Note on Numerical Integration._
By C. E. WorFrF.
(Received 1T7th July 1927. Read 4th November 1927.)

1. All the commonly used rules for the approximate quadrature
of areas, such as those of Cotes, Simpson, Tchebychef and Gauss,
are based on the assumption that y can be expressed as a rational
integral function of a with finite coefficients. A tacit assumption is

thus made that Z—y is not infinite within the range considered, and it

is therefore hardly a matter for surprise that the degree of accuracy
obtainable by the use of these rules in the case of a curve which
touches the end ordinates is very poor.

In such a case, however, the difficulty can be entirely obviated
by the use of a rule based on the assumption that the equation of the
curve is '

y=V1—2a2(ay+ a +a,2®+aa®..... Qg @20-1) L., (1)

where n is the number of ordinates and the limits of the base are
taken to be 4 1 as usual.

It is proved in what follows that an expression can be obtained
for the exact area of such a curve if the ordinates are measured at
the points where

km
x~cos<n+1> F=1,2,3....0) oerrrr.. 2)

The geometrical interpretation of this is shewn in Fig. 1, which
is drawn for » = 5. Thus if we divide the circumference of a semi-
circle into (n + 1) equal parts the ordinates must pass through the =
points thus found. The trouble of finding the position of the ordinates,
which is the objection to the rules of Tchebychef and Gauss, does not
exist in the case of this rule.

The value of the coefficients by which the ordinates have to be
multiplied is also easily remembered. Thus, if we write as the
expression for the area .

A= T ryp) X1 eeeeeiiiiiiin (3)
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where | is the perpendicular distance between the end ordinates,
we have

pk:Z(n—w—i—l) sin <n—kw—> ................ (4)

kn

This is easily remembered since sin (n 1) is the length of the

corresponding ordinate of the semicircle in Fig. (1) divided by the
radius, so that we have

A= i : Z (Ordinate of Semicircle) (Ordinate of Curve) ...... (5)
n

2. If now our given curve is of any unsymmetrical form, as in
Fig. 3, we can always construct a symmetrical curve as in Fig. 2
having the same length for all the ordinates a, b,, a, b,, etc., as those
in Fig. 3 and the areas of the curves will clearly be equal to one
another. Hence the rule will hold good for any curve such as that
in Fig. 3.

The accuracy of the rule may be estimated by noting that we
have 2n values of a, at our disposal in (1). The area given by (3) is
therefore that of a continuous curve which agrees with the given
curve in 4n points in addition to 4 and B. Of these points 2% are
arbitrary, and therefore if these are supposed to move into
coincidence with the points a,, a,, a; ... by, b,, etc., we may say that
(3) gives the area of a curve which not only passes through all the (2n + 2)
points A, aq, ay ... B, by, by ... but has a common tangent with the given
curve at every one of these points also.

3. The unsuitable nature of the rules usually used when applied
to curves of the nature considered can be best shewn by considering
the case of a circle of radius a.

(1) Cotes’ Rule with Five Ordinates.

b
Area = 20 (Tyy + 32y, + 12y, + 32y, + Ty;)

2
=§%(2X7><0+2><32><1'4142r+12><27)
= 261122 Error=—-179%
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(2) Simpson’s Rule with Five Ordinates.
b
Area = 12 (Y1 + 4y2 + 2ys + 4ys + ¥s)

:%(0+2x4x1'4142+2x2)r
= 2 554872 Error = - 1879

(3) Cotes’ Rule with Seven Ordinates.

b
Area = 340 (41y, + 216y, + 27y, + 272y, + 27y; + 216y + 41y,)

2

:84—7;)(2><216><1'49071+2X27x1'88562+272x2)r

= 370972 Error = —2-257%
(4) Weddle’s Rule with Seven Ordinates.

b - -
Area = 2% (yy + dyo + ys + Oys + ys + Sys + ¥7)

=%(2x5x1'49071+2X1'88562—}—6><2)r
= 3 06784r* Error =—2-347,

(5) Simpson’s Rule with Seven Ordinates.
b
Area = 18 (Y1 + 4y + 2ys + 4y + 25 + 4ys + y1)

:%(2><4><1'49071+2X2><1'88562+4x2)r

= 3-05202* Error = — 2-85Y
(6) Tchebychef’s Rule with Five ordinates.
Here the ordinates are measured along the straight lines
x =0, + 374547 and - -83250r

and the area is given by the base multiplied by the arith-
metical mean of the ordinates.
In the case of the circle the lengths of the ordinates are

1108047, 1°85442r, 2r, 1:85442r, 1°10804r
and the area is found to be
1 X 7°92492r x 27 = 3°1699772 Error = + 0907,
(7) Guauss’s Rule with Five ordinates.
Here the ordinates are measured along the straight lines

x=0, 4-'53847r, - "90618r
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and the corresponding coefficients or weights are
28444, -23931, -11846.

The lengths of the measured ordinates in the case of a
circle are therefore '

2r, 168767, '8458r.
The area is thus found to be
2 (‘28444 %X 2 + 2% 23931 X 1'6876 + 211846 X *8458)r
= 3153992 Error = 4- 0:39%

The last two rules clearly give much better results than the first five,
but owing to the trouble of setting off the ordinates and also to the
fact that the values of the coefficients necessitate reference to books,
they are hardly ever used in practice. The rule given in this paper
gives exact results for a circle, even with only one ordinate, and no
difficulty is met with however many ordinates are used, and there is
therefore no difficulty in obtaining any desired degree of accuracy
with any curve between parallel tangents.

4. As an example of a case in which the rule does not give
mathematically exact results we may take the area of a cycloid
between successive cusps. Here the equations are

x=a (0 + sin )Y
y=a(l + cos b))
where a is the radius of the generating circle. The length of the base

is 27a and the area is 37a?2.

If we take five ordinates we shall have

xy = 3ma and therefore (6, + sin 6,) = g— = 1:570796.
By trial we find
#, = ‘83171 and sin §,= 73909
Yy =a(l + cos f;) = 167360a
similarly Xy = 3/)—3 7a and therefore (0, + sin 6,) = \%3 7= 272070

8, = 1°733985 and sin 6, — ‘986715
Y, =a (1 + cos 8,) = -837535a.
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Hence the area given by the rule

=15 {(‘/3 X 1°67360 + 1 x- 837035)7 T 7} X 27t

= 30035 ma® Error = 0:127.
The area given by Cotes’ Rule with five ordinates
_ 2”(‘)’ (2% 32x 16736 412 x 2)
= @_1_3_62&_? Error = — 2:887,
and by Simpson’s Rule with five ordinates
_ 27at

15 mx4x1636+2xb
= 2'89817a? Error = — 3:407.
Proof of Formula.

(1) From the Exponenﬂial Expression for cosf we have
227‘ 00827'0 —_ (ei@ + e—2'0)27‘
2r)!
= e2irt - 2re2ilr=1)0 4 ... + ('_r)_' +
rl ol

...... + 2re—2i(r—1)6 | ¢—2ird,
Hence if § = ———, th 92 %«( ke >
1 1 > en cos

n—+1
2irkm 2é(r - 1)km (,) ) —2¢(r—1km - 2urkm
en+l +2T€ n+1l +.. T’ ]1+ .-}—27‘6 n+1 +e n+l
Now if we form a series of equations by putting £ =0,1,2...n
in turn, we get on adding
n - n  2irkm n  2dr—1)km (2r)!
22r ¥ cos27'< ) = X e+l 1.2 N e ntl L.+ (n41
k=0 n+17 =0 k=0 ( )7'! r
n T2 —1)km n - 2irkm
F...+2r T e L 4 3 e ntl
k=0 k=0
Now each of the terms on the right, with the exception of the middle
term, represents a Geometrical Progression with (n + 1) terms. Thus
. Qirkm eZirm _ 1
> en+1.—2_ir7r———-0 if r<(n—}— 1)
k=0 -1 '

since the numerator vanishes for all integral values of r, and the
denominator does not vanish unless r is a multiple of (» 4 1)

Thus
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all the terms except the middle term vanish, and we therefore get on
dividing out by 22r(n + 1)

L2 o k7 1 (2! .
n+1k§00082 <n—+—1> = 2% 1 if r<(n+41)
and similarly
1 =» b 1 (2r + 2)!
2r+2 — .
n+1k:ZOCOS <n+1>_ 927 +2 (T+1)!(7‘+1)!1fr<n

hence we find on subtraction

1 2 . (ka ke 1 (2r)! (2r + 2)(2r + 1)
- 2 2r o ) = . A1 -1 - =
w1250 <n+1>°°S <n+1>”22r r!r!<1 N S >

1 (2r)!
T2+l pl(r 1))

Now when k = 0, the corresponding term on the left hand side of this

T >=0 when k£ =0). Hence we

equation vanishes (since sin2<
q ( P

must have

1 noo km kb 1 (2r)!
[ 2 . 29 _
n+1 ki{Sln <n+ 1) cos <n+1> T2+l pl(p 1) T (2)

(2) Again, we get on putting z = cos 8

T

1 —— ™ T
%j 22Vl — a?dw = %J. $in2f cos?r §df = %j cos? §do— %J cos?+20df
-1 0 0

0
(2r —1)(2r —3)...1

o ko
= 2___

2r (2r —2)....2

(2r+1)(2r—1)...1
(2r+2)(2r)...2

i
2

(2r—1)@r—=3)...1 =
(2r +2)(2r)...4 4

Now (2r—1)(2r—3).... 1=

and we therefore find on substituting
- (2r)!
2r+2 rl(r+ 1!

1 .
%_‘- 27 V1 — 2 dx =
—1

Combining equations (1) and (3) we get finally

w

n . k7T - k77' 1 . S '
131 2(n 4 1) sin? <7l—+—1> cos? <n X 1> =1 -[—1 x2r V' 1 — a? da (4)

where r and » are any integers (r < n).
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(3) If now we consider the expression

n

' k§1 YT (nﬁ—+— ) sin? <nlf: 1> cos2r+1 <nlf: 1>

‘ ‘2r+1< L >=_ 27'+1< nm >
we see that cos w1 cos P
27 (n—1)=
2r+1 <___._> [ 2, +1<_—>
cos?r | cos?r po |
etc.,

so that the terms cancel out in pairs. Also, if » is an odd number

the middle term will be cos?r+1 = 0. Hence we find

2

. 2—511%_——1) sin? (nlf: 1> cos2"+1<nlf:1> =0 ...... (5)

n
=
k=

Further, putting x = cos 6 we find

T

(&

i
[_1 221V T 22 do = %J

o costrilody — 4 V cos?r+30df =0....(6)

0
Thus it follows that if m < 2n

S ___7.7___ in2 _kL m il —l'l-l m —_ 2
ki T sin (n+1>cos <n+1>—2 L7 V1—a2de....(7)

for all values of m and »n, and therefore if

km T . km
xp = COos <n - 1> and p; = St ) sin{ - - 1> ........ (8)
we have
n 1 -
A-E1pk \/1—xkz.kaséj_lxm\/l—x?dx (m<2n) ...... (9)
From this it follows that if
y = V1 =z (ag + a1 + @222+ . ... a1 220" 1)

and if we write y, for the value of y corresponding to x = z;,

n 1
> P yL:%J ydx .................. (10)
k=1 -1

provided that p; and x; have the values given in (8). This follows
since equation (7) is satisfied for each term in the expression for y
separately.
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Note.—The vital part of this proof consists in shewing that

n }r 1 éos‘inz (nli: 1) °°Sm<nlf:1> e (1)

is independent of n if m < 2n.
For it clearly follows from this that

:%: " :_ i sin? <n—’§}1—r—l> cos™ (%) ............ (2)

is also independent of » if » > n_; If now n is made to increase
km ™
n+1’ ntl

indefinitely, and we write 6 for becomes df and (2)

becomes
T 1 S
So sin? 6 cos™fdf = j . Vi—aZamdr oo (3)

if cos 6 is put equal to x.

Eaxtension for Moments and Moments of Inertia of Section.

(1) The Moment of the Area bounded by the curve in Fig. 3
about the central ordinate azbz is given by
2
M= Z-‘. yxdx

and if we wish to find this in the form
M =]§1(p'k3/k)><l2

we must clearly make

pp= 2%%) sin (%)x% cos <nli: 1) = S(n:— 1) sin <n2-]}c—w1> (1)

(2) In a similar manner we see that the Moment of Inertia about

the same axis is given by

I3
= _Sj yx2dx

and this will be given by
L= Z (p"kys)xV
k=1

if
P = 5 (n'”'+ 0 sin (nlf: 1 >><71. cos?2 <n_]i:_1>
= 3_2(Tﬂ—{—_l) <sin< — 1) +s n< 3Z€:1>> .......... (2)
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(3) From these formulae the Moment of Inertia about an axis
through the Centre of Gravity parallel to the ordinates is found by
use of the formula

where I, M and A4 are found by means of the formulae already given.

Note.—In the case of the formula for the Moments half the
coefficients will have a negative sign. :

E»/\+

Fig. 1
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Note on Discussion of the Paper.

In the course of the discussion it was suggested (I think by
Prof. Whittaker) that a simpler method of dealing with curves of the
form considered in the paper would be to apply Simpson’s Rule to
the area enclosed between the given curve and a semicircle. This
method is still open to the original objection unless the radius of
curvature at the two extremities of the base is equal to half the length of
the base.

Thus, taking the equation as being
y=V1—a%(ay+a, 2+ aya® 4 aga®+ ....)
the subtraction of the ordinates of the semicircle will leave
Y=V1—-a2((ag— 1)+ ayx-+a,a®+....)

which is of the same form as before, though the error will be reduced
in the ratio (4, — 4,)/A4,, where A4, is the area of the given curve
and 4, that of the semicircle. Further, I am doubtful if any saving
in time would be effected.
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