect to the whole data set [𝑿, 𝒀], as illustrated in Figure 3 (b). 

4. Results 
The proposed Informed Decomposition was implemented in MATLAB© and was applied to the design 

problem of Chapter 2. The results are then compared to the monolithic optimization of Equation 1. First, 

new meta models were established using the active-learning strategy of Chapter 0. The sample data of the 

classification sampling can be seen in Figure 6 (i). For 𝐶 = 10 iterations, 𝑁𝐶 =  4800 samples points 

were created. The final classification data set consists of 3091 feasible and 1709 infeasible data points 

resulting in even more feasible than infeasible data points, while still being sufficiently well-balanced. 

During the classification sampling, points were mostly selected at the vicinity of the classification 

boundary, hence many infeasible regions remained unsampled. For the regression sampling, see Figure 6 

(ii), 𝑁 = 5000 predicted mass samples were utilized, whereas 𝑁𝑀 =  4967 mass samples where feasible 

after evaluating them. Having a closer look at the feasible region, one can observe that the mass increases 

for higher stiffness values approaching the boundary to the infeasible region. Additionally, in accordance 

with the expected deformation behaviour of the components, the stiffness characteristics for constant 

component height and width decreases for greater length 𝑙 and increases for shorter 𝑙. Finally, fewer 

sample data is available in high stiffness regions, e.g. [𝑘11, 𝑘22], indicating for a thinner feasible design 

space, that is difficult to sample for the developed active-learning strategy. 

 
Figure 6. Sampling results of the developed active-learning strategy for the classification 

sampling (i) and the regression sampling (ii) 

Next, the meta models were trained. For the feasibility estimator, the data is split into 80% training 

and 20% test samples. The hyperparameters of the SVM are determined using a Bayesian optimization 

with a five-fold cross-validation on the training data. The resulting classifier has a false positive rate of 

𝐹𝑃 =  1.7 %, a true positive rate of 𝑇𝑃 =  95% and an accuracy of 𝑎𝑐𝑐 = 96%. The mass estimator 

is realized with a Feedforward Artificial Neural Network (ANN). The sample data is split into 80% 

training, 10% validation and 10% test samples. The ANN possesses 𝑛ℎ𝑙 = 4 hidden layers and 
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𝑛𝑛 =  13 neurons with a 𝑅2-value of 𝑅2 = 0.996 and a mean squared error of 𝑚𝑠𝑒 = 1.35 with 

respect to the volume fraction of the initial design domain. 

Having established the meta models, Informed Decomposition can be utilized to design the robot arm. 

First, the system optimization of Equation 3 was solved using the trained meta models. The results of 

the system optimization were compared to the ones of the monolithic optimization of Equation 1. The 

respective first three columns of Table 1 show the component performances 𝜿, represented by the 

stiffness matrix entries, for all components for both approaches. The results for component (1) and (2) 

of the system optimization and the monolithic optimization only slightly deviate. The results of 

component (3) show higher deviations in the last rotational stiffness entry 𝑘44. 

Table 1. Optimized component performances of the robot arm for the Informed Decomposition 
and the benchmark monolithic optimization and the respective component and system masses 

 

Com

p. 

Informed Decomposition  Monolithic Optimization 

𝑘11 

 (N/mm) 

𝑘22 

(Nmm/rad) 

𝑘44 

(Nmm/rad) 

𝑚 

 (kg) 

𝑘11 

(N/mm) 

𝑘22 

(Nmm/rad) 

𝑘44 

(Nmm/rad) 

𝑚 

 (kg) 

(1) 1.94 ∙ 103 4.14 ∙ 107 3.43 ∙ 107 0.157 1.83 ∙ 103 4.27 ∙ 107 3.43 ∙ 107 0.164 

(2) 646 2.33 ∙ 107 7.32 ∙ 106 0.249 552 2.22 ∙ 107 7.30 ∙ 106 0.242 

(3) 3.64 ∙ 103 9.39 ∙ 106 2.18 ∙ 106 0.037 3.38 ∙ 103 8.80 ∙ 106 4.10 ∙ 105 0.035 

∑ 0.443 ∑ 0.441 

 

The component performances 𝜿 are then subsequently used as reference values for the respective 

component optimizations of Equation 4. The resulting topologies are shown in Figure 7, whereas the 

masses are contained in the last column of Table 1. The robot arm designed by the Informed 

Decomposition shows only small deviations with respect to the topologies of component (1) and (2), 

whereas especially component (2) shows more intermediate element densities 𝜌𝑒 for the proposed 

approach. In accordance with the deviating stiffness entry 𝑘44 of component (3), also the topology 

deviates showing an additional horizontal reinforcement for the right interface strengthening the 

rotational stiffness. However, since the third component possesses the smallest design domain, the 

deviation affects the overall weight only slightly. In conclusion, the total mass of the robot arm for the 

proposed Informed Decomposition is 𝑚 =  0.443 kg which is a deviation of 0.5% with respect to the 

benchmark monolithic optimization, while both approaches satisfy the given system requirement 

𝑑 ≤   𝑑𝑐. 

 
Figure 7. Final topologies for the Informed Decomposition (a) and the benchmark monolithic 

optimization (b) 

5. Discussion 
The proposed approach was capable of completely decoupling a robot arm with varying component 

lengths enabling an independent and separate design process. Despite the complete decoupling, which 

supports the classical product development process, the system mass 𝑚 only slightly differs from the 

benchmark design with a deviation below 1%. This was achieved by meta models that provide 

information of the components to the system level before the components are actually designed. 
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The generation of the sample data for the meta models, i.e., mass and feasibility estimator, is the 

critical step within the proposed approach. Each sample point requires a computationally expensive 

component optimization leading to high sampling cost. The extension to varying geometrical design 

domains is therefore an important step for a higher applicability of each model. Eventually, the idea is 

to set up an off-line data base containing multiple meta models that can be used for arbitrary 

mechanical design problems making the need for a new training process very unlikely. So far, only the 

length can be changed while height and width remain constant. This limits the current approach since 

the design domain cannot be altered arbitrarily. 

The implemented active-learning strategy helps to enable an efficient sampling procedure while also 

providing a sufficiently well-balanced data set. However, the initial physical seed influences the 

course of the sampling strategy, and in general it is not guaranteed that the whole design space is in 

fact captured during the sampling procedure. For instance, as pointed out in Chapter 4, high stiffness 

regions seem to be not fully captured in the current procedure. 

Finally, topology optimization results often need a post-processing step to transfer the computed 

discretized, but continuous results (Figure 7) into a discrete physical product (Figure 8). Small 

changes in the obtained solution, however, might cause an invalid component behaviour violating 

consequently the system requirement. Hence, e.g., a consecutive shape optimization on the 

parameterized model could be carried out to ensure the validity of the approach. 

 
Figure 8. Topology optimized and post-processed three-component robot arm 

6. Conclusion 
In top-down design of multi-component systems, missing detail information often leads to suboptimal 

system level decisions and hence inferior designs. Meta models can be used to provide this 

information to the system level. In this paper, the top-down approach introduced in Krischer and 

Zimmermann (2021), consisting of an informed system optimization using meta models and 

completely decoupled component optimizations, was extended to meta models that are also valid over 

a range of varying component lengths. Hence, mechanical design problems can be solved without the 

need of carrying out the training process of the meta models every single time. If a new model is 

needed, an active-learning strategy, consisting of a classification and regression sampling phase, was 

developed. This new two-phase sampling strategy ensures an efficient sampling process together with 

a sufficiently well-balanced training data.  

The extended approach was then applied to a robot arm with three components of different length and 

compared to a monolithic system optimization, where the entire mechanical system is designed at 

once. The parts are designed utilizing a 3-dimensional topology optimization scheme. For all three 

components, only one mass and one feasibility estimator were trained. It was shown that the proposed 

approach can assign completely decoupled component requirements in a feasible and mass-optimal 

manner, hence enabling an efficient and separated design process. The resulting robot arm's weight 

only differs below 1% from the results of the monolithic optimization while satisfying the system 

requirement. In the future, the approach will be enhanced to problems with more degrees of freedom 

per interface. 
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