
UNIQUE ADDITION RINGS 

W. STEPHENSON 

1. Introduction. A semigroup (i?, •) is said to be a unique addition ring 
(UA-ring) if there exists a unique binary operation + making (R, -, + ) into a 
ring. All our results can be presented in this semigroup theoretic setting. 
However, we prefer the following equivalent ring theoretic formulation: a 
ring R is a UA-ring if and only if any semigroup isomorphism a: (R} •) ~ (5, •) 
with another ring <S is always a ring isomorphism. 

UA-rings have been studied in (8; 4) and are also touched on in (1 ; 2; 6; 7). 
In this note we generalize Rickart's methods to much wider classes of rings. 
In particular, we show that, for a ring R with a 1 and w ^ 2 , the (n X n) 
matrix ring over R and its subring of lower triangular matrices are UA-rings. 
Further examples of UA-rings are "infinite" matrix rings and certain subclasses 
of the classes of prime rings, von Neumann regular rings, left self-injective 
rings and semiperfect rings. 

2. Notation. For a ring R we let J(R) denote its Jacobson radical and for 
n ^ 1 we let Rn denote the ring of all (n X n) matrices over R and Tn(R) the 
subring of lower triangular matrices. If A is a subset of R, then 1(A) = 
(x £ R: xA = 0) and r(A) = (x £ R: Ax = 0) will denote the left and right 
annihilators of A, respectively. 

3. Basic lemmas. 

LEMMA 1. Let R and S be rings and a: (R, •) == (5, •) a semigroup iso­
morphism. Suppose that A and B are left ideals of R such that A @B = Re for 
some idempotent e Ç R. Then 

(1) (a + b)a = aa + ba for any a Ç A,b <~ B; 
(2) if s: A —> B is an R-homomorphism, then (as + b)a = (as)a + ba for any 

a 6 A,b G B; 
(3) a is additive on ^(As: s £ HomR(A, B)). 

Proof. (1) Let g + h = e, where g 6 A, h Ç B. Then g2 = g, h2 = h, and 
gh = hg = 0. Further, A = Rg and B = Rh. 

Ufoc = g* + ha,f e R, then (fe)a = (ge)a + (he)a = ga + ha = / a , and thus 
/ = fe. On the other hand, (/g)a = ga and (fh)a = ha, hence 

/ = fe = h +fh = g + h = e. 
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If x = a + b, where a £ A and b G B, then a = xg and b = xh. Hence 

a« -f ha = xaga + xaha = xa(ga + ha) = xaea = (a + b)a. 

(2) Let s: A —> B be an i^-homomorphism. Then it is easily verified that 
A ®B = A^1+s) ®B = Re. Let a £ A, b £ B. Applying (1) three times we 
have: 

aa + (as + b)a = (a + as + b)a = (a ( 1 + , )) a + ba = aa + (as)a + 6«. 

Hence (as + b)a = (as)a + 6". 
(3) follows immediately from (2). 

COROLLARY 1. If s: A = B, then a is additive on A © B = i?£. 

An immediate consequence of Corollary 1 is the following result. 

THEOREM 1. If R is a ring with a 1 and n ^ 2, then Rn is a UA-ring. 

Proof. If etj (1 ^ i,j ^ w) are the usual matrix units for Rn, then 
Rn = ®n\Rneiu where Rneii'~Rnejj (as ^-modules) for 1 ^ i, j g w. The 
result then follows from Corollary 1. Next we prove a slight generalization of a 
theorem in (8). 

LEMMA 2. Let R and S be rings and a: (R, •) = (S, •) be a semigroup iso­
morphism. Suppose that C and Ca are abelian subgroups of R and S, respectively. 
Further, suppose that (Ai)iei and (Bj)jeJ are abelian subgroups of R such that 
CA i C At and BjC C Bj and such that a is additive on each A t and on each B jm 

If A = UiAf and B = \JjBj and CC\ 1(A) C\ r(B) = 0, then a is additive 
on C. 

Proof. Let Ci, c2 6 C. Then cf + cf Ç Ca and there exists c £ C such that 
c" = cf + c2

a. 
For any a 6 A, we have: 

[(c — ex — c2)a]a = (ca)a — (da)a - (c2a)a = (ca - cf — c2
a)aa = 0 = (K 

Since a is one-to-one, c — C\ — c2 Ç 1(A) and similarly c — C\ — c2 Ç r(B). 
Thus C! + c2 = c and (ci + c2)

a = ca = cf + c2
a. 

COROLLARY 1. Using the same notation, if each Atis a left ideal and each Bj is 
a right ideal and 1(A) C\ r(B) = 0 , then a is a ring isomorphism. 

Proof. Take C — R in Lemma 2. 

COROLLARY 2. The direct product of UA-rings with a I is a UA-ring. 

Proof. Let R = TLm Rif where for each i Ç / , Rt is a UA-ring with a 1. 
Suppose that a: (R, •) ~ (S, •) is a semigroup isomorphism with another 
ring S and let et 6 R be the central idempotent with 1 in the ith position and 
zeros elsewhere. If/* = £/*, then/*S/* is a ring and a induces (etReu -)~(fiSfi, -). 
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However, etRei = Ri and thus a is additive on Ret for ail i £ I. Since 
l(\Ji Ret) = 0, it follows from Corollary 1 that a is a ring isomorphism, hence 
R is a UA-ring. 

Example. Let M = Pi © P 2 © Q be a left P-module where Pi , P2 , and (2 are 
submodules such that P i ^ P 2 ( = P) and T,(Pf'-f € H o m ^ ? , (?)) = (? (for 
example if P ^ fîP). Then 5 = Endfî(Af) is a UA-ring. 

Proof. Let ei, e2, and / be the projections of M onto Pi , P2 , and Q, 
respectively. Then e^ e2} and / are a set of orthogonal idempotents of S such that 

S = eiS © e2S © / S and é?xS ̂  e2S. 

Further, MexS = M. If a G r(eiS), then ikfa = MeiSa = 0 and hence 
r(eiS) = 0. By Lemma 1 and Corollary 1 of Lemma 2, 5 is a UA-ring. 

This result should be compared with those of Mihalev (6, see, for example, 
Proposition 1 and Theorem 3). 

4. Unique addition rings. Throughout this section, all rings will be 
assumed to contain a 1. 

LEMMA 3. Suppose that R and S are rings and a: (R, •) = (S, •) is a semigroup 
isomorphism. If e Ç R is an idempotent, then a is additive on ReR(\ — e) and 
hence on 

A = (ReR(l - e)R + P ( l - e)ReR). 

Proof. Hom(Pe, P ( l — e)) is given by right multiplication by elements of 
eR(l — e). Hence 

ReR(l - e) = Z[ (Pe) s : 5 6 HomB(Re, P ( l - e))] 

and thus by Lemma 1 (3), a is additive on ReR(l — e). Similarly, a is additive 
on P ( l — e)Re and therefore on 

A = (ReR(l - e)R + P ( l - e)ReR) = ReR(l - e) © P ( l - e)Re. 

Combining Lemma 3 and the above corollary, we obtain the following result. 

THEOREM 2. Let Rbe a ring {with a 1) and G the set of all idempotents of R. 

If 
4 = 2 RgR(l - g)R and 1(A) pi r(A) = 0, 

then R is a UA-ring. 

We now consider rings R such that any non-zero two-sided ideal of the form 
1(A) r\ r(A), A a, non-zero two-sided ideal, contains a non-zero idempotent. 
For lack of a better name, we call such rings X-rings. 

Examples. Recall that a ring R is prime if 1(A) = 0 for every non-zero two-
sided ideal of R. R is said to be semiprime if it contains no non-zero nilpotent 
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ideals. Finally, R is called left P.P. (principal ideals projective) if for any 
a £ R, 1(a) = Re for some idempotent e Ç R. The following are X-rings: 

(1) Prime rings and, in particular, simple and primitive rings; 
(2) Semisimple /-rings, that is, rings in which every non-zero left ideal 

contains a non-zero idempotent, in particular, von Neumann regular 
rings; 

(3) Semiprime left P.P. rings. In particular, semiprime semihereditary and 
hereditary rings. (To show this, note that in a semiprime ring, 
1(A) = r(A) for any two-sided ideal A and further, for x £ r(A), 
x Ç rl(x) C rlr(A) = r(A).) 

A non-zero central idempotent of a ring R is called abelian if every idempo­
tent of eRe is central in eRe (and hence in R). 

THEOREM 3. Let R be an X-ring containing no abelian central idempotents. 
Then R is a XJA-ring. 

Proof. Let A = J^geG RgR(l — g)R, where G is the set of all idempotents 
of R, and note that 4 ^ 0 since 1 is not an abelian idempotent. Suppose that 
1(A) C\ r(A) 9^ 0; then by hypothesis there is a non-zero idempotent 
e e 1(A) r\r(A). 

Since R has no abelian central idempotents, we can always assume that e 
is not central. However, eA = Ae = 0 implies that eR(\ — e) = (1 — e)Re = 0, 
contradicting the fact that e is not central. Therefore 1(A) P\ r(A) = 0 and, by 
Theorem 2, R is a UA-ring. 

COROLLARY 1. An X-ring with no non-trivial central idempotents and at least 
one non-trivial idempotent is a UK-ring. 

Since a prime ring is an X-ring which has no non-trivial central idempotents, 
we have the following result. 

COROLLARY 2. A prime ring (with a 1) containing at least one non-trivial 
idempotent is a UA-ring. 

Remark. If S is not a UA-ring, then it is easy to see that, for any ring R, 
R X S is not a UA-ring. Since there are fields which are not UA-rings (see 8), 
the restriction on abelian central idempotents cannot be omitted. 

A ring R is called left self-infective if R considered as a left i?-module is 
injective. Results of Utumi (9) yield the following theorem. 

THEOREM 4. Any left self-infective ring R such that R/J(R) contains no 
abelian central idempotents is a UA-ring. 

Proof. Since R is left self-injective, R — R/J(R) is a left self-injective, 
von Neumann regular ring (9, Theorems 4.7, 4.8 and Lemma 4.1). By hypo­
thesis, R contains no abelian central idempotents and hence, by (9, Lemma 7.7) 
there exist orthogonal idempotents eu e2, e% € R such that 

Rex © Re2 © Rez = R, Rex ^ Re2 (as left ^-modules) 
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and Re\ © Re2 contains a submodule A isomorphic to Rez. Since A is injective, 
being isomorphic to Re?,, it is a direct summand of R. Hence for some idem-
potent e4 orthogonal to e3, A = Rez and Re% = Re±. By (9, Corollaries 3.2 and 
4.12), we can lift the idempotents et (i = 1, 2, 3, 4) to idempotents/i Ç R such 
that the sets of idempotents {fi,f2,fs} and {/3,/4} are orthogonal and 
R = Rfi © Rf2 © Rfz. Further, by (3, Proposition 1, 3.8), we can also lift the 
isomorphisms to obtain Rfi = Rf2 and Rfz = Rf±. The result then follows by 
Corollary 1 of Lemma 1. 

5. Matrix rings. For a ring R and set 7, let RriI denote the ring of "row 
finite" (7 X 7) matrices over R. That is, RTÎT = {{ai3): for each i Ç 7, 
ciij = 0 for almost all j Ç 7). For r € i^ we let re^ denote the matrix with r in 
the (i, j)th place and zeros elsewhere and write letj — eih when R has a 1. 

THEOREM 5. Let R be a ring with a 1 and I a set containing at least two 
elements. Suppose that T is a subring of RviI {not necessarily with a 1), which 
contains eki, ekj for all k Ç 7, where i and j are distinct elements of I. Then T 
is a XJA-ring. 

Proof. We have Teu C\ Te^ — 0 and Teu © Te^ = T(eu + ej3), where 
ifiu + tjj) is an idempotent. Further, e and eih eH £ T. 
Hence, as left ^-modules, Teu ~ Tejô. However, l{Teit) = 0 and thus, by 
Corollary 1 of Lemma 1 and Corollary 1 of Lemma 2, T is a UA-ring. 

A slightly stronger form of Theorem 5, in the case that R is a division ring, 
was proved by Gluskin (1, Theorem 5.10.1). 

Examples. (1) If RF is a free left i^-module of rank at least 2, then Endig(7) 
is a UA-ring. This shows that there is no gain in generality in studying semi­
group isomorphisms rather than ring isomorphisms of the endomorphism rings 
of free modules of rank at least 2; see, for example (6; 7; 2, 3.13). 

Further examples of UA-rings are: 
(2) Ru denotes the ring of "finite" (7 X 7) matrices; Ru = ((atj): atj = 0 

for almost all i, j G 7) ; 
(3) Rrbi denotes the ring of "row bounded" (7 X 7) matrices; RrhI = 

{{aif): atj = 0 for all j € F, where F is some finite subset of 7). 

Similar results hold for the rings of "column finite" and "column bounded" 
(7 X 7) matrices. 

A ring R is said to have non-trivial matrix rank if R = IT*„i (R(i))ni for rings 
R{i) and integers n ^ 1 and nt ^ 2 for i = 1, . . . , n. 

THEOREM 6. Let Rhea ring with a 1 for which idempotents can be lifted modulo 
J(R). If R/J(R) has non-trivial matrix rank, then R is a XJA-ring. 

Proof. Suppose that R/J(R) = I T U (R^)ni, where w f â 2 a n d w è 1. Then 
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lifting the matrix units e^ (1 rgj ^ nt) of each (R{i))ni to idempotents ftj 

(1 rg j ^ w*)> we have 
n / ni \ 

where for each i, i?/ î a ^ Rfih for all 1 ^ a, 6 ^ w*; see (3, Proposition 1.3.8). 
The result follows from Corollary 1 of Lemma 1. 

Example. Any left-Artinian ring (or, more generally, any semiperfect ring 
(see 5, 3.6)) such that R/J(R) has non-trivial matrix rank, is a UA-ring. 

So far, triangular matrix rings have escaped our net. For if A is a division 
ring and T = TU(A), where n ^ 2, then T is left-Artinian, but T/J(T) ^ II?A 
does not have non-trivial matrix rank. Further, A = J^g^G TgT(\ — g)T = 
J ( T ) , where G is the set of all idempotents of T, and 1(A) C\r(A) = 
J(T)n~l T6- 0. T, although hereditary, is not an X-ring. Nevertheless, T is a 
UA-ring. 

To prove this result we begin with a lemma. 

LEMMA 4. Le/ T be a ring with a 1 and let e £ T be an idempotent. If 
/ ( ( l - e)Te) r\ (1 - e ) r ( l - «0 = 0 and r ( ( l - e)Te) C\ eTe = 0, then T 
is a UA-ring. 

Proof. Suppose that a: (T, •) == (5, •) is a semigroup isomorphism with 
another ring S. By Lemma 3, a is additive on (1 — e)Te and e 7 \ l — e). 
Letting C = (1 — ̂ )^(1 — tf) and A = (1 — e)Te in Lemma 2, we see that 
a is additive on (1 — e)T(l — e). Similarly, a is additive on eTe and thus on T. 

If R and 5 are rings with a 1 and SMR is a unital S — R bimodule, faithful 
both as a right i?-module and as a left 5-module, then we denote the ring of 
generalized triangular matrices [SMR S] by T(R, S, M). It is easy to see that a 
ring T is isomorphic to T(R, S, M) for some R, S, M if and only if there is an 
idempotents Ç Tsuch thateT(\ - e) = 0 and eTe^R, (1 - e)T(\ - e ) = S 
and (1 - e)7> ^ M, and / (( l - e)Te) C\ (1 - e)T(l - e) = 0 and 
r ( ( l - g)Te) n ^ e = 0. 

An immediate consequence of Lemma 4 is the following result. 

THEOREM 7. i4n;y generalized triangular matrix ring T(R, S, M) is a UA-ring. 

COROLLARY 1. If R is a ring with a 1 and n ^ 2, then Tn(R) is a UA-ring. 

6. Classical left quotient rings. For a ring R let 

I(R) = (x £ R: l(x) = r(x) = 0) 

denote the set of regular elements of R. As is well known, R possesses a classical 
left quotient ring Q if and only if the left Ore condition is satisfied (for the 
concept of classical left quotient ring and the results used in this section see (3, 
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Appendix B; 5, 4.6)). Namely, for any a Ç R, b Ç /(i?) there exist a' Ç iî, 
6' 6 7(i?) such that Va = a'b. 

Let a: {R, •) = (Rf, •) be a semigroup isomorphism with another ring R'. 
If R satisfies the left Ore condition, then so does R'. Hence R and Rf have 
classical left quotient rings Q and Q', respectively. The construction of the 
classical left quotient ring Q by means of an equivalence relation on R X I(R) 
(see 3) and the definition of multiplication in Q involve only the multiplicative 
structure of R. Hence a: (R, •) ^ (R', •) can be extended to a: (Q, •) ^ ((?', •). 
The following theorem is then immediate. 

THEOREM 8. If R has a classical left quotient ring Q which is a XJA-ring, then 
R is a UA-ring. 

Example. Any left order R in a semiperfect ring Q such that Q/J(Q) has 
non-trivial matrix rank is a UA-ring. A particular example is any prime left 
Goldie ring of dimension at least 2. This case and the case that R is a semiprime 
left Goldie ring also follow from (4). 

I t would be interesting to know whether Theorem 8 could be generalized to 
rings R with zero singular ideal and so include all the results of Johnson (4). 
Q in this case would be the complete ring of quotients of R (see 5, 4.3) and 
hence would be a left self-injective von Neumann regular ring, which, barring 
abelian central idempotents, is a UA-ring. 
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