UNIQUE ADDITION RINGS
W. STEPHENSON

1. Introduction. A semigroup (R,-) is said to be a unique addition ring
(UA-ring) if there exists a unique binary operation + making (R, -, +) into a
ring. All our results can be presented in this semigroup theoretic setting.
However, we prefer the following equivalent ring theoretic formulation: a
ring R is a UA-ring if and only if any semigroup isomorphism a: (R, -) =< (S, -)
with another ring S is always a ring isomorphism.

UA-rings have been studied in (8;4) and are also touched on in (1;2;6; 7).
In this note we generalize Rickart’s methods to much wider classes of rings.
In particular, we show that, for a ring R with a 1 and = = 2, the (n X n)
matrix ring over R and its subring of lower triangular matrices are UA-rings.
Further examples of UA-rings are ‘‘infinite’’ matrix rings and certain subclasses
of the classes of prime rings, von Neumann regular rings, left self-injective
rings and semiperfect rings.

2. Notation. For a ring R we let J(R) denote its Jacobson radical and for
n = 1 we let R, denote the ring of all (# X #) matrices over R and T, (R) the
subring of lower triangular matrices. If 4 is a subset of R, then /(4) =
(x € R:xA =0) and r(4) = (x € R: Ax = 0) will denote the left and right
annihilators of 4, respectively.

3. Basic lemmas.

LEMMA 1. Let R and S be rings and a: (R,-) = (S, ) a semigroup iso-
morphism. Suppose that A and B are left ideals of R such that A @ B = Re for
some idempotente € R. Then

1) (@e+0b)*=a*+b*foranya € A,b € B;

(2) if s: A — B is an R-homomorphism, then (a* + b)* = (a®)* + b= for any
a €A, b€ B

(3) a is additive on Y (A°: s € Homg(4, B)).

Proof. (1) Let g+ & = e, where g € A, h € B. Then g? = g, h* = h, and
gh = hg = 0. Further, A = Rg and B = Rh.

If f = g + he, f € R, then (fe)* = (ge)* 4+ (he)* = g* 4+ h* = f <=, and thus
f = fe. On the other hand, (fg)* = g* and (f#)* = k*, hence

f=fe=fe+fh=g+h=e
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If x =a+4 b, wherea € A and b € B, then ¢ = xg and b = xh. Hence
a® + b* = xog + xoh* = x*(g* + h*) = x%* = (a + b)~.

(2) Let s: A — B be an R-homomorphism. Then it is easily verified that
A @B =A0+Y @B = Re. Leta € 4, b € B. Applying (1) three times we
have:

e+ @+ b= (a4 a4+ b) = (@) 4+ b* = a* 4 (a*)* + b=
Hence (a® + 0)* = (a®)* + b~
(3) follows immediately from (2).
COROLLARY 1. If s: A =2 B, then a is additive on A @ B = Re.
An immediate consequence of Corollary 1 is the following result.
TuEOREM 1. If R is a ring with a 1 and n = 2, then R, is a UA-ring.

Proof. If e;; (1 =14,j < n) are the usual matrix units for R,, then
R, = @1 R.e;s, where Rye;; =< R,e;; (as Ry-modules) for 1 < 4, j < n. The
result then follows from Corollary 1. Next we prove a slight generalization of a
theorem in (8).

LEMMA 2. Let R and S be rings and a: (R, -) = (S, -) be a semigroup iso-
morphism. Suppose that C and C* are abelian subgroups of R and S, respectively.
Further, suppose that (A ;)cr and (B;) jer are abelian subgroups of R such that
CA; C A;and B,C C B, and such that a 1s additive on each A, and on each B,.
If A = Ud; and B = \U;B; and CNI(A) N\ r(B) =0, then a is additive
on C.

Proof. Let ¢, c2 € C. Then ¢* + ¢* € C* and there exists ¢ € C such that
= c* + c*
For any a € 4, we have:

[(c = ¢c1 — c)alr = (ca)* — (c1a)® — (coa)* = (¢ — ¢* — ¢®)a* = 0 = (=

Since « is one-to-one, ¢ — ¢1 — ¢» € I(A) and similarly ¢ — ¢; — ¢y € r(B).
Thus ¢1 + cs = cand (c1 + ¢2)* = ¢ = ¢* + coo

COROLLARY 1. Using the same notation, if each 4 ,; is a left ideal and each B s
a right ideal and 1(A) N r(B) = 0, then o is a ring isomorphism.

Proof. Take C = R in Lemma 2.
COROLLARY 2. The direct product of UA-rings with a 1 is a UA-ring.

Proof. Let R = Hig R;, where for each z € I, R; is a UA-ring with a 1.
Suppose that a: (R, -) = (S, ) is a semigroup isomorphism with another
ring S and let e; € R be the central idempotent with 1 in the 7th position and
zeros elsewhere. If f; = ¢, then f,5f;is a ring and « induces (¢, Re;, -) = (f.Sfs, +).
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However, ¢;Re; =2 R; and thus a is additive on Re, for all 7 € I. Since
I(Ur Re;) = 0, it follows from Corollary 1 that « is a ring isomorphism, hence
R is a UA-ring.

Example. Let M = P; @ Py @ Q be a left R-module where Py, P,, and Q are
submodules such that Py = Py (= P) and 2, (P”: f € Homg (P, Q)) = Q (for
example if P = zR). Then S = Endg(M) is a UA-ring.

Proof. Let ey, es, and f be the projections of M onto Py, P, and Q,
respectively. Then ey, s, and f are a set of orthogonal idempotents of S such that

S=eaS@eS DS and eSS = eS.

Further, MeS = M. If a € r(erS), then Ma = Me Sa = 0 and hence
r(e1S) = 0. By Lemma 1 and Corollary 1 of Lemma 2, S is a UA-ring.

This result should be compared with those of Mihalev (6, see, for example,
Proposition 1 and Theorem 3).

4. Unique addition rings. Throughout this section, all rings will be
assumed to contain a 1.

LEMMA 3. Suppose that R and S are rings and a: (R, -) = (S, ) is a semigroup
isomorphism. If e € R is an idempotent, then o is additive on ReR(1 — e) and
hence on

A = (ReR(1 — e)R + R(1 — e)ReR).

Proof. Hom(Re, R(1 — e)) is given by right multiplication by elements of
eR(1 — e). Hence
ReR(1 —e) = Y [(Re)*: s € Homg(Re, R(1 — ¢))]
and thus by Lemma 1 (3), « is additive on ReR(1 — e¢). Similarly, « is additive
on R(1 — e)Re and therefore on
A = (ReR(1 — e)R+ R(1 — ¢)ReR) = ReR(1 — ¢) @ R(1 — e)Re.
Combining Lemma 3 and the above corollary, we obtain the following result.

TurorEM 2. Let R be a ring (with a 1) and G the set of all idempotents of R.
If
A= RgR(1 — g)R and 1(4) Nr(4d) =0,

g€eG

then R is a UA-ring.

We now consider rings R such that any non-zero two-sided ideal of the form
1(A) N r(4), A a non-zero two-sided ideal, contains a non-zero idempotent.
For lack of a better name, we call such rings X-rings.

Examples. Recall that a ring R is prime if /(4) = 0 for every non-zero two-
sided ideal of R. R is said to be semiprime if it contains no non-zero nilpotent

https://doi.org/10.4153/CJM-1969-159-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1969-159-0

1458 W. STEPHENSON

ideals. Finally, R is called left P.P. (principal ideals projective) if for any
a € R, l{a) = Re for some idempotent ¢ € R. The following are X-rings:

(1) Prime rings and, in particular, simple and primitive rings;

(2) Semisimple I-rings, that is, rings in which every non-zero left ideal
contains a non-zero idempotent, in particular, von Neumann regular
rings;

(3) Semiprime left P.P. rings. In particular, semiprime semihereditary and
hereditary rings. (To show this, note that in a semiprime ring,
1(4) = r(4) for any two-sided ideal 4 and further, for x € r(4),
x € rl(x) Crir(d) =r(4).)

A non-zero central idempotent of a ring R is called abelian if every idempo-

tent of eRe is central in eRe (and hence in R).

THEOREM 3. Let R be an X-ring containing no abelian central idempotents.
Then R is a UA-ring.

Proof. Let A = Y ,c6¢ RgR(1 — ¢g)R, where G is the set of all idempotents
of R, and note that A # 0 since 1 is not an abelian idempotent. Suppose that
I(A) " r(4) # 0; then by hypothesis there is a non-zero idempotent
e €l(4A)Nr(4).

Since R has no abelian central idempotents, we can always assume that e
is not central. However, eA = Ae = 0 implies thateR(1 —e) = (1 — ¢)Re=0,
contradicting the fact that e is not central. Therefore 1(4) M r(4) = 0 and, by
Theorem 2, R is a UA-ring.

COROLLARY 1. An X-ring with no non-irivial central idempotents and at least
one non-trivial idempotent is ¢ UA-ring.

Since a prime ring is an X-ring which has no non-trivial central idempotents,
we have the following result.

COROLLARY 2. A prime ring (with a 1) containing at least ome mnon-trivial
idempotent is a UA-ring.

Remark. 1f S is not a UA-ring, then it is easy to see that, for any ring R,
R X Sis not a UA-ring. Since there are fields which are not UA-rings (see 8),
the restriction on abelian central idempotents cannot be omitted.

A ring R is called left self-injective if R considered as a left R-module is
injective. Results of Utumi (9) yield the following theorem.

THEOREM 4. Any left self-injective ring R such that R/J(R) contains no
abelian central idempotents 1s a UA-ring.

Proof. Since R is left self-injective, R = R/J(R) is a left self-injective,
von Neumann regular ring (9, Theorems 4.7, 4.8 and Lemma 4.1). By hypo-
thesis, R contains no abelian central idempotents and hence, by (9, Lemma 7.7)
there exist orthogonal idempotents e;, es, es € R such that

Re; @ Rey @ Res = R, Re; = Re, (as left R-modules)
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and Re; @ Re; contains a submodule 4 isomorphic to Res. Since 4 is injective,
being isomorphic to Res, it is a direct summand of R. Hence for some idem-
potent e, orthogonal to e;, A = Re; and Re; = Re,. By (9, Corollaries 3.2 and
4.12), we can lift the idempotentse; (z = 1, 2, 3, 4) to idempotents f;, € R such
that the sets of idempotents {fi,fs f3} and {fs fi} are orthogonal and
R = Rfi @ Rf: @ Rf;. Further, by (3, Proposition 1, 3.8), we can also lift the
isomorphisms to obtain Rf; = Rf, and Rf; = Rf,. The result then follows by
Corollary 1 of Lemma 1.

5. Matrix rings. For a ring R and set I, let Ry, denote the ring of “row
finite”” (I X I) matrices over R. That is, Ry; = ((as;): for each 7 € I,
a;; = 0 for almost all j € I). For r € R we let re;; denote the matrix with 7 in
the (¢, j)th place and zeros elsewhere and write le;; = e;; when R has a 1.

THEOREM 5. Let R be a ring with a 1 and I a set containing at least two
elements. Suppose that T is a subring of Rur (not necessarily with a 1), which
conlains ey, exy for all k € I, where © and j are distinct elements of I. Then T
is a UA-ring.

Proof. We have Te;; N\ Te;; =0 and Te;; @ Te;; = T (e + ej;), where
(eis + ey;) is an idempotent. Further, e;; = e;;¢,;, €;; = €;:¢;;and ey, €5 € T.
Hence, as left 7-modules, T'e;; =< Te;;. However, [(Te;;) = 0 and thus, by
Corollary 1 of Lemma 1 and Corollary 1 of Lemma 2, T is a UA-ring.

A slightly stronger form of Theorem 5, in the case that R is a division ring,
was proved by Gluskin (1, Theorem 5.10.1).

Examples. (1) If zF is a free left R-module of rank at least 2, then Endz(F)
is a UA-ring. This shows that there is no gain in generality in studying semi-
group isomorphisms rather than ring isomorphisms of the endomorphism rings
of free modules of rank at least 2; see, for example (6; 7; 2, 3.13).

Further examples of UA-rings are:

(2) Ry denotes the ring of “finite”’ (I X I) matrices; Ry = ((a4;): ayy = 0
for almost all 4, j € I);

(3) Rw; denotes the ring of ‘“‘row bounded” (I X I) matrices; Ry =
((ays): a;; = 0 for all j € F, where F is some finite subset of I).

Similar results hold for the rings of ‘‘column finite” and ‘“‘column bounded”
(I X I) matrices.

A ring R is said to have non-trivial matrix rank if R = IT}_; (R(®),, for rings
R and integers# = 1l and n; = 2forz=1,...,n.

THEOREM 6. Let R be a ring with a 1 for which idempotents can be lifted modulo
J(R). If R/J(R) has non-trivial matrix rank, then R is a UA-ring.

Proof. Suppose that R/J(R) = 1l_; (R™),;, where #n; = 2 and » = 1. Then
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lifting the matrix unitse;; (1 £j < n,) of each (R®),; to idempotents f;;
(1 £j £ n,;), we have

r- 5 (o)

where for each 7, Rf,, = Rfy for all 1 < a, b = n,; see (3, Proposition 1.3.8).
The result follows from Corollary 1 of Lemma 1.

Example. Any left-Artinian ring (or, more generally, any semiperfect ring
(see 5, 3.6)) such that R/J(R) has non-trivial matrix rank, is a UA-ring.

So far, triangular matrix rings have escaped our net. For if A is a division
ringand T = T,(A), where n = 2, then T is left-Artinian, but 7°/J(7) = [17A
does not have non-trivial matrix rank. Further, 4 = Y e T¢7T(1 — 9)T =
J(T), where G is the set of all idempotents of 7', and I(4) Nr(4) =
J(T)1 0. T, although hereditary, is not an X-ring. Nevertheless, 1" is a
UA-ring.

To prove this result we begin with a lemma.

LEmMA 4. Let T be a ring with a 1 and let e € T be an idempotent. If
(A —e)Te)y N (1 —e)T(1 —¢e)=0and (1 —e)Te) Nele =0, then T
zs a UA-ring.

Proof. Suppose that a: (7, ) = (S, ) is a semigroup isomorphism with
another ring S. By Lemma 3, « is additive on (1 — e)Te and e (1 — e).
Letting C = (1 —e)T(1 —e) and 4 = (1 — ¢)Te in Lemma 2, we see that
a is additive on (1 — ¢)7'(1 — e). Similarly, « is additive on eTe and thuson 7.

If R and S are rings with a 1 and My is a unital S — R bimodule, faithful
both as a right R-module and as a left S-module, then we denote the ring of
generalized triangular matrices [SII;R 21 by T(R, S, M). It is easy to see that a
ring T is isomorphic to T'(R, .S, M) for some R, S, M if and only if there is an
idempotente € T suchthatel (1 —e) = QandelTe =R, (1 —e)T(1 —e)=S
and (1 —e)Te = M, and I((1 — e)Te) N (1 —e)T(1 —e) = 0 and
r((1 — e)Te) MNele = 0.

An immediate consequence of Lemma 4 is the following result.
THEOREM 7. Any generalized triangular matrix ring T (R, S, M) is a UA-ring.

COROLLARY 1. If R is a ring with a 1 and n = 2, then T,(R) is a UA-ring.

6. Classical left quotient rings. For a ring R let
IR) = (x € R:l(x) =7r(x) =0)

denote the set of regular elements of R. Asis well known, R possesses a classical
left quotient ring Q if and only if the left Ore condition is satisfied (for the
concept of classical left quotient ring and the results used in this section see (3,
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Appendix B; 5, 4.6)). Namely, for any ¢ € R, b € I(R) there exist o’ € R,
b’ € I(R) such that b’a = d'b.

Let a: (R, ) =2 (R/, ) be a semigroup isomorphism with another ring R’.
If R satisfies the left Ore condition, then so does R’. Hence R and R’ have
classical left quotient rings Q and Q’, respectively. The construction of the
classical left quotient ring Q by means of an equivalence relation on R X I(R)
(see 3) and the definition of multiplication in Q involve only the multiplicative
structure of R. Hencea: (R, -) = (R/, -) can be extended toa: (Q, -) == (¢, -).
The following theorem is then immediate.

THEOREM 8. If R has a classical left quotient ring Q which is a UA-ring, then
R is ¢ UA-ring.

Example. Any left order R in a semiperfect ring Q such that Q/J(Q) has
non-trivial matrix rank is a UA-ring. A particular example is any prime left
Goldie ring of dimension at least 2. This case and the case that R is a semiprime
left Goldie ring also follow from (4).

It would be interesting to know whether Theorem 8 could be generalized to
rings R with zero singular ideal and so include all the results of Johnson (4).
Q in this case would be the complete ring of quotients of R (see 5, 4.3) and
hence would be a left self-injective von Neumann regular ring, which, barring
abelian central idempotents, is a UA-ring.
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