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L-FUNCTIONS OF p-ADIC CHARACTERS

CHRISTOPHER DAVIS and DAQING WAN

Abstract. We define a p-adic character to be a continuous homomorphism
from 1 + tFq[[t]] to Z∗

p. For p > 2, we use the ring of big Witt vectors over
Fq to exhibit a bijection between p-adic characters and sequences (ci)(i,p)=1 of
elements in Zq, indexed by natural numbers relatively prime to p, and for which
limi→∞ ci = 0. To such a p-adic character we associate an L-function, and we
prove that this L-function is p-adic meromorphic if the corresponding sequence
(ci) is overconvergent. If more generally the sequence is C log-convergent, we
show that the associated L-function is meromorphic in the open disk of radius
qC . Finally, we exhibit examples of C log-convergent sequences with associated
L-functions which are not meromorphic in the disk of radius qC+ε for any ε > 0.

§1. Introduction

Let Fq be a finite field of q elements with characteristic p. Let K = Fq(t)

be the rational function field, which is the function field of the projective

line P1 over Fq. Let GK denote the absolute Galois group of K, namely, the

Galois group of a fixed separable closure of K. Given a continuous p-adic

representation

ρ :GK −→GLn(Zp),

unramified on U = P1 − S with S being a finite set of closed points of P1,

the L-function of the representation ρ is defined by

L(ρ, s) := L(ρ/U, s) =
∏
x∈|U |

1

det(I − ρ(Frobx)sdeg(x))
∈ 1 + sZp[[s]],

where |U | denotes the set of closed points of U and Frobx denotes the

geometric Frobenius conjugacy class at x. It is clear that the power series

L(ρ, s) is convergent (or analytic) in the open unit disk |s|p < 1.
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78 C. DAVIS AND D. WAN

A basic object of study in number theory is the L-function L(ρ, s). The

first question about L(ρ, s) is its possible analytic or meromorphic continu-

ation. This question has been studied extensively in the literature; however,

it remains quite mysterious, even in the abelian case when n= 1. We now

briefly review the limited known results. If ρ is of finite order, then L(ρ, s)

is a rational function in s according to Brauer, and it satisfies a Riemann

hypothesis according to Weil. If, in addition, ρ is irreducible and nontrivial,

then L(ρ, s) is a polynomial in s (Artin’s conjecture for function fields),

which follows from Grothendieck’s trace formula.

If ρ is a p-adic representation of infinite order, the situation is much more

complicated, even in the abelian case n = 1. First, it is easy to construct

examples such that L(ρ, s) is not rational in s. For an arbitrary p-adic

representation ρ, the L-function L(ρ, s) is known to be meromorphic on the

closed unit disk |s|p ≤ 1, and its unit root part (a rational function in s)

is given by the Frobenius action on the p-adic étale cohomology of ρ. This

was conjectured by Katz in [10], and proved by Crew in [4] in the rank 1

case, and proved more generally by Emerton and Kisin in [7]. A stronger

conjecture of Katz [10, Conjecture 6.1.1] stated that L(ρ, s) is meromorphic

in |s|p <∞. This turned out to be false in general, even in the case n= 1

(see [17]). It suggests that the L-function L(ρ, s) is much more complicated

than previously thought.

Motivated by his pioneering work on p-adic variation of zeta functions,

Dwork ([5], [6]) conjectured that if ρ is geometric (arising from the relative

p-adic étale cohomology of a family of varieties), then the L-function L(ρ, s)

is p-adic meromorphic in |s|p <∞. This was proved by the second author in

([18], [19], [20]). It suggests that the class of geometric p-adic representations

behaves reasonably well from the L-function point of view. We note that

even in the geometric rank 1 case, although the L-function L(ρ, s) is p-adic

meromorphic in |s|p <∞, it is not expected to be rational in s, nor should

one expect that it is p-adic entire. (Namely, the Artin entireness conjecture

fails for nontrivial rank 1 geometric p-adic representations of GK .) One such

example follows from Coleman’s work [2] in the elliptic modular case.

The aim of this article is to reexamine this L-function from a new point

of view via Witt vectors in the hope that it will provide new insight into

this mysterious meromorphic continuation problem. We will focus on the

abelian case n= 1. Then the representation ρ factors through the maximal
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abelian quotient Gab
K :

ρ :Gab
K −→GL1(Zp) = Z∗

p.

That is, ρ is a p-adic character. By class field theory, Gab
K is isomorphic to

the profinite completion of the idèle class group of K. Precisely, in our case

of the rational function field K = Fq(t), we have

Gab
K ≡ 〈̂t〉 ×

(
1 +

1

t
Fq

[[1
t

]])
×

∏
x∈|A1|

Fq[t]
∗
x,

where Fq[t]x denotes the completion of Fq[t] at the prime x and 〈̂t〉 denotes
the profinite completion of the infinite cyclic multiplicative group generated

by t. Since the character ρ is unramified on U = P1 − S, the restriction

of ρ to the x-factor Fq[t]
∗
x is trivial for all x ∈ U . To further simplify the

situation, we will assume that S is the one-point set consisting of the origin

corresponding to the prime t in Fq[t]. In this case, Fq[t]t = Fq[[t]]. Twisting

by a harmless finite character, we may further assume that ρ factors through

the character

χ : Fq[[t]]
∗/F∗

q = 1+ tFq[[t]]−→ Z∗
p.

If f(t) ∈ 1 + tFq[t] is an irreducible polynomial, then one checks that

ρ(Frobf(t)) = χ
(
f(t)

)
.

Thus, the L-function L(ρ, s) reduces to the following L-function of the p-

adic character χ

L(χ, s) =
∏
f

1

1− χ(f)sdeg(f)
,

where f now runs over all monic irreducible polynomials of Fq[t] different

from t. Expanding the product, the L-function of χ is also the series

L(χ, s) =
∑
g

χ(g)sdeg(g) ∈ 1 + sZp[[s]],

where g runs over all monic polynomials in Fq[t] different from t. (Alterna-

tively, one defines χ(t) = 0.) A related function, which is of great interest to

us, is the characteristic series of χ defined by

C(χ, s) =
∞∏
k=0

L(χ, qks) ∈ 1 + sZp[[s]].
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Equivalently,

L(χ, s) =
C(χ, s)

C(χ, qs)
.

Thus, the L-function and the characteristic series determine each other.

In summary, we reduce to studying the following basic question.

Question 1.1. Given a continuous p-adic character

χ : 1 + tFq[[t]]−→ Z∗
p,

when is its L-function L(χ, s) as defined above p-adic meromorphic in s?

To give an idea of what we prove, we state our result in this introduction

only in the simpler special case that q = p. For the more general case, as

well as the proof, see Theorem 4.7.

Theorem 1.2. Fix p > 2. There is a one-to-one correspondence between

continuous p-adic characters χ : 1 + tFp[[t]] −→ Z∗
p and sequences π =

(πi)(i,p)=1, where πi ∈ pZp and limi→∞ πi = 0. Denote the associated charac-

ter by χπ. For an irreducible polynomial f(t) ∈ 1 + tFp[t] with degree d, let

λ̄ denote a reciprocal root of f(t), and let λ denote the Teichmüller lifting

of λ̄. Then the character χπ is given by

χπ

(
f(t)

)
=

∏
(i,p)=1

(1 + πi)
Tr(λi),

where Tr denotes the trace map from Zpd to Zp. Assume that the sequence

π satisfies the ∞ log-condition

lim inf
i→∞

vp(πi)

logp i
=∞.

Then the characteristic power series

C(χ, s) =
∞∏
k=0

L(χ,pks)

is entire in |s|p <∞, and thus the L-function

L(χπ, s) =
C(χ, s)

C(χ,ps)

is p-adic meromorphic in |s|p <∞.
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We show further in Section 5 that Theorem 1.2 is optimal in the sense that

the ∞ log-condition cannot be weakened to a C log-condition for any finite

C (see Example 5.7). The key tool used by this example is Theorem 5.6,

which states that one can lift from power series to sequences in a way that

(a) preserves C log-convergence and (b) does not change the associated L-

series. We then produce the desired example by using [17], which describes

an analogous example in terms of power series.

Remark 1.3. The result here cannot be used to provide a new proof of

the rank 1 case of Dwork’s conjecture. The reason is that characters coming

from geometry do not in general yield ∞ log-convergent sequences. Instead,

they are only guaranteed to yield C log-convergent sequences for C ≥ 1. On

the other hand, most C log-convergent sequences for C ≥ 1 do not come

from geometry. So, while related, the condition of “coming from geometry”

is rather different from the condition studied here (see [18, p. 893] for more

details).

To prove Theorem 1.2, we link the character χπ via the binomial power

series to a power series in λ with a good convergence condition and then

apply the results from [17]. Thus, our proof ultimately depends on Dwork’s

trace formula. It would be very interesting to find a self-contained proof of

Theorem 1.2 without using Dwork’s trace formula, as this would pioneer an

entirely new (and likely motivic) approach.

In this article we treat only L-functions of the simplest nontrivial p-adic

characters, that is, p-adic characters with values in Z∗
p ramified only at the

origin. There are several interesting ways to extend the present work. One

can consider p-adic characters ramified at several closed points (not just

the origin t). One can replace the projective line P1 by a higher genus curve

or even a higher-dimensional variety. One can consider higher-rank p-adic

representations instead of considering only p-adic characters.

One can also consider p-adic characters with values in the unit group of

other p-adic rings such as OCp or the 2-dimensional local ring Zp[[T ]]. The

latter will be very useful in studying the variation of the L-function when

the character χ moves in a p-adic analytic family; here, T is the analytic

parameter. Two related examples which have been studied in depth are the

eigencurves (see [3]) and T -adic L-functions (see [14]). We conclude this

introduction by briefly discussing one case in more detail.

Fix a character

χ : 1 + tFq[[t]]→ Z∗
p.
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Let W =Homgp(Z
∗
p,C

∗
p) denote the weight space of Cp-valued p-adic char-

acters. This can be viewed as a rigid analytic space, and we let Λ denote its

ring of rigid analytic functions. We compose χ with the universal character

Z∗
p →Λ∗:

1 + tFq[[t]]→ Z∗
p → Λ∗.

Now, for any x ∈W , we have a natural “evaluation” map Λ∗ → C∗
p. Com-

posing all these maps, we get, for fixed x ∈W , a character

(1.3.1) χx : 1 + tFq[[t]]→C∗
p,

of a type which is only slightly more general than those considered in the

present paper. If x0 ∈W =Homgp(Z
∗
p,C

∗
p) corresponds to the natural inclu-

sion Z∗
p ↪→C∗

p, then χx0 in (1.3.1) is simply the character χ we chose initially.

In future work, we will use the techniques of the present paper to consider

the following questions.

• If χ has the ∞ log-condition of Theorem 1.2, does the same hold true for

the deformed characters χx?

• Assume that we have an affirmative answer to the previous question for

(certain) characters χx. We then have p-adic entire power series C(χ, s)

and C(χx, s). How do the slopes of the Newton polygons vary, as we move

x through (a suitable part of) weight space?

The second question is similar in spirit to what was studied by the second

author in [21]. The above questions were posed to the authors by Liang

Xiao, in connection to his work with Kedlaya and Pottharst [11]. In fact,

it was discussions with Xiao during a visit he made to the University of

California at Irvine that led to the present paper. We will return to these

and other questions in future work.

Notation and conventions

Let q = pa denote a power of p. Beginning in Section 3, we require p > 2.

For a ring R (always assumed to be commutative and with unity), we denote

by W (R) the p-typical Witt vectors with coefficients in R, and we denote by

W(R) the big Witt vectors with coefficients in R (for an explanation of these

Witt vectors, see Section 2.2). We write Zp for the ring of p-adic integers,

Qp for the field of p-adic numbers, Qq for the unramified degree a extension

of Qp, Zq for the ring of integers in Qq, Q̂nr
p for the p-adic completion of

the maximal unramified extension of Qp, and Ẑnr
p for the ring of integers

in Q̂nr
p . When we have a fixed unramified extension Qq/Qp, we write σ for
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the Frobenius map, the unique automorphism which induces the Frobenius

in characteristic p. It is a generator of the cyclic group Gal(Qq/Qp). We

let fλ(t) denote a general irreducible polynomial in 1 + tFq[t]. We call its

degree d; we write λ̄ for one of its reciprocal roots, and we write λ for

the corresponding Teichmüller lift in Zqd . In other words, λ will denote the

unique root of unity in Zqd with reduction modulo p equal to λ̄. We write

vp(x) to denote the p-adic valuation of x. If R is a topological ring, we let

R〈t〉 denote convergent power series with coefficients in R. If g(t) ∈Qq[[t]],

then we let gσ(t) ∈Qq[[t]] denote the power series obtained by applying σ

to each coefficient. Unfortunately, we will need both the p-adic logarithm

and the classical base-p logarithm. We denote the p-adic logarithm by Log

and the classical logarithm by logp.

§2. Preliminaries

In this section, we introduce the objects we will study (p-adic characters

and their associated L-functions) and we introduce one of the key tools we

will use to study them (big Witt vectors).

2.1. p-adic characters

We begin by defining p-adic characters and their associated L-functions.

Definition 2.1. By p-adic character, we mean a nontrivial continuous

homomorphism

χ :
(
1 + tFq[[t]]

)∗ → Z∗
p.

Remark 2.2. When we refer to continuity in the preceding definition,

we are using the t-adic topology on (1 + tFq[[t]])
∗ and the p-adic topology

on Z∗
p. We check that if y ∈ Z∗

p is in the image of χ, then y ≡ 1 mod p; we

call such an element a 1-unit. Assume that x := 1+ tf(t) is some element of

(1 + tFq[[t]])
∗, and let y := χ(x). The reduction y mod p ∈ Fp is a unit, so

we have y ≡ ζ mod p, where ζ is some (p− 1)st root of unity. The sequence

x,xp, xp
2
, . . . clearly converges t-adically to 1. The sequence y, yp, yp

2
, . . .

converges p-adically to ζ. Hence, if the character χ is to be continuous,

we must have ζ = χ(1) = 1. This shows that the image of χ contains only

1-units.

To a p-adic character, we associate an L-function as follows.
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Definition 2.3. The L-function associated to a p-adic character χ is the

formal power series associated to either and both of the following:

L(χ, s) =
∏

f(t) irred poly,
f(t)≡1 mod t

1

1− χ(f(t))sdegf
(2.3.1)

or

L(χ, s) = exp
( ∞∑
k=1

Sk(χ)

k
sk

)
,(2.3.2)

where

Sk(χ) =
∑

λ̄∈F
qk

χ(fλ)
k/deg(λ̄)

and where fλ denotes the irreducible polynomial with constant term 1 and

having λ̄ as a reciprocal root.

The most basic question to ask about these functions is the following.

Question 2.4. When is L(χ, s) a p-adic meromorphic function in the

variable s?

To approach this question, we will use Witt vectors to give a new charac-

terization of p-adic characters. Section 2.2 reviews Witt vectors and states

the results we will use. Later we apply these results to give a simple descrip-

tion of all p-adic characters.

2.2. Big and p-typical Witt vectors

We now introduce big and p-typical Witt vectors. These are both func-

tors from rings to rings. Witt vectors are used in the proofs of our main

theorems, but the statements of the theorems do not require Witt vectors.

The reader who is unfamiliar with Witt vectors should focus on the special

cases concerning characteristic p, as that is what we will need below. Our

references for this section are [9] and [16], but there are many other places to

read about Witt vectors (see, e.g., [8, Section 17], [1, Chapter 9, exercises],

[13, notes], or [15, notes]).

The big Witt vector functor has an imposing definition, but when it is

evaluated on a perfect field of characteristic p, as it will be in our case, it is

quite accessible.
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Definition 2.5. Let R denote a ring. The ring of big Witt vectors with

coefficients in R, denoted W(R), is, as a set, RN = {(r1, r2, . . .) | ri ∈R}. To
uniquely describe W(R) as a ring, we require the following two properties.

(1) The ghost map w :W(R)→RN defined by

(r1, r2, . . . , ri, . . .) 
→
(
r1, r

2
1 + 2r2, . . . ,

∑
d|i

dr
i/d
d , . . .

)

is a ring homomorphism, where the ring operations on the target are

component-wise.

This uniquely determines W(R) as a ring in the case that R is Z-torsion-

free. To determine the ring operations in general, we need also the following

functoriality property.

(2) For any ring homomorphism f :R→ S, the map W(f) :W(R)→W(S)

given by W(f) : (r1, r2, . . .) 
→ (f(r1), f(r2), . . .) is a ring homomorphism.

Remark 2.6. Proof is required that such a functor W(−) exists (see, e.g.,

[9, Proposition 1.2]).

The more classical version of Witt vectors are the p-typical Witt vectors.

Again, the general definition may be imposing, but when evaluated on a

perfect field of characteristic p, there is a down-to-earth description.

Definition 2.7. Let R denote a ring. The ring of p-typical Witt vectors

with coefficients in R, denoted W (R), is, as a set, RN = {(r1, rp, rp2 , . . .) |
rpi ∈ R}. The ring operations on W (R) are again defined using the ghost

map.

(1) The ghost map w :W (R)→RN defined by

(r1, rp, . . . , rpi , . . .) 
→
(
r1, r

p
1 + prp, . . . ,

∑
d|pi

dr
pi/d
d , . . .

)

is a ring homomorphism, where the ring operations on the target are

component-wise.

This determines the ring operations on W (R) uniquely when R is p-torsion-

free. The definition in general follows by making a functoriality requirement

as in the big case.

Remark 2.8. Note that big Witt vectors are written using a outline

“W”, while p-typical Witt vectors are written using an italic “W”. Also,

note that, from the definition of ring operations in terms of the ghost map,

it is clear that W (R) is a quotient of W(R), but it is not a subring.
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When the ring R is perfect of characteristic p, we have the following

classical definition of p-typical Witt vectors, taken from Serre [16, Theo-

rem 2.5.3].

Definition 2.9. If k is a perfect field in characteristic p, then the ring

W (k) is the unique (up to canonical isomorphism) p-adically complete dis-

crete valuation ring with maximal ideal (p) and residue field k.

Example 2.10. Thus, W (Fp) = Zp and W (Fpa) = Zpa (which by defini-

tion is the ring of integers in the unramified extension of Qp of degree a).

Similarly, if Fp denotes the algebraic closure of Fp, then W (Fp) = Ẑnr
p .

We are now ready to give the simpler characterization of big Witt vectors

W(R) when R is perfect of characteristic p or, more generally, a Z(p)-algebra.

(The latter is the same as requiring that all integers relatively prime to p

are invertible in R.)

Proposition 2.11. Let R denote a Z(p)-algebra. Then we have an iso-

morphism of rings

W(R)∼=
∏

i∈N,(i,p)=1

W (R).

Proof. For a proof, see [9, Proposition 1.10]. The idea is to prescribe ghost

components of many mutually orthogonal idempotents and then to use the

fact that all primes l �= p are invertible in R in order to find Witt vectors

with the prescribed ghost components.

Remark 2.12. Let Uj ⊆W(R) denote the ideal Uj = {x ∈W(R) | xi =
0 for i < j}. These ideals generate a topology on W(R) called the V -adic

topology. Under the isomorphism in Proposition 2.11, these ideals corre-

spond to U ′
j ⊆

∏
(i,p)=1W (R), where

U ′
j =

{
(xi) ∈

∏
(i,p)=1

W (R)
∣∣∣ the pk component of xi

equals zero for all ipk < j
}
.

Example 2.13. It follows immediately from the proposition that as rings

W(Fq)∼=
∏

i∈N,(i,p)=1

Zq.
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We are also interested in the topology on these rings. Viewing an element

α ∈ Zq as a Witt vector x ∈W (Fq), we have that p
i | α if and only if the first

i coordinates of x are zero: x1, . . . , xpi−1 = 0. (This follows from the fact that

multiplication by p corresponds to shifting the Witt vector coordinates to

the right and raising each component to the pth power; see [9, Lemma 1.12]

or [16, Section II.6].) It is now easy to see that the V -adic topology described

above is the same as the product topology on
∏

Zq, where each component

is equipped with the p-adic topology.

The following is another useful description of W(R). (More precisely, it

provides a useful description of addition in W(R).) It is not as simple as the

above description, but it hints at how we will use Witt vectors in our work

on p-adic characters.

Definition–Theorem 2.14. For any ring R, let Λ(R) := 1+ tR[[t]] con-

sist of power series with coefficients in R with constant term 1. View Λ(R)

as a group under multiplication. View W(R) as a group under addition.

Then the map E :W(R)→ Λ(R) defined by

E : (r1, r2, . . .) 
→
∞∏
i=1

(1− rit
i)

is a group isomorphism. If we view W(R) as a topological group using the

V -adic topology described above and if we view Λ(R) as a topological group

using the t-adic topology, then the isomorphism is a homeomorphism.

Remark 2.15. There are four different reasonable normalizations for E.

These can be obtained by replacing 1− rit
i above with (1− ri(±t)i)±1. We

have chosen the normalization which gives us easiest access to reciprocal

roots.

Proof of Definition–Theorem 2.14. See [9, Proposition 1.14] for everything

except the continuity claims, and these are obvious. The proof given there is

for a different normalization, but this does not matter.

In either p-typical or big Witt vectors, we have a notion of Teichmüller

lift.

Definition 2.16. If r ∈ R is any element, we let [r] ∈ W (R) or W(R)

denote the Witt vector with components (r,0,0, . . .). This Witt vector is

called the Teichmüller lift of r. We have [rs] = [r][s], but of course [·] :R→
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W (R) is not a ring homomorphism (since traditionally R is characteristic

p and W (R) is characteristic 0).

Remark 2.17. For a nonzero element x ∈ Fq, the Teichmüller lift [x] ∈ Zq

is the unique (q − 1)st root of unity which is a lift of x. This follows from

the equalities [x]q−1 = [xq−1] = [1] = 1.

Remark 2.18. In general it is not so easy to describe explicitly the

map W(R)→
∏

(i,p)=1W (R) from Proposition 2.11. However, for the case

of Teichmüller lifts, we can describe it explicitly. In that case, we have

[λ] 
→ ([λi])(i,p)=1. To prove this, work in terms of ghost components, using

the explicit description from [9, Proposition 1.10].

Example 2.19. We have natural inclusions 1 + tFq[[t]]⊆ 1 + tFq[[t]] and

W(Fq)⊆W(Fq). The latter corresponds to the inclusion∏
(i,p)=1

Zq ⊆
∏

(i,p)=1

Ẑnr
p .

This yields a commutative diagram

1+ tFq[[t]] 1 + tFq[[t]] (1− λ̄t)

∏
(i,p)=1Zq

∏
(i,p)=1 Ẑ

nr
p (λ,λ2, . . .)

where we write λ for the Teichmüller lift of λ̄.

Consider now an irreducible degree d polynomial f(t) ∈ 1 + tFq[t] with

reciprocal root λ̄. This polynomial can be factored as (1− λ̄t)(1− λ̄qt) · · · (1−
λ̄qd−1

t). The conjugates of the Teichmüller lift λ over Zq are λ,λ
q, . . . , λqd−1

.

(Proof: They are roots of unity and have the correct reductions modulo

p.) The above commutative diagram then shows that the polynomial f(t)

corresponds to the element (Tr(λi))(i,p)=1 ∈
∏

(i,p)=1Zq, where Tr denotes

the trace from Zqd to Zq.

§3. Characters in terms of Witt vectors

We begin this section with a result which gives us a new description of p-

adic characters. It follows directly from combining Definition–Theorem 2.14

with Proposition 2.11.

https://doi.org/10.1215/00277630-2379114 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2379114


L-FUNCTIONS OF p-ADIC CHARACTERS 89

Corollary 3.1. Giving a continuous homomorphism χ : (1+tFq[[t]])
∗ →

Z∗
p is the same as giving a continuous homomorphism

∏
i∈N,(i,p)=1

Zq → Z∗
p.

A first step toward understanding such continuous homomorphisms is

to understand the component homomorphisms Zq → Z∗
p. Before describing

these, we describe the homomorphisms Zq → Zp.

Lemma 3.2. For any continuous group homomorphism φ : Zq → Zp, there

exists a unique element c ∈ Zq such that φ : α 
→Tr(cα), where Tr is the trace

map from Zq to Zp.

Proof. We know from [16, Section II.5] that as topological groups Zq
∼=⊕a

i=1Zp. Fix a basis e1, . . . , ea of Zq as a Zp-module. Write φ(ei) = ri. We

want to find c ∈ Zq such that for any b ∈ Zq, we have φ(b) = Tr(cb). Write

b= b1e1 + · · ·+ baea, where each bi ∈ Zp. Writing c= c1e1 + · · ·+ caea, our

goal now becomes to find the elements ci ∈ Zp. We want

φ(b) = Tr(cb),

φ(b1e1 + · · ·+ baea) = Tr(cb),

b1r1 + · · ·+ bara =
∑

cibj Tr(eiej).

Considering the case bj = 1 and bi = 0 for i �= j, we see that we must find ci
so that

(3.2.1) rj =
a∑

i=1

ciTr(eiej).

In fact, if we find such ci, then we are done. (Simply compare the coefficients

of bi above.) We now show that ci satisfying (3.2.1) exist and are uniquely

determined.

Reducing everything modulo p, we know that e1, . . . , ea is a basis for

Fq/Fp. This is a separable extension, and so the matrix with (i, j)-entry

Tr(eiej) is invertible (see, e.g., [16, p. 50].) Hence, the determinant of the

matrix with (i, j)-entry Tr(eiej) is nonzero modulo p; hence, it is invertible

in Zp. Hence, we can find ci ∈ Zp which satisfy (3.2.1) for all j, and these

ci are uniquely determined.
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We will study maps Zq 
→ Z∗
p by factoring them as Zq → Zp → Z∗

p.

Lemma 3.2 concerned the first map in this composition; Lemma 3.3 concerns

the second map.

Lemma 3.3. Assume that p > 2. Let π ∈ pnZp for n≥ 1. There exists a

unique element r ∈ pn−1Zp such that 1 + π = (1+ p)r.

Proof. It suffices to show that, for any c ∈ {0,1, . . . , p− 1}, we can find

unique r ∈ pn−1Zp/p
nZp such that (1 + p)r ≡ 1 + cpn mod pn+1. Using the

fact that p �= 2, we see from the binomial expansion that only r = cpn−1

mod pnZp works.

We now realize our first goal of characterizing all continuous group homo-

morphisms from Zq to Z∗
p. We will then be able to join these together to

describe all continuous group homomorphisms from
∏

(i,p)=1Zq to Z∗
p. The

following proposition will relate this to the case q = p.

Proposition 3.4. Assume that p > 2. Any continuous group homomor-

phism χ : Zq → Z∗
p can be factored as

χ′ ◦Tr ◦ c : Zq
·c→ Zq

Tr→ Zp
χ′
→ Z∗

p,

where c denotes multiplication by some element c ∈ Zq and where χ′ : Zp →
Z∗
p. Conversely, any such factorization yields a continuous group homomor-

phism.

Moreover, we will see that χ′ can be taken to be the map α 
→ (1 + p)α.

With this restriction, then the corresponding element c is unique.

Proof. That any such composition yields a continuous homomorphism is

clear because all maps in the composition are continuous homomorphisms.

(For instance, trace is a sum of continuous homomorphisms.)

Now consider any continuous homomorphism χ : Zq → Z∗
p. By Lemma 3.3,

there exists a unique map φ : Zq → Zp such that χ(α) = (1 + p)φ(α) for any

α ∈ Zq. By our assumptions on χ, it is easy to see that φ is a (continuous

group) homomorphism. Hence, by Lemma 3.2, we are done.

Proposition 3.5. Let q = pa, where p is an odd prime. Giving a p-adic

character

χ :
(
1 + tFq[[t]]

)∗ → Z∗
p

is equivalent to giving a sequence of elements (ci)(i,p)=1, where each ci ∈
Zq, subject to the constraint that limi→∞ ci = 0. More explicitly, given such

a sequence (ci), the associated character χ sends an irreducible degree d
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polynomial f(t) with root λ̄ to

∏
(i,p)=1

(1 + p)
TrZ

qd
/Zp (ciλ

i)
,

where λ is the Teichmüller lift of λ̄.

Proof. We can realize our p-adic character as a continuous homomor-

phism ∏
(i,p)=1

Zq → Z∗
p.

By Proposition 3.4, and temporarily ignoring continuity, giving such a homo-

morphism is equivalent to giving a sequence of elements (ci)(i,p)=1. The

sequence of elements in
∏

(i,p)=1Zq given by (1,0,0, . . .), (0,1,0, . . .), . . . con-

verges to 0 in the product topology. Hence, the images of the maps Zq →
Zp given by α 
→ (1 + p)Tr(ciα) should be converging p-adically to 1 as i

increases. We claim that such an image is contained in 1 + p j+1Zp if and

only if ci ∈ p jZq. The “if” direction is obvious. We now prove the “only

if” direction. Using Lemma 3.3, it suffices to show that if ci /∈ p jZq, then

Tr(ciα) /∈ p jZp for some α. It suffices to prove the claim for j = 0.

Write ci = ci1e1+ · · ·+ciaea, where e1, . . . , ea is a basis for Zq over Zp and

where cij ∈ Zp. We claim that if one of the cij is nonzero mod p, then Tr(ciej)

is nonzero mod p. Writing Tr(ciej) = ci1Tr(e1ej) + · · · + ciaTr(eaej), the

claim follows as above from the fact that the matrix Tr(eiej) is nonsingular

mod p.

It remains only to show that χ has the explicit description in terms of the

sequence ci given in the statement of the proposition. Let f(t) ∈ 1 + tFq[t]

denote an irreducible polynomial of degree d with reciprocal root λ̄, and let

λ denote the Teichmüller lift of λ̄. Then λ ∈ Zqd . For any i, the conjugates

of λi over Zq are λi, λipa , λip2a , . . . , λip(d−1)a
. As shown in Example 2.19, the

polynomial fλ(t) corresponds to (TrZ
qd

/Zq
(λi))(i,p)=1 ∈

∏
(i,p)=1Zq. Then by

Proposition 3.4 there are unique elements ci ∈ Zq such that

χ
(
fλ(t)

)
=

∏
(i,p)=1

(1 + p)
TrZq/Zp (ciTrZqd/Zq (λ

i))

=
∏

(i,p)=1

(1 + p)
TrZq/Zp ◦TrZ

qd
/Zq (ciλ

i)
=

∏
(i,p)=1

(1 + p)
TrZ

qd
/Zp (ciλ

i)
.
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Proposition 3.6. The correspondence described in Proposition 3.5,

between characters and sequences, is a bijection.

Proof. We must show that there is a bijection between continuous homo-

morphisms (1 + tFq[[t]])
∗ → Z∗

p and sequences (ci)(i,p)=1 of elements in Zq

converging to 0. It suffices to show that there is a bijection between contin-

uous homomorphisms ∏
(i,p)=1

Zq → Z∗
p

and convergent sequences (ci)(i,p)=1. Therefore, it suffices to show that there

is a bijection between continuous homomorphisms Zq → Z∗
p and elements

c ∈ Zq. This was shown above.

§4. Meromorphic continuation

For the rest of this article, we assume that p > 2.

In this section we use our earlier descriptions of characters and their

associated L-functions to address the question of when the L-functions are

p-adic meromorphic. Our main strategy is to consider our L-functions as

being associated to certain convergent power series and then to use results

from [17] to study meromorphic continuation.

4.1. The result for a special character χ

To introduce our techniques, we first consider the simplest nontrivial

example in detail. Let q = p. We are going to fix a p-adic character χ :

(1+tFp[[t]])
∗ → Z∗

p, which by Proposition 3.5 is the same as fixing a sequence

of elements (ci)(i,p)=1, where each ci ∈ Zp and where limi→∞ ci = 0. For our

simple introductory case, we further assume that ci = 0 for i > 1. Write

1 + π1 := (1 + p)c1 .

Fix an irreducible degree d polynomial f(t) ∈ 1 + tFp[t]⊆ (1 + tFp[[t]])
∗.

Let λ̄ denote a reciprocal root of f(t), and let λ denote the Teichmüller lift of

λ̄ to Zpd . Then for the specific character χ chosen above, by Proposition 3.5

we have

χ : f(t) 
→ (1 + π1)
Tr(λ) = (1+ π1)

λ(1 + π1)
λp · · · (1 + π1)

λpd−1

.

To this character χ, we can associate an L-function as in Definition 2.3,

and we wish to consider the meromorphic continuation of that L-function.

For our techniques, it is most convenient to consider this L-function as also
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being associated to a certain power series in the variable λ, which we now

describe.

For each of the above factors, we can associate its binomial power series

expansion

Bπ1(λ
pi) := (1 + π1)

λpi

=

∞∑
j=0

(
λpi

j

)
πj
1.

We will consider this as a power series for which λ is the variable and π1 is

some fixed constant in pZp. We then have

(4.0.1) Bπ1(λ) =
∑

akλ
k, ak ∈

πk
1

k!
Zp.

Because vp(k!) ≤ k/(p− 1) (see, e.g., [12, p. 79]) and because vp(π
k
1 ) ≥ k,

we have that

(4.0.2) vp(ak)≥ k
(p− 2

p− 1

)
.

The coefficients are clearly in Qp. Because p > 2, the previous inequality

guarantees ak ∈ pZp for k > 0. In terminology to be introduced now, a power

series
∑

akλ
k ∈ Zp[[λ]] with coefficients satisfying a growth condition as in

(4.0.2) is called overconvergent.

Definition 4.1. Let g(λ) =
∑∞

k=0 akλ
k ∈ Ẑnr

p [[λ]]. The power series g(λ)

is called convergent if

lim inf vp(ak) =∞.

The power series g(λ) is called overconvergent if

lim inf
vp(ak)

k
> 0.

For a positive constant 0 < C ≤ ∞, the power series g(λ) is called C log-

convergent if

lim inf
vp(ak)

logp k
≥C.

Remark 4.2. The terms convergent and overconvergent are used because

a convergent power series converges on the closed unit disk, while an over-

convergent power series converges on some strictly larger disk. A crucial

example for us is that the above power series Bπ1(λ) is overconvergent.
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Given a convergent power series g(λ), we now describe how to associate

a character and an L-function to it. We momentarily return to the general

case q = pa because we will need the general definition in Section 4.2.

Definition 4.3. For q = pa, the character χ associated to a convergent

power series g(λ) ∈ Zq[[λ]] is defined to be the unique character which sends

an irreducible degree d polynomial over Fq with reciprocal root λ̄ to

g(λ)gσ(λp) · · ·gσad−1
(λpad−1

) = h(λ)h(λq) · · ·h(λqd−1
),

where λ is the Teichmüller lift of λ̄ and h(λ) is the power series

h(λ) = g(λ)gσ(λp) · · ·gσa−1
(λpa−1

) ∈ Zq[[λ]],

and where we write σ for the Frobenius automorphism in Gal(Qqd/Qp).

Definition 4.4. The L-function of a convergent power series h(λ) ∈
Zq[[λ]] over Fq is defined to be

L(h/Fq, s) :=
∏

λ̄∈Fq
∗

1

(1− h(λ)h(λq) · · ·h(λqd−1)sd)1/d
∈ 1 + sẐnr

p [[s]],

where λ is the Teichmüller lifting of λ̄ and d denotes the degree of λ̄ over

Fq. The associated characteristic series is defined to be

C(h, s) =
∞∏
k=0

L(h/Fq, q
ks).

The following results are known about the meromorphic continuation of

the L-function L(h/Fq, s) and its characteristic series (see [17]).

Theorem 4.5. Let h(λ) =
∑∞

k=0 akλ
k ∈ Zq[[λ]]. If the power series h(λ) is

overconvergent, then the characteristic series C(h/Fq, s) is entire in |s|p <
∞, and thus the L-function L(h/Fq, s) is p-adic meromorphic in |s|p <∞.

More generally, if the power series h(λ) is C log-convergent for some

constant 0 < C ≤∞, then the characteristic series C(h/Fq, s) is entire in

|s|p < qC , and thus the L-function L(h/Fq, s) is p-adic meromorphic in the

open disk |s|p < qC .

Before considering the meromorphic continuation of the L-function asso-

ciated to a general p-adic character, we return to the simple character χ fixed
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at the beginning of this section. Recall that we are temporarily assuming

that q = p.

The L-functions we are considering are related as follows:

L(χ, s) =
∏

f(t) irred poly,
f(t)≡1 mod t

1

1− χ(f(t))sdegf

=
∏

f(t) irred poly,
f(t)≡1 mod t

1

1− (1 + π1)λ+λp+···+λpd−1
sd

(where we write λ for the Teichmüller lift of a reciprocal root of f and write

d for the degree of f over Fp)

=
∏

λ̄∈Fp
∗

1

(1− (1 + π1)λ+λp+···+λpd−1
sd)1/d

=
∏

λ̄∈Fp
∗

1

(1−Bπ1(λ)Bπ1(λ
p) · · ·Bπ1(λ

pd−1)sd)1/d

= L(Bπ1/Fp, s).

Combining this equality with the preceding results, to prove that L(χ, s) is

p-adic meromorphic for our easy introductory example, we need only demon-

strate overconvergence or ∞ log-convergence of the power series Bπ1(λ). The

overconvergence of this power series was already mentioned in Remark 4.2.

This completes our treatment of the simple character χ we fixed at the

beginning of this section.

4.2. The general case

Continue to assume that p is odd, but we now allow q = pa with any a≥ 1.

For two reasons, working with general characters χ : (1 + tFq[[t]])
∗ → Z∗

p is

more difficult than the situation in Section 4.1. First of all, in the associated

sequence (ci)(i,p)=1, there will typically be infinitely many nonzero terms.

Second, if q = pa with a > 1, then the elements ci are in Zq, not Zp. Thus

the absolute traces of the elements ciλ
i are more complicated.

To follow the same approach as above, we want to find a power series in

λ from which we can recover the character values found in Proposition 3.5:

χ
(
fλ(t)

)
=

∏
(i,p)=1

(1 + p)
TrZ

qd
/Zp (ciλ

i)
.
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(Here and throughout we let fλ(t) denote a general irreducible polynomial

in 1 + tFq[t]. We call its degree d, and we write λ for the Teichmüller lift

of one of its reciprocal roots. Hence, λ ∈ Zqd .) If we again let σ denote

Frobenius in Gal(Qqd/Qp), then we can rewrite

χ
(
fλ(t)

)
=

ad−1∏
j=0

∏
(i,p)=1

(1 + p)σ
j(ciλ

i)

=
ad−1∏
j=0

∏
(i,p)=1

(1 + p)σ
j(ci)λ

ip j

.

Note now that because ci ∈ Zq, we have σ
j(ci) = ci whenever j is a multiple

of a. Let πij ∈ Zq denote the unique element for which 1+πij = (1+p)σ
j(ci).

We then have

χ
(
fλ(t)

)
=

a−1∏
j=0

∏
(i,p)=1

(1 + πij)
λip j

(1 + πij)
λip jq · · · (1 + πij)

λip jqd−1

.

Finally, using the same notation as in Section 4.1, we have

χ
(
fλ(t)

)
=

a−1∏
j=0

∏
(i,p)=1

Bπij (λ
ip j

)Bπij (λ
ip jq) · · ·Bπij (λ

ip jqd−1
).

Abbreviating the sequence of elements πij by π, we define

(4.5.1) Oπ(λ) :=
a−1∏
j=0

∏
(i,p)=1

Bπij (λ
ip j

).

Note that this series is independent of d; in other words, it does not depend

on the degree of λ over Zq. We now have immediately that

L(χ, s) = L
(
Oπ(λ)/Fq, s

)
, C(χ, s) =C

(
Oπ(λ)/Fq, s

)
.

This enables us to study L(χ, s) via the series Oπ(λ).

Theorem 4.6. Fix a prime p > 2 and a prime power q = pa. Let

χ :
(
1 + tFq[[t]]

)∗ → Z∗
p

denote a continuous character, and let (ci)(i,p)=1 denote the sequence of

elements in Zq defined in Proposition 3.5. If the series
∑

cix
i is overcon-

vergent, then the characteristic series C(χ, s) is entire in |s|p <∞ and the

associated L-function L(χ, s) is p-adic meromorphic in |s|p <∞.
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Proof. By Theorem 4.5, it suffices to prove that Oπ(λ) is overconvergent.

We assume that there exists C > 0 such that vp(ci)≥Ci− ((p− 2)/(p− 1)).

This is certainly true for suitably large i, and after shrinking C we can

assume that it is true for all i.

Define RC := {
∑

akλ
k | vp(ak) ≥ Ck}. We want to show that the series

Oπ(λ) is overconvergent. Since RC is a ring, it suffices to show that each

factor Bπij (λ
ip j

) ∈RC/(pa−1). Write

Bπij (λ
ip j

) =

∞∑
k=0

aijkλ
kip j

.

We know as in (4.0.2) that

vp(aijk)≥ vp(π
k
ij)− vp(k!)

= kvp(πij)− vp(k!).

Recalling the definition of πij , and using the fact that valuation is not

changed by automorphisms, vp(ci) = vp(σ
j(ci)), we have

vp(aijk)≥ k
(
Ci− p− 2

p− 1
+ 1

)
− k

p− 1

≥ kCi

≥ C

pa−1
kip j ,

as required.

The following theorem, which treats log-convergent series, is a general-

ization of Theorem 4.6, which treated overconvergent series. We prove the

two results separately because, on one hand, the proofs are rather different,

and on the other hand, the proof of the log-convergent result is simplified

by our ability to reference the proof from the overconvergent case.

Theorem 4.7. Keep notation as in Theorem 4.6. If the series
∑

cix
i

is C log-convergent, then the characteristic series C(χ, s) is entire in the

disk |s|p < qC and the L-function L(χ, s) is p-adic meromorphic in the disk

|s|p < qC .

Proof. It again suffices to show that Oπ(λ) is C log-convergent. Fix any

ε such that (C/2) > ε > 0. By our assumption on
∑

cix
i, there exists a
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constant M(ε) such that for all i >M(ε), we have vp(ci)≥ (C− ε)(logp(i)+

1). Consider SC ⊆ 1 + λZq[[λ]] defined by

SC =
{
1 +

∞∑
k=1

akλ
k

∣∣∣ ak ∈ Zq, vp(ak)≥C
(
logp(k) + 1

)}
.

An easy computation shows that SC is a ring. Our strategy is to show that

for i suitably large, we have Bπij (λ
ip j

) ∈ SC−2ε, and that for all other i, the

power series Bπij (λ
ip j

) is overconvergent.

First fix i >M(ε). We proceed as in the proof of Theorem 4.6. Write

Bπij (λ
ip j

) = 1+

∞∑
k=1

aijkλ
kip j

.

We have again

vp(aijk)≥ vp(π
k
ij)− vp(k!)

= kvp(πij)− vp(k!).

Now we have our first departure from the proof of Theorem 4.6, because

we now have a weaker growth condition on the sequence (ci), and hence a

weaker growth condition on the terms πij , which have valuation vp(ci) + 1.

In our current case i >M(ε), we have

vp(aijk)≥ k(C − ε)
(
logp(i) + 1

)
+ k− k

p− 1

≥ (C − ε)
(
logp(i) + logp(k)

)
= (C − ε)

(
logp(i) + logp(k) + logp(p

j)
)
− (C − ε)j

= (C − ε) logp(kip
j)− (C − ε)j

≥ (C − 2ε) logp(kip
j) + ε logp(i)−Cj.

Because C and ε are fixed, and because j is bounded, we have that, for all

but finitely many i,

vp(aijk)≥ (C − 2ε)
(
logp(kip

j) + 1
)
.

Hence, for almost all values of i, we have Bπij (λ
ip j

) ∈ SC−2ε.
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Now consider the finitely many remaining values of i. We can find D> 0

such that vp(πij)≥D(i+ 1) for all remaining i and all j. We can then use

the proof of Theorem 4.6 to see that all the corresponding series Bπij are

overconvergent.

It is clear that the product of a C log-convergent power series and an

overconvergent series is again C log-convergent. We thus have that Oπ(λ) is

(C − 2ε) log-convergent for every ε in the range C/2> ε > 0. It follows that

Oπ(λ) is C log-convergent.

§5. Converting from a power series to a sequence

We have a bijection between characters χ and sequences (ci) (see Propo-

sition 3.6). On the other hand, many power series can induce the same

character; for example, any power series of the form g(λ)/gσ(λp) induces

the trivial character. Thus, the function

(ci) 
→
∏

(i,p)=1

(1 + p)ciλ
i

cannot be a bijection between sequences and power series. Write F to denote

this function. Write g(λ) for the image of (ci) under F . Then, in the notation

of (4.5.1), we have Oπ(λ) = g(λ)gσ(λp) · · ·gσa−1
(λ)p

a−1
. The point of the

function F is that the character associated to (ci) as in Proposition 3.5 is

the same as the character associated to g(λ) as in Definition 4.3.

Our goal in this section is to describe a one-sided inverse G from con-

vergent power series in Zq〈λ〉 to sequences of elements in Zq, written G :

g(λ) 
→ (di), with the following two properties.

(1) The composition G ◦ F is the identity.

(2) If g(λ) is C log-convergent, then so is G(g(λ)).

How should we define G? Given a power series g(λ), we would like to find

a sequence (di)(i,p)=1 such that

g(λ) = (1 + p)
∑

diλ
i
.

Let Log denote the p-adic logarithm (see, e.g., [12, Chapter 4]). (Note the

difference in notation between this and the base p logarithm logp used to

define log-convergence in the last section.) Applying Log to both sides of

the above equation, we find that

Log(g(λ))

Log(1 + p)
=

∑
diλ

i.
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The problem is that the left-hand side probably includes nonzero terms diλ
i

even when (i, p) �= 1. The following definition helps us remove unwanted p-

powers.

Definition 5.1. Define a map ψp : Zq〈λ〉 → Zq〈λ〉 by sending

ψp :

∞∑
k=0

akλ
k 
→

∑
(i,p)=1

biλ
i, where bi =

∞∑
j=0

σ−j(aip j ).

Remark 5.2. Note that our definition makes sense only for convergent

power series. Also note that ψp is additive but not linear.

Lemma 5.3. If g(λ) is overconvergent (resp., C log-convergent), then

ψp(g(λ)) is overconvergent (resp., C log-convergent).

Proof. This is obvious. Note that for both of these conditions, the require-

ment on the coefficient of λi is stricter when i is larger. Because ψp poten-

tially decreases the i exponents, it will preserve overconvergence and C log-

convergence.

The following lemma is the reason Definition 5.1 is useful.

Lemma 5.4. Let c(x) ∈ Zq〈x〉 denote a convergent power series. Let λ̄ ∈
Fp denote some nonzero element of degree d over Fq, let λ denote its

Teichmüller lift, and let Tr denote the absolute trace from Zqd to Zp. Then

we have

Tr
(
c(λ)

)
=Tr

(
ψp(c)(λ)

)
.

Proof. Because trace is additive (and p-adically continuous), it suffices to

show that Tr(σ−1(ci)λ
i) = Tr(ciλ

pi) for all i, which is obviously true by the

definition of absolute trace.

Lemma 5.5. Let
∑

ciλ
i ∈ 1+ pλZq[[λ]] denote a C log-convergent series.

Then Log(
∑

ciλ
i) is also C log-convergent.

Proof. By our assumption, for every ε in the range C > ε > 0, there exists

a positive integer constant M(ε)≥ 2 such that vp(ck)≥ (C − ε) logp(k) + 1

for all k > M(ε). (The reason for the “+1” will become apparent later.)

Write

Log
(∑

ckλ
k
)
=:

∑
dkλ

k.

Our goal is to show that for every ε there exists a constant N(ε) such that

vp(dk)≥ (C − ε) logp(k) whenever k >N(ε).

https://doi.org/10.1215/00277630-2379114 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2379114


L-FUNCTIONS OF p-ADIC CHARACTERS 101

Using the Taylor series expansion for Log, we have∑
dkλ

k

=

∞∑
k=1

∑
k1+2k2+···+rkr=k

(−1)k1+···+kr−1

k1 + k2 + · · ·+ kr

(
k1 + · · ·+ kr
k1, k2, . . . , kr

)
ck11 · · · ckrr λk.

Because multinomial coefficients are integers, we have

vp(dk)≥ k1vp(c1) + · · ·+ krvp(cr)− vp(k1 + · · ·+ kr)

for some choice of k1, k2, . . . , kr satisfying k1+2k2+ · · ·+ rkr = k. Note that

we always have vp(ci) ≥ 1. Abbreviate the index M(ε) ≥ 2 chosen above

by s. In the case s≤ r, we have

vp(dk)≥ k1 + · · ·+ ks−1 +
[
ks(C − ε) logp(s) + ks

]
+ · · ·

+
[
kr(C − ε) logp(r) + kr

]
− vp(k1 + k2 + · · ·+ kr)

≥ 1

2
(k1 + · · ·+ ks−1) + (C − ε)

r∑
j=s

kj logp j

≥ 1

2
(k1 + · · ·+ ks−1) + (C − ε) logp

( r∑
j=s

jkj

)
.

If
∑r

j=s jkj ≥ k/2, then

vp(dk)≥ (C − ε) logp

(1
2
k
)
= (C − ε) logp k− (C − ε) logp 2.

If
∑r

j=s jkj < k/2, then
∑s−1

j=1 jkj ≥ k/2, and thus

vp(dk)≥
1

2
(k1 + · · ·+ ks−1)≥

1

4(s− 1)
k > (C − ε) logp k

for all sufficiently large k.

The previous step easily adapts to the case s > r, because then

vp(dk)≥
1

2
(k1 + · · ·+ kr)≥

1

2r
k >

1

2s
k > (C − ε) logp k

for all sufficiently large k.
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Combining these cases, we see that

lim
k

inf
vp(dk)

logp k
≥C − ε.

The theorem is proved.

When we assemble the above results, we attain the following. It describes

the function G promised at the beginning of this section.

Theorem 5.6. Let g(λ) denote a C log-convergent series. Convert this

into the power series ψp ◦ Log(g(λ)), and let di denote the coefficient of λi

in the new power series. Then the sequence (di)(i,p)=1 is C log-convergent,

and its associated L-series is the same as the L-series associated to g(λ).

We close this section with a special example.

Example 5.7. Let q = p, and let C > 0 denote some constant. Power

series were constructed in [17, Theorem 1.2] which were C log-convergent

and whose associated L-functions failed to have meromorphic continuation

to the disk |s| < pC+ε for any ε. We briefly mention some implications in

our context. Define

gC(λ) = 1+
∑
i≥1

pCi+1uiλ
pi−1,

where ui ∈ Z is such that the reduction modulo p of
∑

i uit
i is not in Fp(t).

This series gC(λ) is clearly C log-convergent, so by Theorem 5.6, the asso-

ciated sequence (di)(i,p)=1 is C log-convergent. On the other hand, we know

by [17] that the associated L-function is meromorphic in the disk |s|p < pC

but not meromorphic in any larger disk |s|p < pC+ε for any ε > 0. Then by

Theorem 4.7, the associated sequence (di)(i,p)=1 is not (C + ε)-convergent.
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reprint of the 1983 original, Springer, Berlin, 2006. MR 2284892.

[2] R. F. Coleman, p-adic Banach spaces and families of modular forms, Invent. Math.
127 (1997), 417–479. MR 1431135. DOI 10.1007/s002220050127.

https://doi.org/10.1215/00277630-2379114 Published online by Cambridge University Press

http://www.ams.org/mathscinet-getitem?mr=2284892
http://www.ams.org/mathscinet-getitem?mr=1431135
http://dx.doi.org/10.1007/s002220050127
https://doi.org/10.1215/00277630-2379114


L-FUNCTIONS OF p-ADIC CHARACTERS 103

[3] R. Coleman and B. Mazur, “The eigencurve” in Galois Representations in Arithmetic

Algebraic Geometry (Durham, England, 1996), London Math. Soc. Lecture Note Ser.

254, Cambridge University Press, Cambridge, 1998, 1–113. MR 1696469. DOI 10.

1017/CBO9780511662010.003.

[4] R. Crew, L-functions of p-adic characters and geometric Iwasawa theory, Invent.

Math. 88 (1987), 395–403. MR 0880957. DOI 10.1007/BF01388914.

[5] B. Dwork, Normalized period matrices, I: Plane curves, Ann. of Math. (2) 94 (1971),

337–388. MR 0396579.

[6] , Normalized period matrices, II, Ann. of Math. (2) 98 (1973), 1–57.

MR 0396580.

[7] M. Emerton and M. Kisin, Unit L-functions and a conjecture of Katz, Ann. of Math.

(2) 153 (2001), 329–354. MR 1829753. DOI 10.2307/2661344.

[8] M. Hazewinkel, Formal Groups and Applications, Pure Appl. Math. 78, Academic

Press, New York, 1978. MR 0506881.

[9] L. Hesselholt, The big de Rham–Witt complex, preprint, http://www.math.

nagoya-u.ac.jp/~larsh/papers/028/ (accessed 27 August 2013).
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