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Asymptotic Behavior
of the Length of Local Cohomology

Steven Dale Cutkosky, Huy Tài Hà, Hema Srinivasan and Emanoil
Theodorescu

Abstract. Let k be a field of characteristic 0, R = k[x1, . . . , xd] be a polynomial ring, and m its maximal

homogeneous ideal. Let I ⊂ R be a homogeneous ideal in R. Let λ(M) denote the length of an R-

module M. In this paper, we show that

lim
n→∞

λ
(

H0
m

(R/In)
)

nd
= lim

n→∞

λ
(

Extd
R

(

R/In, R(−d)
) )

nd

always exists. This limit has been shown to be e(I)/d! for m-primary ideals I in a local Cohen–Macaulay

ring, where e(I) denotes the multiplicity of I. But we find that this limit may not be rational in general.

We give an example for which the limit is an irrational number thereby showing that the lengths of

these extension modules may not have polynomial growth.

1 Introduction

Let R = k[x1, . . . , xd] be a polynomial ring over a field k, with graded maximal

ideal m, and I ⊂ R a proper homogeneous ideal. Let λ(M) denote the length of

an R-module M. We investigate the asymptotic growth of λ
(

Extd
R(R/In, R)

)

as a

function of n. When R is a local Gorenstein ring and I is an m-primary ideal, then

this is easily seen to be equal to λ(R/In) and hence is a polynomial in n. A theorem

of Theodorescu and Kirby [Ki, Th, Th2] extends this to m-primary ideals in local

Cohen–Macaulay rings R. We consider homogeneous ideals in a polynomial ring

which are not m-primary and show that a limit exists asymptotically although it can

be irrational. In our setting, by local duality,

λ
(

Extd
R

(

R/In, R(−d)
))

= λ
(

H0
m

(R/In)
)

and thus this becomes a problem of asymptotic lengths of local cohomology modules.

In recent years, a great deal of interest has been given to investigating asymptotic

behavior of algebraic invariants of powers of I. Cutkosky, Herzog and Trung [CHT],

and Kodiyalam [Ko2] independently proved that the regularity reg(R/In) is a linear

function in n for n ≫ 0 (see also [Ch, GGP]). When In is replaced by its saturation

(In)sat , the problem becomes much subtler. It is no longer true that reg(R/(In)sat )

is always asymptotically a polynomial in n as shown in [Cu]. Examples are given
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Asymptotic Behavior of the Length of Local Cohomology 1179

in [Cu, CEL] showing that it is possible for limn→∞ reg(R/(In)sat )/n to be an irra-

tional number. Further, Cutkosky, Ein and Lazarsfeld [CEL] showed that the limit

limn→∞ reg(R/(In)sat )/n always exists. Along this theme, Hoa and Hyry [HoH] re-

cently studied the existence of similar limits where the regularity of R/In is replaced

by its a-invariants. This paper addresses a closely related question. We will investigate

the existence of the limit limn→∞ λ(H0
m

(R/In))/nd, where m is the maximal homo-

geneous ideal of R and λ denotes the length function. Our work is in fact inspired by

work on polynomial growth of the length of extension functors [Ki, Ko1, Th].

In Section 1 we will prove

Theorem 1.1 Let k be a field of characteristic zero, R = k[x1, . . . , xd] be a polynomial

ring of dimension d > 1, and m its maximal homogeneous ideal. Let I ⊂ R be a

homogeneous ideal of R. Then, the limit

lim
n→∞

λ
(

H0
m

(R/In)
)

nd
= lim

n→∞

λ
(

Extd
R

(

R/In, R(−d)
))

nd

always exists.

In fact, we prove (in Theorem 2.3) that if R is a coordinate ring of a projective

variety which has depth ≥ 2 at its irrelevant ideal, then limn→∞ λ(H0
m

(R/In))/nd

exists, and (Corollary 2.4) if R is Gorenstein, then

lim
n→∞

λ
(

H0
m

(R/In)
)

nd
= lim

n→∞

λ
(

Extd
R

(

R/In, R(−d)
))

nd
.

We will also give an example where λ(H0
m

(R/In))/nd tends to an irrational number

as n → ∞ (Theorem 3.2). This, in particular, shows that, just like reg(R/(In)sat ),

λ(H0
m

(R/In)) is not asymptotically a polynomial in n.

Theorem 1.1 is proved in Section 1. To do this, we express λ(H0
m

(R/In)) as a sum

of two components, the geometric component σ(n), and the algebraic component

τ (n), and show that both limits limn→∞ σ(n)/nd and limn→∞ τ (n)/nd exist. For

the first limit, we express σ(n) as h0(Y, Nn) for some line bundle N over a projective

scheme Y of dimension d, and investigate the limit limn→∞ h0(Y, Nn)/nd. For the

latter one, we write τ (n) as the Hilbert function of a finitely generated graded k-

algebra of dimension (d + 1). In Theorem 1.2, we use the construction illustrated in

[Cu] by the first author to give an example where the limit proved to exist in Section 1

is an irrational number.

Theorem 1.2 There exists a nonsingular projective curve C ⊂ P3
C

such that if I ⊂
R = C[x1, . . . , x4] is the defining ideal of C, and m is the homogeneous maximal ideal

of R, then

lim
n→∞

λ
(

H0
m

(R/In)
)

n4
/∈ Q.

Of course, Theorem 1.2 has a local analog.
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Theorem 1.3 There exists a regular local ring S of dimension 4 which is essentially of

finite type over the complex numbers C, and an ideal J ⊂ S such that

lim
n→∞

λ(Extd
S(S/ Jn, S))

nd

is an irrational number. In particular, λ(Extd
S(S/ Jn, S)) is not a polynomial or a quasi-

polynomial for large n.

The proofs of Theorems 1.2 and 1.3 will be given in Section 3. In contrast to the

example of Theorem 1.3, if (S, m, k) is a Cohen–Macaulay local ring of dimension

d and J is an m-primary ideal, then λ(Extd(S/ Jn, S) is a polynomial of degree d for

large n [Ki, Th]. In fact,

lim
n→∞

λ(Extd
S(S/ Jn, S))

nd
=

e(I)

d!

where e(I) is the multiplicity of I ([Th2]).

In the case when S is Gorenstein, this follows easily from local duality, since

λ
(

Extd(S/ Jn, S)
)

= λ
(

H0
mS(S/ Jn)

)

= λ(S/ Jn)

for all n.

Suppose that I is a homogeneous ideal in the coordinate ring R of a projective

variety of depth ≥ 2 at the irrelevant ideal. Then (cf. Remark 2.5), if ht I = d =

dim(R), we have that

lim
n→∞

λ
(

H0
m

(R/In)
)

nd
=

e(I)

d!

where e(I) is the multiplicity of I.

In contrast, if ht I < d then

(1.1) lim
n→∞

λ
(

H0
m

(R/In)
)

nd

does not have such a simple arithmetic interpretation. The example of Theorem 1.2

is of a height 2 prime ideal in a polynomial ring R of dimension 4 such that (1.1) is

an irrational number. However, in many cases, such as when I is a regular prime with

ht I < d in a polynomial ring R of dimension d, we have that the limit (1.1) is 0.

More generally, if ht I < d and the analytic spread ℓ(I) < d then the inte-

gral closure In has no m-primary component for large n [M, Theorem 3]. Since

depth(Rm) ≥ 2, In = H0
(

spec(R) − {m}, In
)

and

H0
m

(R/In) ∼= H1
m

(In) ∼= H0
(

spec(R) − {m}, In
)

/(In) = 0

for large n. Thus if I is a normal ideal (In
= In for all n) with analytic spread ℓ(I) < d

we have that H0
m

(R/In) = 0 for large n and the limit (1.1) is thus 0. In fact, Catalin

Ciuperca has shown us that even if I is not normal, with ℓ(I) < d, then the limit (1.1)

is zero.
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2 The Existence Theorem

In this section, we prove the main theorem of the paper. We shall start by recalling

some notations and terminology, and prove a few preliminary results.

Suppose R is a graded ring, and I ⊂ R a homogeneous ideal. The Rees algebra of

I is the subalgebra R[It] of R[t]. The Rees algebra R[It] has a natural bi-gradation

given by

R[It](m,n) = (In)mtn.

Suppose A =
⊕

m,n∈Z
A(m,n) is a bi-graded algebra. For a tuple of positive integers

∆ = (a, b), A∆ =
⊕

n∈Z
A(an,bn) is call a ∆-diagonal subalgebra of A.

Lemma 2.1 Suppose a domain R is a finitely generated graded k-algebra of dimension

δ, and I ⊂ R is a homogeneous ideal generated in degrees ≤ d such that ht I ≥ 1. Let

A = R[It] be the Rees algebra of I over R.

(i) For any tuple ∆ = (a, b) of positive integers such that a ≥ db, A∆ is a finitely

generated graded k-algebra.

(ii) For any tuple ∆ = (a, b) of positive integers such that a > db, dim A∆ = δ.

Proof It is easy to see that A∆ = k[(Ib)a] is the k-algebra generated by elements of

(Ib)a. Thus, (i) is clear. (ii) follows from [HgT, Lemma 2.2] since R is a domain.

The following lemma is stated in an example in [La].

Lemma 2.2 Suppose that Y is a projective variety of dimension d over a field k of

characteristic zero, and L is a line bundle on Y . Then the limit

lim
n→∞

h0(Y, Ln)

nd

exists, and is a positive real number if L is big.

Proof It follows from [I, Theorem 10.2] that lim supn→∞ h0(Y, Ln)/nd
= 0 if L is

not big (κ(L) < d). This implies that limn→∞ h0(Y, Ln)/nd
= 0.

Suppose that L is big (that is, κ(L) = d). It follows from [I, Theorem 10.2] that

lim inf
n→∞

h0(Y, Ln)

nd
> 0.

To prove the lemma, it suffices to show that

lim sup
n→∞

h0(Y, Ln)

nd/d!
= lim inf

n→∞

h0(Y, Ln)

nd/d!
.

Let ε > 0 be an arbitrary positive number. By applying the theorem of Fujita [Fu]

(and from the definition of limsup), there exists a birational morphism θ : Z → Y
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together with an effective Q-divisor E on Z such that H = θ∗L − E is a semiample

Q-divisor with

Hd > lim sup
n→∞

h0(Y, Ln)

nd/d!
− ε.

Let q be the smallest positive integer such that qE is integral (or equivalently, qH

is integral). Since qE is effective, there is a natural injection OZ →֒ OZ(qE). This

gives an injection OZ(lqH) →֒ OZ(lqE + lqH) = θ∗Llq for any integer l > 0. Thus,

h0
(

Z, OZ(lqH)
)

≤ h0(Z, θ∗Llq) for any integer l > 0. Furthermore, since qH is

semiample, there exists c > 0 such that

(2.1) hi
(

Z, OZ(lqH)
)

≤ c(ld−2)

for any i ≥ 1 (cf. Corollary 6.7 [F2]). Thus

h0
(

Z, OZ(lqH)
)

= χ(lqH) + O(ld−2) =
(lq)d

d!
Hd + O(ld−1),

where χ denotes the Euler characteristic.

We have an exact sequence of coherent OY modules

0 → OY → θ∗OZ → F → 0

where F is supported on a closed subset of Y of dimension < d. From the exact

sequences

0 → L
lq → θ∗θ

∗
L

lq → F ⊗ L
lq → 0

we have

h0(Y, Llq) = h0(Z, θ∗Llq) + O(ld−1).

Hence,

Hd
= lim

l→∞

h0
(

Z, OZ(lqH)
)

(lq)d/d!
≤ lim inf

l→∞

h0(Y, Llq)

(lq)d/d!
.

In summary, we have

(2.2) lim sup
n→∞

h0(Y, Ln)

nd/d!
< Hd + ε ≤ lim inf

l→∞

h0(Y, Llq)

(lq)d/d!
+ ε.

Since ε is taken to be arbitrary, by (2.2), to prove the lemma, we only need to show

that

(2.3) lim inf
n→∞

h0(Y, Ln)

nd/d!
= lim inf

l→∞

h0(Y, Llq)

(lq)d/d!
.

Since L is big, there exists a constant n0 such that h0(Y, Ln) > 0 for any n ≥ n0

(as follows from [I, Theorem 10.2]). This implies that, for each 0 ≤ r < q, there
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exists an effective divisor Fr on Y such that OY (Fr) ∼= Ln0+r. For l > 0, we have exact

sequences

0 → L
lq → L

lq+n0+r → OFr
⊗ L

lq+n0+r → 0.

Taking the long exact sequences of cohomologies, we get

0 → H0(Y, Llq) → H0(Y, Llq+n0+r) → H0(Fr, OFr
⊗ L

lq+n0+r).

Thus,

(2.4)
h0(Y, Llq+n0+r)

(lq)d/d!
− h0(Y, Llq+n0+r)

(lq)d/d!
≤ h0(Fr, OFr

⊗ Llq+n0+r)

(lq)d/d!
.

Since every component of Fr has dimension d − 1 < d, we have

lim
l→∞

h0(Fr, OFr
⊗ L

lq+n0+r)

(lq)d/d!
= 0.

(2.4) now gives us

lim inf
l→∞

h0(Y, Llq)

(lq)d/d!
= lim inf

l→∞

h0(Y, Llq+n0+r)

(lq)d/d!
.

Moreover, since n0 is fixed and 0 ≤ r < q, we have

lim inf
l→∞

h0(Y, Llq+n0+r)

(lq)d/d!
= lim inf

l→∞

h0(Y, Llq+n0+r)

(lq + n0 + r)d/d!
.

Therefore,

lim inf
l→∞

h0(Y, Llq)

(lq)d/d!
= lim inf

l→∞

h0(Y, Llq+n0+r)

(lq + n0 + r)d/d!

for any 0 ≤ r < q. Hence,

lim inf
l→∞

h0(Y, Llq)

(lq)d/d!
= lim inf

n→∞

h0(Y, Ln)

nd/d!
.

(2.3) is proved, and so is the lemma.

Theorem 2.3 Let R = k[x1, . . . , xp]/ J be the quotient of a polynomial ring

k[x1, . . . , xp] over a field k of characteristic zero by a homogeneous prime ideal J. Let

m be the maximal homogeneous ideal of R. Suppose that depth(Rm) ≥ 2. Let d be the

dimension of R.

Let I ⊂ R be a homogeneous ideal of R. Then, the limit limn→∞ λ(H0
m

(R/In))/nd

always exists.

By duality, we obtain the following corollary.
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Corollary 2.4 With the notations of Theorem 2.3, suppose that R is Gorenstein. Then

lim
n→∞

λ
(

H0
m

(R/In)
)

nd
= lim

n→∞

λ
(

Extd
R(R/In, R(−d))

)

nd

Proof of Theorem 2.3 The problem is trivial if ht I = 0. If ht I = d then there is a

very simple proof (see the Remark after this proof). Suppose ht I ≥ 1. Let I be the

ideal sheaf associated to I on V = Proj R. From the exact sequence

0 → In → R → R/In → 0,

we get H0
m

(R/In) = H1
m

(In). The Serre–Grothendieck correspondence gives us the

exact sequence

0 → In →
⊕

m≥0

H0
(

V, In(m)
)

→ H1
m

(In) → 0.

depth(Rm) ≥ 2 implies that

⊕

m≥0

H0
(

V, In(m)
)

= H0
(

spec(R) − {m}, In
)

= (In)∗

where (In)∗ is the intersection of the primary components of In which are not m-pri-

mary. By the theorem of Swanson [S] there exists a number e > 0 such that (In)m =

(In)∗m for any m ≥ en and n ≥ 1. Therefore, we have

(2.5) λ
(

H1
m

(In)
)

= σ(n) − τ (n),

where

(2.6) σ(n) =

en
∑

m=0

h0
(

V, In(m)
)

and τ (n) =

en
∑

m=0

λ
(

(In)m

)

.

We will take e to be bigger than the degrees of homogeneous generators of I. The the-

orem will be proved if we can show that limits limn→∞ σ(n)/nd and limn→∞ τ (n)/nd

both exist.

Let us first consider limn→∞ σ(n)/nd. Let π : X → V be the blowing up of V along

I. Let us denote M = π∗OV (1) and L = IOX . Let η : Y = P(OX ⊕ M) → X be the

projectivization of the vector bundle OX ⊕ M on X. Then, dim Y = dim X + 1 = d.

Let N = OY (e) ⊗ η∗L. We have

h0(Y, Nn) = h0
(

X, Sen(OX ⊕ M) ⊗ L
n
)

=

en
∑

m=0

h0(X, Mm ⊗ L
n).

Furthermore, it follows from [H, Exercise II.5.9] (see also [CEL, Lemma 3.3] and

[HaT]) that π∗L
n

= In for n ≫ 0. Thus, for n ≫ 0,

h0(Y, Nn) =

en
∑

m=0

h0
(

V, OV (m) ⊗ I
n
)

=

en
∑

m=0

h0
(

V, In(m)
)

= σ(n).
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By Lemma 2.2, limn→∞ h0(Y, Nn)/nd exists. Hence, limn→∞ σ(n)/nd exists.

Now, let us consider limn→∞ τ (n)/nd. Suppose I is generated by F1, . . . , Fl ∈ R

and deg F j = d j for 1 ≤ j ≤ l. Let S = R[s, F1t, . . . , Flt] ⊂ R[s, t] be the Rees

algebra of the ideal IR[s] over the polynomial ring R[s]. S can be viewed as a bi-

graded ring with deg xi = (1, 0) for 1 ≤ i ≤ d, deg s = (1, 0), and deg F jt = (d j , 1)

for 1 ≤ j ≤ l. Take an arbitrary element f ∈ S. We observe that deg f = (en, n) if

and only if f has the following form

f =

∑

m1+···+ml=n

en−d1m1−···−dlml
∑

j=0

b js
en−d1m1−···−dlml− jFm1

1 · · · Fml

l tn,

where b j ∈ R is homogeneous of degree j. Thus the map

Φn : S(en,n) →
en

∑

m=0

(In)m

defined by Φn

(

f (s, t)
)

= f (0, 1) is a k-vector space isomorphism. Hence,

λ(S(en,n)) =

en
∑

m=0

λ
(

(In)m

)

= τ (n).

Let T =
⊕∞

n=0 S(en,n), then T = S∆ with ∆ = (e, 1). Since S is a finitely generated

bi-graded k-algebra and e is taken to be bigger than d j for all 1 ≤ j ≤ l, it follows

from Lemma 2.1 that T is a finitely generated k-algebra and dim T = d + 1. Thus, the

Hilbert function H(T, n) = dimk Tn = λ(S(en,n)) is given by a polynomial of degree

d in n for n ≫ 0 with a rational leading coefficient. This implies the existence of the

limit

(2.7) lim
n→∞

τ (n)

nd
∈ R.

The theorem is proved.

Remark 2.5 Let assumptions be as in the statement of Theorem 2.3. If ht I = d we

have that H0
m

(R/In) = R/In for all n, so that λ
(

H0
m

(R/In)
)

is the Hilbert polynomial

of I for large n. Thus

lim
n→∞

λ
(

H0
m

(R/In)
)

nd
=

e(I)

d!

where e(I) is the multiplicity of I. In the proof we in fact have in this special case that

σ(n) =
∑en

m=0 h0
(

V, OV (m)
)

.
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3 Irrational Asymptotic Behaviour

In this section, we will give examples, stated in Theorems 1.2 and 1.3 of the intro-

duction, in which the limit proved to exist in Section 1 is an irrational number. This

exhibits how complicated the length λ
(

H0
m

(R/In)
)

can be asymptotically. In fact, we

will show that the construction given by the first author in [Cu] provides an example.

Let S be a K3 surface defined over the complex field C with Pic(S) ∼= Z3. We

can therefore identify Pic(S) with integral points (x, y, z) ∈ Z3. Take S to be the K3

surface which has the intersection form

(3.1) q(x, y, z) = 4x2 − 4y2 − 4z2,

where q(D) = D2 for any divisor D ∈ Pic(S). Such a surface S exists as shown in

[Cu]. It is shown there that a divisor D on S is ample if and only if it is in the interior

of

NE(S) = {(x, y, z) ∈ R
3 | 4x2 − 4y2 − 4z2 ≥ 0, x ≥ 0}.

Moreover, S is embedded into P3 by the divisor H = (1, 0, 0). Suppose (a, b, c) ∈ Z3

is such that

(3.2)











a > 0,

a2 − b2 − c2 > 0,√
b2 + c2 6∈ Q.

Since (a, b, c) is in the interior of NE(S), the divisor A = (a, b, c) is ample on S. Let

C be a nonsingular curve on S such that C ∼ A. Again, C exists as shown in [Cu].

Let R = C[x1, . . . , x4] be the coordinate ring of P3, and let I be the defining ideal

of C in P3. We will show that there exist (a, b, c) ∈ Z3 satisfying (3.2) and a curve C

as above, such that

(3.3) lim
n→∞

λ
(

H0
m

(R/In)
)

n4
6∈ Q,

where m = (x1, . . . , x4) is the maximal homogeneous ideal of R. Theorem 1.2 is thus

an immediate consequence.

As is proved in (2.5), (2.6) and (3.1) of Theorem 2.3,

lim
n→∞

λ
(

H0
m

(R/In)
)

n4
= lim

n→∞

σ(n)

n4
+ lim

n→∞

τ (n)

n4
,

where limn→∞ τ (n)/n4 ∈ Q . It remains to show that there exist (a, b, c) ∈ Z3 satis-

fying (3.2) and a curve C as above, such that

lim
n→∞

σ(n)

n4
6∈ Q.
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Let I be the ideal sheaf of I on P3. Let π : X → P3 be the blowing up of P3 along

the ideal sheaf I. There exists a hyperplane H ′ of P3 such that H ′ · S = H. Let H̃

be the pull-back to X of H ′, and E the exceptional divisor of the blowing up. Let

λ1 = a −
√

b2 + c2 and λ2 = a +
√

b2 + c2. The following facts were proved in [Cu].

Lemma 3.1 Suppose λ2 > 7. Then,

(1) h0
(

S, OS(mH − nC)
)

= 0 if m < λ2n.

(2) h0
(

S, OS(mH − nC)
)

= 1/2(mH − nC)2 + 2 if m > λ2n.

(3) h1
(

X, OX(mH̃ − nE)
)

= 0 if m > λ2n.

Proof (1) follows from [Cu, Remark 6]. (2) is a consequence of [Cu, Theorem 7].

(3) follows from [Cu, Theorem 9].

It was pointed out in [Cu, (11)] that

π∗OX(mH̃ − nE) ∼= I
n(m),(3.4)

Riπ∗OX(mH̃ − nE) = 0, for i > 0.(3.5)

Thus, we can use the cohomology groups of OX(mH̃ − nE) to calculate σ(n). For

convenience, we will use Hi(X, mH̃ − nE) and Hi(S, mH − nC) to denote Hi
(

X,

OX(mH̃ − nE)
)

and Hi
(

S, OS(mH − nC)
)

, respectively. When there is no danger of

confusion, we shall further omit the space X and S in these cohomology groups. It

was also shown in [Cu, (12)] that there exists the following exact sequence:

(3.6) 0 → OX

(

(m − 4)H̃ − (n − 1)E
)

→ OX(mH̃ − nE) → OS(mH − nC) → 0.

The existence of the desired example follows from the following theorem.

Theorem 3.2 There exist (a, b, c) ∈ Z3 satisfying (3.2) and a corresponding nonsin-

gular curve C such that, if I ⊂ R is the defining ideal of C, then

lim
n→∞

σ(n)

n4
6∈ Q,

and

lim
n→∞

λ
(

H0
m

(R/In)
)

n4
6∈ Q.

Proof Taking the long exact sequence of cohomology groups from the exact se-

quence (3.6), we get

0 → H0
(

(m − 4)H̃ − (n − 1)E
)

→ H0(mH̃ − nE) →

→ H0(mH − nC) → H1
(

(m − 4)H̃ − (n − 1)E
)

.
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It follows from Lemma 3.1 that

H0(mH̃ − nE) ∼= H0
(

(m − 4)H̃ − (n − 1)E
)

if m < λ2n,(3.7)

H0(mH̃ − nE) ∼= H0
(

(m − 4)H̃ − (n − 1)E
)

⊕ H0(mH − nC) if m > λ2n.

(3.8)

Write m = 4n + r. Consider the following cases.

Case 1 r < 0. Since λ2 > 4, we have m < λ2n. Thus, using (3.7) and successive

induction, we get

(3.9) H0(mH̃ − nE) = H0(rH̃) = H0
(

OP3 (r)
)

= 0.

Case 2 r ≥ 0. If r > (λ2 − 4)n, i.e. m > λ2n, then using (3.8) and successive

induction, we get h0(mH̃ − nE) =
∑n

k=1 h0
(

(r + 4k)H − kC
)

+ 2n + h0
(

OP3 (r)
)

.

Lemma 3.1 now gives

h0(mH̃ − nE) =
1

2

n
∑

k=1

(

(r + 4k)H − kC
) 2

+ 2n + h0
(

OP3 (r)
)

.(3.10)

On the other hand, if r < (λ2 − 4)n, then put t = [r/(λ2 − 4)]. By successive

induction using both (3.7) and (3.8), we get

(3.11) h0(mH̃ − nE) =

t
∑

k=1

h0
(

(r + 4k)H − kC
)

+ h0
(

OP3 (r)
)

=
1

2

t
∑

k=1

(

(r + 4k)H − kC
) 2

+ 2t + h0
(

OP3 (r)
)

.

By (3.4), we have

σ(n) =

en
∑

m=0

h0(mH̃ − nE)

=

(e−4)n
∑

r=−4n

h0
(

(r + 4n)H̃ − nE
)

=

−1
∑

r=−4n

h0
(

(r + 4n)H̃ − nE
)

+

[(λ2−4)n]
∑

r=0

h0((r + 4n)H̃ − nE)

+

(e−4)n
∑

r=[(λ2−4)n]+1

h0
(

(r + 4n)H̃ − nE
)

.
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This together with (3.9), (3.10) and (3.11) gives us

σ(n) =

[(λ2−4)n]
∑

r=0

( 1

2

[ r

λ2−4
]

∑

k=1

(

(r + 4k)H − kC
) 2

+ 2
[ r

λ2 − 4

]

+ h0
(

OP3 (r)
)

)

+

(e−4)n
∑

r=[(λ2−4)n]+1

( 1

2

n
∑

k=1

(

(r + 4k)H − kC
) 2

+ 2n + h0
(

OP3 (r)
)

)

=

[(λ2−4)n]
∑

r=0

( 1

2

[ r

λ2−4
]

∑

k=1

(

(r + 4k)H − kC
) 2

)

+

(e−4)n
∑

r=[(λ2−4)n]+1

( 1

2

n
∑

k=1

(

(r + 4k)H − kC
) 2

)

+

(e−4)n
∑

r=0

h0
(

OP3 (r)
)

+ 2
(

[λ2−4)n]
∑

r=0

[ r

λ2 − 4

]

+ n
(

(e − 4)n − [(λ2 − 4)n] − 1
)

)

.

Let

Q(s, r) =
1

2

s
∑

k=1

(

(r + 4k)H − kC
) 2

,

V (n) = 2
(

[λ2−4)n]
∑

r=0

[ r

λ2 − 4

]

+ n
(

(e − 4)n − [(λ2 − 4)n] − 1
)

)

and

U (n) =

(e−4)n
∑

r=0

h0
(

OP3 (r)
)

.

Let

P(s, r) = Q(s, r) − Q(s − 1, r) =
1

2

(

(r + 4s)H − sC
) 2

with the convention that Q(s, r) = 0 for s < 1. For simplicity, let us also denote

λ = λ2 − 4. Then, we can rewrite σ(n) as follows:

(3.12)

σ(n) =

[λn]
∑

r=[λ]+1

P(1, r) + · · · +

[λn]
∑

r=[λ(n−1)]+1

P(n − 1, r) +

(e−4)n
∑

r=[λn]+1

Q(n, r) + U (n) + V (n).

Let us consider one term
∑[λn]

r=[λl]+1 P(l, r) of the sum (3.12) for some 1 ≤ l ≤ n − 1.
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From the intersection form q of (3.1) we have

λn]
∑

r=[λl]+1

P(l, r)

=

[λn]
∑

r=[λl]+1

2
(

(

r + (4 − a)l
) 2 − (b2 + c2)l2

)

=

[λn]
∑

r=1

2
(

(

r + (4 − a)l
) 2 − (b2 + c2)l2

)

−
[λl]
∑

r=1

2
(

(

r + (4 − a)l
) 2 − (b2 + c2)l2

)

=

(

2

3
([λn])3 + 2(4 − a)l([λn])2 + 2

(

(4 − a)2 − b2 − c2
)

l2([λn])

)

−
(

2

3
([λl])3 + 2(4 − a)l([λl])2 + 2

(

(4 − a)2 − b2 − c2
)

l2([λl])

)

+ [λn]2 + (
1

3
+ 2(4 − a)l)[λn] + [λl]2 + (

1

3
+ 2(4 − a)l)[λl].

Note that λl − 1 < [λl] < λl for any l. Thus, we have

[λn]
∑

r=[λl]+1

P(l, r) =

( 2

3
(λn)3 + 2(4 − a)l(λn)2 + 2

(

(4 − a)2 − b2 − c2
)

l2(λn)
)

−
( 2

3
(λl)3 + 2(4 − a)l(λl)2 + 2

(

(4 − a)2 − b2 − c2
)

l2(λl)
)

+ F(n, l)

where F(n, l) is a function such that there exists a polynomial G(n, l) of degree 2 with

positive real coefficients satisfying |F(n, l)| < G(n, l) for all n, l ∈ N.

Taking the sum as l goes from 1 to (n − 1), we get

n−1
∑

l=1

[λn]
∑

r=[λl]+1

P(l, r)

=

( 2

3
λ3n4 + (4 − a)λ2n4 +

2

3

(

(4 − a)2 − b2 − c2
)

λn4
)

−
( 1

6
λ3n4 +

1

2
(4 − a)λ2n4 +

1

2

(

(4 − a)2 − b2 − c2
)

λn4
)

+ O(n3).
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We also have

Q(n, r) =

n
∑

k=1

2
(

(

r + (4 − a)k
) 2 − (b2 + c2)k2

)

= 2r2n + 2(4 − a)rn2 +
2

3

(

(4 − a)2 − b2 − c2
)

n3 + H(n, r)

where H(n, r) is a real polynomial of degree ≤ 2 in n and r. Thus,

(e−4)n
∑

r=[λn]+1

Q(n, r) =

(e−4)n
∑

r=1

Q(n, r) −
[λn]
∑

r=1

Q(n, r)

=

( 2

3
(e − 4)3n4 + (4 − a)(e − 4)2n4 +

2

3

(

(4 − a)2 − b2 − c2
)

(e − 4)n4
)

−
( 2

3
n([λn])3 + (4 − a)n2([λn])2 +

2

3

(

(4 − a)2 − b2 − c2
)

n3[λn]
)

+ O(n3)

= An4 −
( 2

3
λ3n4 + (4 − a)λ2n4 +

2

3

(

(4 − a)2 − b2 − c2
)

λn4
)

+ O(n3),

where A ∈ Q . Moreover,

U (n) =

(e−4)n
∑

r=0

h0
(

OP3 (r)
)

=

(e−4)n
∑

r=0

(

r + 3

3

)

=
1

24
(e − 4)4n4 + O(n3) = Bn4 + O(n3)

with B ∈ Q . Further, we have V (n) = O(n2). Hence,

σ(n) = (A + B)n4 −
( 1

6
λ3 +

1

2
(4 − a)2λ2 +

1

2

(

(4 − a)2 − b2 − c2
)

λ
)

n4 + O(n3).

Finally, take a = 4, b = 3 and c = 2, then clearly (a, b, c) satisfies all the require-

ments in (3.2) and λ2 = a +
√

b2 + c2 > 7. We have σ(n) = (A + B)n4 + 13
√

13
3

n4 +

O(n3), where A, B ∈ Q . Therefore,

lim
n→∞

σ(n)

n4
= A + B +

13
√

13

3
6∈ Q.

The theorem is proved.

We now prove Theorem 1.3. Let I and R be the ideal and ring of this section. Let

m = (x1, . . . , xr), S = Rm, J = Im. Let E be the injective hull of C.

HomS(H0
mS(S/ Jn), E) ∼= Extd

S(S/ Jn, S)

by local duality (cf. Theorem 3.5.8 [BH]). Thus

λ
(

Extd
S(S/ Jn, S)

)

= λ
(

H0
mS(S/ Jn)

)

= λ
(

H0
m

(R/In)
)

for all n (cf. Proposition 3.2.12 [BH]). Now the theorem follows from Theorem 1.2.
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