ON THE DISTANCE OF THE COMPOSITION OF TWO DERIVATIONS TO THE GENERALIZED DERIVATIONS

by MATEJ BREŠAR

(Received 19 June, 1989; revised 11 September, 1989)

Introduction. A well-known theorem of E. Posner [10] states that if the composition d_1d_2 of derivations d_1 , d_2 of a prime ring A of characteristic not 2 is a derivation, then either $d_1 = 0$ or $d_2 = 0$. A number of authors have generalized this theorem in several ways (see e.g. [1], [2], and [5], where further references can be found). Under stronger assumptions when A is the algebra of all bounded linear operators on a Banach space (resp. Hilbert space), Posner's theorem was reproved in [3] (resp. [12]). Recently, M. Mathieu [8] extended Posner's theorem to arbitrary C*-algebras.

Let d_1 , d_2 be derivations of a normed algebra A. Our purpose is to estimate the distance of d_1d_2 to the set of all generalized derivations of A. We consider the case when A is an ultraprime normed algebra (Theorem 1), the case when $d_1 = d_2$ and A is ultrasemiprime (Theorem 2), and finally, the case when A is a von Neumann algebra (Theorem 3). As a consequence of these results we obtain a partial answer to Mathieu's question [8]: what is the norm of the composition of two derivations in a prime C^* -algebra?

Our results will follow easily from two entirely elementary observations; it is our aim in this paper to point out the kind of method that could be used.

Notation and preliminaries. Let A be a ring and let $a, b \in A$. By $M_{a,b}$ we denote the mapping $x \to axb$ on A. Recall that A is said to be *prime* if $M_{a,b} = 0$ implies a = 0 or b = 0. M. Mathieu [6], [9] introduced the notion of an ultraprime normed algebra: a complex normed algebra is *ultraprime* if there exists a constant c > 0 such that

$$||M_{a,b}|| \ge c ||a|| ||b||$$
 for all $a, b \in A$. (1)

Every prime C*-algebra A is ultraprime since $||M_{a,b}|| = ||a|| ||b||$ for all $a, b \in A$ [7, Proposition 2.3]. Note that B(X), the algebra of all bounded linear operators on a normed space X, also has this property; (moreover, the same is true for every subalgebra of B(X) which contains all finite rank operators).

A ring A is said to be *semiprime* if $M_{a,a} = 0$ implies a = 0. M. Mathieu called a complex normed algebra A ultrasemiprime if there exists a constant c > 0 such that

$$||M_{a,a}|| \ge c ||a||^2 \quad \text{for all } a \in A.$$

Every C*-algebra A is ultrasemiprime. Namely, for $a \in A$ we have $||aa^*aa^*|| = ||(aa^*)^2|| = ||aa^*||^2 = ||a||^4$; hence $||a||^4 \le ||aa^*a|| \, ||a||$, which yields $||aa^*a|| = ||a||^3$; consequently $||M_{a,a}|| = ||a||^2$.

Let A be a ring. An additive mapping $\delta: A \to A$ is called a generalized inner derivation if $\delta(x) = ax + xb$ for some $a, b \in A$. Note that $\delta(xy) = \delta(x)y + x[y, b]$, where [u, v] denotes the commutator uv - vu. Thus

$$\delta(xy) = \delta(x)y + xh(y) \quad \text{for all } x, y \in A,$$
 (3)

where h is an inner derivation of A. Now, an additive mapping $\delta: A \to A$ will be called a generalized derivation if there exists a derivation h of A such that δ satisfies (3). By $\Delta(A)$

Glasgow Math. J. 33 (1991) 89-93.

we denote the set of all generalized derivations of A. In case A is a normed algebra, $\Delta_b(A)$ denotes the set of all δ in $\Delta(A)$ which are also bounded linear operators on A. Next, the set of all derivations of a ring A will be denoted by D(A), and by $D_b(A)$ we denote the set of all bounded derivations of a normed algebra A.

REMARK 1. Let A be a ring, $h: A \rightarrow A$ be any function, and $\delta: A \rightarrow A$ be an additive mapping satisfying (3). We intend to show that under rather mild assumptions h must necessarily be a derivation. On the one hand we have

$$\delta(xyz) = \delta(x(yz)) = \delta(x)yz + xh(yz),$$

and on the other hand,

$$\delta(xyz) = \delta((xy)z) = \delta(x)yz + xh(y)z + xyh(z).$$

Comparing these two expressions we obtain

$$x(h(yz) - h(y)z - yh(z)) = 0 (x, y, z \in A).$$

Similarly, by computing $\delta(x(y+z))$ in two ways, one shows that

$$x(h(y+z)-h(y)-h(z))=0 (x, y, z \in A).$$

Thus, if A has the property that Aa = 0 implies a = 0, in particular, if A is semiprime, then h is a derivation.

REMARK 2. Suppose a ring A has a unit element 1 and take x = 1 in (3). Then we get $\delta(y) = \delta(1)y + h(y)$ for all $y \in A$. Hence we see that every generalized derivation of A is an inner generalized derivation if and only if every derivation of A is inner.

We now state the crucial observations, which can be proved by direct computations.

OBSERVATION 1. Let A be a ring, $d_1, d_2 \in D(A)$ and $\delta \in \Delta(A)$. A mapping $F = d_1d_2 - \delta$ then satisfies the identity

$$F(xyz) - F(xy)z - xF(yz) + xF(y)z = d_1(x)yd_2(z) + d_2(x)yd_1(z).$$

OBSERVATION 2. Let A be a ring, and let $f: A \rightarrow A$, $g: A \rightarrow A$ be arbitrary functions. Then for all $x, y, z, w, u \in A$, we have

$$2f(x)yg(z)wf(u) = \{f(x)yg(z) + g(x)yf(z)\}wf(u) + f(x)y\{g(z)wf(u) + f(z)wg(u)\} - \{f(x)(yf(z)w)g(u) + g(x)(yf(z)w)f(u)\}.$$

REMARK 3. Using the above observations it is easy to prove the following slight generalization of Posner's theorem: if d_1 , $d_2 \in D(A)$ and $d_1d_2 \in \Delta(A)$, where A is a prime ring of characteristic not 2, then either $d_1 = 0$ or $d_2 = 0$. In our forthcoming paper [2] some similar results can be found.

The results. Let A be a normed algebra and let d_1 , d_2 , $d \in D_b(A)$. Our purpose is to estimate $dist(d_1d_2, \Delta_b(A))$ and $dist(d^2, \Delta_b(A))$, where

$$\operatorname{dist}(d_1d_2, \Delta_b(A)) = \inf\{\|d_1d_2 - \delta\|, \delta \in \Delta_b(A)\}.$$

THEOREM 1. Let A be an ultraprime normed algebra, and let $d_1, d_2 \in D_b(A)$. If a constant c > 0 satisfies (1), then

$$\operatorname{dist}(d_1d_2, \Delta_b(A)) \ge (c^2/6) \|d_1\| \|d_2\|.$$

Proof. Take $\delta \in \Delta_b(A)$. According to Observation 1 we have

$$||d_1(x)yd_2(z) + d_2(x)yd_1(z)|| \le 4 ||d_1d_2 - \delta|| ||x|| ||y|| ||z||$$

for all $x, y, z \in A$. Using this relation and Observation 2 we then get

$$\begin{split} 2 \, \|d_1(x)yd_2(z)wd_1(u)\| &\leq (4 \, \|d_1d_2 - \delta\| \, \|x\| \, \|y\| \, \|z\|) \, \|w\| \, \|d_1(u)\| \\ &+ \|d_1(x)\| \, \|y\| \, (4 \, \|d_1d_2 - \delta\| \, \|z\| \, \|w\| \, \|u\|) \\ &+ 4 \, \|d_1d_2 - \delta\| \, \|x\| \, \|yd_1(z)w\| \, \|u\| \\ &\leq 12 \, \|d_1d_2 - \delta\| \, \|d_1\| \, \|x\| \, \|y\| \, \|z\| \, \|w\| \, \|u\|. \end{split}$$

That is.

$$||M_{d_1(x),d_2(z)wd_1(u)}|| \le 6 ||d_1d_2 - \delta|| ||x|| ||z|| ||w|| ||u||.$$

Thus it follows that

$$c \|d_1(x)\| \|d_2(z)wd_1(u)\| \le 6 \|d_1d_2 - \delta\| \|d_1\| \|x\| \|z\| \|w\| \|u\|.$$

Hence $c \|d_2(z)wd_1(u)\| \le 6\|d_1d_2 - \delta\|\|z\|\|w\|\|u\|$ from which

$$c^{2} \|d_{2}(z)\| \|d_{1}(u)\| \le 6 \|d_{1}d_{2} - \delta\| \|z\| \|u\|$$

is derived. Consequently $c^2 \|d_1\| \|d_2\| \le 6 \|d_1d_2 - \delta\|$. The proof of the theorem is complete.

THEOREM 2. Let A be an ultrasemiprime normed algebra, and let $d \in D_b(A)$. If a constant c > 0 satisfies (2), then

$$dist(d^2, \Delta_b(A)) \ge (c/2) ||d||^2$$
.

Proof. Take $\delta \in \Delta_b(A)$. By Observation 1 we have

$$2 \|d(x)yd(x)\| \le 4 \|d^2 - \delta\| \|x\|^2 \|y\| (x, y \in A).$$

It is easy to see that this relation implies the assertion of the theorem.

Let A be a von Neumann algebra. Since every derivation of A is inner [11, Theorem 4.1.6] it follows from Remark 2 that every generalized derivation of A is an inner generalized derivation. In particular, $D_b(A) = D(A)$ and $\Delta_b(A) = \Delta(A)$.

THEOREM 3. Let A be a von Neumann algebra. If $d_1, d_2 \in D(A)$, then

$$\operatorname{dist}(d_1d_2, \Delta(A)) \leq (1/2) \|d_1\| \|d_2\|.$$

In particular, for every $d \in D(A)$,

$$dist(d^2, \Delta_b(A)) = (1/2) ||d||^2.$$

Proof. Since A is a von Neumann algebra there exist $a_1, a_2 \in A$ such that $d_i(x) = [a_i, x]$ $(x \in A)$. For arbitrary c_1, c_2 in Z, the center of A, define $\delta \in \Delta(A)$ by

$$\delta(x) = (a_1a_2 + c_1c_2 - c_2a_1 - c_1a_2)x + x(a_2a_1 + c_1c_2 - c_2a_1 - c_1a_2).$$

Then, $d_1d_2 - \delta = -M_{a_1-c_1,a_2-c_2} - M_{a_2-c_2,a_1-c_1}$ and therefore

$$||d_1d_2 - \delta|| = ||M_{a_1 - c_1, a_1 - c_2} + M_{a_2 - c_2, a_1 - c_1}|| \le 2 ||a_1 - c_1|| ||a_2 - c_2||.$$

Since $||d_i|| = 2 \operatorname{dist}(a_i, \mathbb{Z})$ [4], [13] we conclude that

$$\operatorname{dist}(d_1d_2, \Delta(A)) \le 2 \operatorname{dist}(a_1, Z) \operatorname{dist}(a_2, Z) = (1/2) \|d_1\| \|d_2\|.$$

This inequality, together with Theorem 2 and the fact that $||M_{a,a}|| = ||a||^2$ for all $a \in A$, yields the second assertion.

REMARK 4. As we have mentioned above, in [8] M. Mathieu posed the following question: what is the norm of the composition of two derivations of a prime C*-algebra? The results above enable us to discuss this problem. Since every C*-algebra A satisfies $||M_{a,a}|| = ||a||^2$ for all $a \in A$, it follows from Theorem 2 that for every $d \in D_b(A)$, we have

$$(1/2) ||d||^2 \le ||d^2|| \le ||d||^2.$$

This estimate cannot be improved. Indeed, let A be the algebra of 2×2 matrices over the complex field \mathbb{C} , and let

$$p = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \qquad n = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

Define derivations d and g by d(x) = [p, x], g(x) = [n, x]. Note that $d = d^3$; hence $||d|| \le ||d|| \, ||d^2||$ which means that $||d^2|| \ge 1$. Using the fact that $||d|| = 2 \operatorname{dist}(p, \mathbb{C}1)$, or otherwise, one shows that ||d|| = 1. But then $||d^2|| = ||d||^2$. Next, we claim that $||g^2|| = (1/2) \, ||g||^2$. Namely, observe that ||g|| = 2; since $g^2 = -2M_{n,n}$ we have $||g^2|| = 2$.

Now let A be a prime C*-algebra. As we have mentioned above, in this case $||M_{a,b}|| = ||a|| ||b||$ for all $a, b \in A$. Thus it follows from Theorem 1 that for all $d_1, d_2 \in D_b(A)$,

$$(1/6) ||d_1|| ||d_2|| \le ||d_1d_2|| \le ||d_1|| ||d_2||.$$

We leave as an open question whether or not the constant 1/6 can be improved.

ACKNOWLEDGEMENTS. I wish to express my thanks to Dr. B. Magajna for helpful conversations. Also I thank the referee for his valuable suggestions.

REFERENCES

- 1. J. Bergen, I. N. Herstein and J. Kerr, Lie ideals and derivations of prime rings, J. Algebra 71 (1981), 259-267.
- 2. M. Brešar and J. Vukman, Orthogonal derivations and an extension of a theorem of Posner, to appear in Rad. Mat.
- 3. C. K. Fong and A. R. Sourour, On the operator identity $\sum A_k X B_k \equiv 0$, Canad. J. Math. 31 (1979), 845–857.
- 4. P. Gajendragadkar, Norm of a derivation on a von Neumann algebra, *Trans. Amer. Math. Soc.* 170 (1972), 165–170.
- 5. C. Lanski, Differential identities, Lie ideals, and Posner's theorems, *Pacific J. Math.* 134 (1988), 275-297.
- 6. M. Mathieu, Applications of ultraprime Banach algebras in the theory of elementary operators, Thesis (Tübingen, 1986).
- 7. M. Mathieu, Elementary operators on prime C*-algebras I, Math. Ann. 284 (1989), 223-244.
- 8. M. Mathieu, Properties of the product of two derivations of a C*-algebra, to appear in Canad. Math. Bull.

- 9. M. Mathieu, Rings of quotients of ultraprime Banach algebras. With applications to elementary operators, to appear in the Proceedings of the Conference on Banach algebras and Automatic Continuity (Canberra, Australia, 1989).
 - 10. E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
 - 11. S. Sakai, C*-algebras and W*-algebras (Springer-Verlag, 1971).
- 12. J. P. Williams, On the range of a derivation, *Pacific J. Math.* 38 (1971), 273-279.

 13. L. Zsidó, The norm of a derivation in a W*-algebra, *Proc. Amer. Math. Soc.* 38 (1973), 147-150.

Institute of Mathematics, Physics and Mechanics University of Ljubljana P.O. Box 543 61111 LJUBLJANA YUGOSLAVIA