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ELLIPTIC INTEGRALS AND LIMIT CYCLES

A .M. URBINA, M. LEON DE LA BARRA, G. LESN DE LA BARRA AND M. CANAs

By using zeros of elliptic integrals we establish an upper bound for the number of
limit cycles that emerge from the period annulus of the Hamiltonian Xg in the
system X, = Xy +¢(P,Q), where H = y* +z* and P,Q are polynomials in z,y,

N .

as a function of the degrees of P and Q. In particular, if (P,Q) = (Za.—m',O)
i=2

with N =2k + 1 or 2k + 2, this upper bound is £k —1.

1. INTRODUCTION

Since the source work of Poincaré [2] polynomial vector fields have received great
attention.

In this context, Hilbert’s famous 16** problem, concerning the maximum number
and positions of Poincaré boundary cycles (that is, limit cycles) for polynomial differen-
tial equations of the first order and degree remains open even for the case of quadratic
differential equations.

In this work we consider a family of polynomial vector fields X, = Xy + ¢(P,Q)
where Xy = Xy is the Hamiltonian field corresponding to the Hamiltonian function
H(z,y) =y + z*.

By using zeros of elliptic integrals (Theorem 1) we establish an upper bound for
the number of limit cycles that emerge from the period annulus of Xy as a function of
the degrees of P and Q.

Next, we apply this result to a related family of Lienard’s equation X, (z,y) =
N .
Xy+e (E a;z’,O) and we obtain for N = 2k + 1,2k + 2, that at most k — 1 limit
=2

cycles emerge from the periodic trajectories of Xy (Theorem 2).

Elsewhere [7] we studied this Lienard’s equation and we proved that thereis £ > 0
such that for 0 < ¢ < &, X.(z,y) has no separatrices in a neighbourhood of the origin
and we found an upper bound for the maximum number of small amplitude limit cycles
that emerge from the origin under the above perturbation of Xg.
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2. MELNIKOV’S DEVIATION

Let X, = Xy + ¢(P,Q) be a one parameter family of vector fields, where X, =
Xy is a Hamiltonian vector field corresponding to H(z,y) = y* + z* and P,Q are
polynomials in ¢ and y.

Let 3 =]0,s[ x {0} be a transversal section to the vector field Xj.

Melnikov’s deviation for the family X., with respect to Y is:

d(z,€e) = h(z,€) — =, z € Z

for € small enough and h the Poincaré return map.
The zeros of d(—,¢) correspond to the periodic orbits of X, which intersect ).
If (8d/8€)(20,0) = 0 and (82d/0z20¢)(z0,0) # O then a corollary of the Im-
plicit Function Theorem implies the existence of € > 0 and a unique smooth function
B : 1%, — Y such that B(0) = zo and d(B(e),e) = 0 for all € € ]—¢,€[. Moreover,
if =g is a simple zero, then fB(¢) is also a simple root of d(z,e) = 0 (Bifurcation Lemma,
(1))

We use the normalised displacement function for X :

F(z,¢) = 42°d(z,¢€)

Obviously, for z # 0, d(8(e),e) = 0 if and only if F(B(e),e) =0.

The derivative (9F/8¢) (z,€) has an integral representation (Melnikov’s integral
[1]) given in our case by (8F/8¢) (z,0) = foT(z'o) (2yQ + 4=*P)dt, where T(z,0) is
the minimum positive ¢ required for the trajectory I starting at (z,0) to return to 3.,
z =2z (v(t)), y =y (7(t)) and v (%) is the integral curve corresponding to T'.

The above integral is an elliptic integral in Cartesian coordinates.

Several authors have done interesting research on the zeros of this type of elliptic
integral with respect to some specific Hamiltonian functions H [3, 4, 5, 6, 8].

We proceed now to establish some results on elliptic integrals related to our case .

3. ZEROS OF ELLIPTIC INTEGRALS

Let A be the space of polynomial forms of order 1, that is,
A' = {w = P(=,y)dz + Q(z,y)dy | P,Q polynomials }.

In A?! the following equivalence relation is defined:
w; ~ wy & w; —wy; = AdH + dB where A, B are polynomials in two variables
z and y and H(z,y) = y% + z*.
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Let @ = A!/ ~ be the quotient space and let [w] denote the equivalence class of

the 1—form w.
There is a natural modulus structure on R [A] given by

P(h) [w] = [P(H)w)]

with P a polynomial.
It is easily shown that wy ~ w; implies [,_, w1 = [y_, w2

LEMMA 1. The classes of the forms w; = z’ ydz,j = 0,1,2 generate the modulus

PRroOF:
(1) It is clear that

[2* y* dz] = [=** 3" dy] = [=* y**"" dy] =0V, L€ No.

(ii) The following relation is easily proved by induction on k,£ € Ny

shti ath1 g _ 5 (-1)° H RG] 520,12
(77 ¢ dz] = ¢ =0
0 j=3
if k+£>0.
(iif)

[z4k+j y2t dy] = K Rkt [wj—ll Vk, £€ Ny and 5 =1,2,3,

where
ak +j Mroir4ai-1)
_ _ AT i k+e>0
2e+12( 1_[1j+6+4(i—1)l te>
and K= —jifk+£=0

This case follows from

gkt 2t
T )
and (ii). 1]

LEMMA 2. For w € A!and degree w = n, we have

4k + j Y U LIS

4k+7 2td =d
ey ( 20+1 Y

[w] = Po(h)[wo] + Pi(h)[w1] + P2(h) [w2],
where

Pi(h) e R[h] i=0,1,2, deg Py < [g] . deg P; < [g] ~1, i=1,2.
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n . - n . .
PROOF: Let w=| Y ay2*y’ Jde+ | Y bijz’'y’ | dy. By Lemmal,
i+5=0 i+j=0

[w] = Po(h)lws] + Pr(R)[w1] + Py(h)[we]-

In order to estimate the degrees of the P;(h) ¢ = 0,1,2 it is enough to cal-
culate the coordinates of the classes [y"dz|,(z?y" 2dz],[zy" 2dz] if n is odd, and
[z y*~'dz], [y*~1dz), [z?y™"3dz] if n is even, with respect to the basis {[wo], [w1] [w2]}. O

Let us consider now the real functions
I,'(h) = / Wiy 1= 0,1,2.
H=h

The following relations are easily proved:

LEMMA 3. Ifh > 0 then

4
THEOREM 1. Let w € A' be an n-degree form and h > 0. Then the number of

positive zeros of the function I,(h) = [,;_, w is at most 2 [n/2]

PROOF:
I,(h) = Py(h) Iy(h) + Pi(R)1(R) + P2(h)I2(R).

From Lemma 3 we obtain Io(h) = coh3/4; I(h) = c;h%/% ¢, ¢ > 0. Then I,,(h) =
h3/4(coPo(h) + c2h'/2Py(h)). with deg Po(h) < [n/2] and deg P;(h) < [n/2] — 1 and
the theorem follows. 0

COROLLARY. The maximum number of periodic trajectories in the period an-
nulus of Xy at which a continuous family of limit cycles emerges in the system
X. = Xu + ¢(P, Q), where H(z,y) = y* + z* and P, Q are polynomials is at most
2[n/2], with n = max {deg P,deg Q}.

4. LIMIT CYCLES OF SOME LIENARD’S EQUATIONS

N .
Let now X, (z,y) = Xu(z,y) +¢ (E a; z°, 0) with H = y? + 2%, be the family
izy

N '3
corresponding to Liénard’s equations & = ef(z) £—4z3, where ) a; z* = foz f(u) du.
=2
We have proved that for € small enough this family has no separatrices in a neigh-
bourhood of the origin and if a; = 0 for all + odd, X, has a centre at the origin. We

have established the maximum number of small amplitude limit cycles that bifurcate
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from the origin in term of N and if the coefficients a;,1 odd, satisfy certain relations,
this maximun is attained. (Moreover, we have generalised these results for H = y? +z?"

[71.)

Now we prove:

THEOREM 2. The maximun number of periodic orbits in the period annulus of
Xu at which a continuous family of limit cycles emerges in the system X, is k —
1for N =2k+1,2k+2.

PROOF:

%_f(z,o) / Z aiz'dy = Py(h) Iy + Py(h)L;

1—2
= hsl4 (COPo(h) + C2h1/2P2(h)) co,c2 >0
where, for k even we have:
k/2
1+4(i—-1) B
Po(h) = Z (4€ +1)asets H THAE=1) 1)

k/2 .
3+4(i-1), ,,
Pz(h) = 30.3 + 2(48 1)0,4(_1 H mh Py

and for k odd
(k-1)/2 L ,
1+4(G— )
Po(hy= Y., (4+1)asun ] gt
= = 7+4(1—1)
(k+1)/2

— 3a —1a 3+4(‘ 1)1
Py(h) = 3as + ; (4 -1) 41_1H9+4(1_1)h

If we make the substitution h = 22 then (8F/8¢)(z,0) = 23/2Q(z) where 1 <
deg @ < k in both cases and (8F/8¢c)(z,0) has at most k — 1 positive zeros. 0
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