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Introduction. A well-known theorem of E. Posner [10] states that if the composi
tion d]d2 of derivations du d2 of a prime ring A of characteristic not 2 is a derivation,
then either dx = 0 or d2 = 0. A number of authors have generalized this theorem in several
ways (see e.g. [1], [2], and [5], where further references can be found). Under stronger
assumptions when A is the algebra of all bounded linear operators on a Banach space
(resp. Hilbert space), Posner's theorem was reproved in [3] (resp. [12]). Recently, M.
Mathieu [8] extended Posner's theorem to arbitrary C*-algebras.

Let du d2 be derivations of a normed algebra A. Our purpose is to estimate the
distance of dxd2 to the set of all generalized derivations of A. We consider the case when
A is an ultraprime normed algebra (Theorem 1), the case when dx = d2 and A is
ultrasemiprime (Theorem 2), and finally, the case when A is a von Neumann algebra
(Theorem 3). As a consequence of these results we obtain a partial answer to Mathieu's
question [8]: what is the norm of the composition of two derivations in a prime
C*-algebra?

Our results will follow easily from two entirely elementary observations; it is our aim
in this paper to point out the kind of method that could be used.

Notation and preliminaries. Let A be a ring and let a, b e A. By Mab we denote the
mapping x —* axb on A. Recall that A is said to be prime if Mab = 0 implies a = 0 or b = 0.
M. Mathieu [6], [9] introduced the notion of an ultraprime normed algebra: a complex
normed algebra is ultraprime if there exists a constant c > 0 such that

for all a, 6 e A (1)

Every prime C*-algebra A is ultraprime since ||Ma>6|| = ||a|| | |6| | for all a,beA [7,
Proposition 2.3]. Note that B{X), the algebra of all bounded linear operators on a
normed space X, also has this property; (moreover, the same is true for every subalgebra
of B(X) which contains all finite rank operators).

A ring A is said to be semiprime if Maa = 0 implies a = 0. M. Mathieu called a
complex normed algebra A ultrasemiprime if there exists a constant c > 0 such that

| |M a , a | |>c | | f l | |
2 for alia e A. (2)

Every C*-algebra A is ultrasemiprime. Namely, for aeA we have ||aa*aa*|| =
||(aa*)2|| = | |aa*| | 2=| |a | | 4 ; hence | | a | | 4< \\aa*a\\ \\a\\, which yields ||aa*a|| = ||a||3; cons-
equently ||Ma,o|| = ||fl||2.

Let A be a ring. An additive mapping 6:A—*A is called a generalized inner
derivation if 6(x) = ax +xb for some a, be A. Note that 6{xy) = S(x)y +x[y, b], where
[u, v] denotes the commutator uv - vu. Thus

d(xy) = 8(x)y + xh{y) for all x,yeA, (3)

where h is an inner derivation of A. Now, an additive mapping 6: A—*A will be called a
generalized derivation if there exists a derivation h of A such that 6 satisfies (3). By
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we denote the set of all generalized derivations of A. In case A is a normed algebra,
Ab(A) denotes the set of all 6 in &(A) which are also bounded linear operators on A.
Next, the set of all derivations of a ring A will be denoted by D(A), and by Dh(A) we
denote the set of all bounded derivations of a normed algebra A.

REMARK 1. Let A be a ring, h : A^* A be any function, and 6: A^>A be an additive
mapping satisfying (3). We intend to show that under rather mild assumptions h must
necessarily be a derivation. On the one hand we have

6(xyz) = 6(x(yz)) = 8(x)yz +xh(yz),
and on the other hand,

d(xyz) = 8((xy)z) = 8(x)yz + xh(y)z + xyh{z).

Comparing these two expressions we obtain

x(h(yz) - h(y)z - yh{z)) = 0 (x, y, z e A).

Similarly, by computing S(x(y + z)) in two ways, one shows that

x(h(y + z) - h(y) - h(z)) = 0(x,y,ze A).

Thus, if A has the property that Aa = 0 implies a = 0, in particular, if A is semiprime,
then h is a derivation.

REMARK 2. Suppose a ring A has a unit element 1 and take x = 1 in (3). Then we get
&(y) ~ &0)y + h(y) f°r aN y ZA. Hence we see that every generalized derivation of A is
an inner generalized derivation if and only if every derivation of A is inner.

We now state the crucial observations, which can be proved by direct computations.

OBSERVATION 1. Let A be a ring, dx, d2e D(A) and 6 e &(A). A mapping F =
dxd2 - 6 then satisfies the identity

F(xyz) - F{xy)z - xF(yz) + xF(y)z = d,{x)yd2{z) + d2{x)ydx(z).

OBSERVATION 2. Let A be a ring, and let f: A—>A, g: A—*A be arbitrary functions.
Then for all x,y, z, w, ueA, we have

2f(x)yg(z)wf(u) = {f(x)yg(z)+g(x)yf(z)}Wf(u) +f(x)y{g(z)wf(u)

+f(z)wg(u)} - {f(x)(yf(z)w)g(u) + g(x)(yf(z)w)f(u)}.

REMARK 3. Using the above observations it is easy to prove the following slight
generalization of Posner's theorem: if dx, d2e D(A) and d^d2 e A(^4), where A is a prime
ring of characteristic not 2, then either dx = 0 or d2 = 0. In our forthcoming paper [2]
some similar results can be found.

The results. Let A be a normed algebra and let dx, d2, d e Db{A). Our purpose is to
estimate d i s t ^ ^ , &b{A)) and dist(d2, kb{A)), where

dist(<M2) Afc(.4)) = infflld,^ - 6||, 6 e

THEOREM 1. Let A be an ultraprime normed algebra, and let dx, d2eDb(A). If a
constant c > 0 satisfies (1), then
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Proof. Take 5 e Ab(A). According to Observation 1 we have

\\d,(x)yd2(z) + d2(x)yd1(z)\\^4\\d1d2-8\\ \\x\\ \\y\\ \\z\\

for all x, y, z eA. Using this relation and Observation 2 we then get

2\\dl(x)yd2(z)wdl(u)\\£(A\\dld2-6\\ \\x\\ \\y\\ \\z\\)\\w\\ \\dt{u)\\

That is,
\\Mdl(x)id2{z)wdl(u)\\^6 \\drd2-8\\ \\x\\ \\z\\ \\w\\ \\u\\.

Thus it follows that

c||</i(*)|| \\d2(z)wdl(u)\\^6\\d1d2-d\\ \\d,\\ \\x\\ \\z\\ \\w\\ \\u\\.

Hence c \\d2(z)wdl{u)\\ <6| | dxd2- 8\\ \\z\\ \\w\\ \\u\\ from which

is derived. Consequently c2 \\di\\ \\d2\\ < 6 ||did2~ 8\\. The proof of the theorem is
complete.

THEOREM 2. Lef /4 £>e an ultrasemiprime normed algebra, and let d e Db(A). If a
constant c > 0 satisfies (2),

Proo/. Take 6 e Ab(A). By Observation 1 we have

It is easy to see that this relation implies the assertion of the theorem.
Let A be a von Neumann algebra. Since every derivation of A is inner [11, Theorem

4.1.6] it follows from Remark 2 that every generalized derivation of A is an inner
generalized derivation. In particular, Db(A) = D(A) and Ab(A) =

THEOREM 3. Let A be a von Neumann algebra. If dx, d2 e D(A), then

dist^rf

In particular, for every d e D(A),

dist(<f2, A6G4)) = (1/2)

Proof. Since A is a von Neumann algebra there exist alta2eA such that dj(x) =
[fl,, x] (x eA). For arbitrary cu c2 in Z, the center of A, define 8 e A(A) by

6(x) = {axa2 + cxc2 - c2al - cxa2)x + x(a2al + cxc2 - c2ax - cxa2).

Then , dxd2 -8 = -MO l_C l ,O 2_C 2 - Ma2_C2>Ol_Cl and therefore

| |<M 2 - d | | = ||MOl_Cl>ai_C2 + Mfl2_C2,fll_Cl|| < 2 ||fll - c , | | \\a2 - c2\\.
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Since ||d,|| = 2dist(a,, Z) [4], [13] we conclude that

dist(<M2, A04))<2dist(fl l, Z)dist(fl2) Z) = (1/2) ||d,|| \\d2\\.

This inequality, together with Theorem 2 and the fact that ||MflO|| = ||a||2 for all a eA,
yields the second assertion.

REMARK 4. As we have mentioned above, in [8] M. Mathieu posed the following
question: what is the norm of the composition of two derivations of a prime C*-algebra?
The results above enable us to discuss this problem. Since every C*-algebra A satisfies
ll^a.all = llflll2 f°r aU aeA, it follows from Theorem 2 that for every d e Db(A), we have

This estimate cannot be improved. Indeed, let A be the algebra of 2 x 2 matrices over the
complex field C, and let

[1 0] [0 1]= Lo oJ' n 4 o oJ"
Define derivations d and g by d(x) = [p, x], g(x) = [n, x]. Note that d = d3; hence
||</||£||</|| ||d2|| which means that | |d 2 | |> l . Using the fact that \\d\\ = 2dist(p, Cl), or
otherwise, one shows that \\d\\ = 1. But then ||d2|| = ||d||2. Next, we claim that
||g2|| = (1/2) ||g||2. Namely, observe that ||g|| =2 ; since g2 = -2Mn,n we have ||g2|| =2.

Now let /I be a prime C*-algebra. As we have mentioned above, in this case
ll̂ a.ftll = llflll 11*11 for all a, be A. Thus it follows from Theorem 1 that for all
dud2eDb(A),

(1/6) ||</,||||<*2||f; ||<*,d2|| s i

We leave as an open question whether or not the constant 1/6 can be improved.
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