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Gaussian Estimates in Lipschitz Domains

N. Th. Varopoulos

Abstract. We give upper and lower Gaussian estimates for the diffusion kernel of a divergence and
nondivergence form elliptic operator in a Lipschitz domain.

Résumé. On donne des estimations Gaussiennes pour le noyau d’une diffusion, réversible ou pas, dans
un domaine Lipschitzien.

0 Introduction
0.1 Notations and Definitions

I shall consider in this paper parabolic second order differential operators of diver-
gence form, as well as time independent non divergence form, in a domain 2 C R%:

(0.1) M = % — &aij(t,x)aj =0, — A,
0
(0.2) L= & — a,»j(x)aiaj — b,»(x)@i = & — B,
where 0; = a% (i=1,...,d) and where summation convention is used throughout.

The domain 2 will be a Lipschitz domain. It will be either bounded with the usual
definition (e.g. ¢f. [28] [26]) or unbounded, of the upper half space type,

(0.3) x=(x,x) eR"=Rx R x > '), x e RY,
where p: R9~! — Ris a global Lipschitz function that satisfies
(0.4) lo(x) — ()| < Alx" —y'; ',y € RO,

for some A > 0. The domain Q = R? can also be considered.
We shall assume throughout in (0.1) and (0.2) that

(0.5) lai;|, [bi] <\, @66 > N6 E€ER) xeQ tER,

for some A > 0, and we shall also make the qualitative assumption that a;;, b; €
C>® N L%, i.e. that they are smooth and extend in the whole space. But only A, d,
the Lipschitz constants Lip (£2), and sometimes also diam(€2), will be involved in the
theorem and in the constants C, ¢ > 0 below. As usual the letters C, ¢, possibly with
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suffixes, will indicate constants that may differ from place to place and only depend
on the important parameters. When (2 is the domain (0.3) we set Lip(£2) = A with
A asin (0.4). In the case where (2 is bounded we shall scale €2 by dilation to bring
it to diam(2) = 1. Then, by definition, there exists some A, r; > 0 s.t. for all
Q € 99 we can find local orthonormal coordinates around Q x = (x;,x’) asin (0.3)
s.t. x(Q) = 0 and such that

QN x| <ro, X' < 1ol = [x1 > p(x), x| < 19, 1] < 10],

and some ¢ as in (0.4). We set then Lip(€2) = (A, o).
I shall also adopt throughout the usual notation X =~ Y to indicate that C™! <

X/Y <C.
I shall denote by
(0.6) Z(t) ERY > 1,
the diffusion generated by (0.1) or (0.2), and I shall consider the first exit time and
the probability of life:
(0.7) T = inf[t; 2(¢) ¢ Q],

(0.8) P(s,x8) =Pys[m >t] =Pt >t z(s) =x]; tH<s<t, xecl.

I shall also fix du(x)(x € €2) some measure, as explained below, and consider the
corresponding Heat diffusion kernel (parabolic Green function)

(0.9) /p(gx;t, y)du(y) =Plz(t) e T >t]; ACQ tp<s<t, xel
A

For time-independent operators, and in particular for the operator L in (0.2) the
more usual notations

(0.10) pe(x, y) = p(0, x5, y), P(t,x) = P(0,x:¢); t>0,x,y€8,

will be used. Very special measures dy will be used in (0.9): For the divergence form
operator M in (0.1) du(x) = dx the Lebesgue measure will be used throughout. For
the operator L in (0.2) the measure dy will be chosen as follows: If €2 is bounded and
Q C B,,(0) lies in the Euclidean ball centered at 0 and radius o we shall fix m(x) > 0;
X € By,,(0) some adjoint solution:

(0.11) B*m = 8,‘8]'(611‘]‘7?1) — 8,([7,77’!) =0, x¢€ BZro(O)a
and set
(0.12) du(x) = m(x) dx.

The particular choice of m(-) will not be important and all the estimates will be uni-
form w.r.t. that choice. We can for instance set (cf. [4] [27])

(0.13) m(x) = G(X*,x); |X*| = 3ro,
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with G(-,-) the Green function ofL(: LG(-,x) = —(5x(~)(5x(-)) in the ball By, (0)
(: G |ap,, = 0). If 2 is unbounded no such positive solutions exist in general. We
can still set dy as in (0.12) with m as in (0.13) where now G(-, -) is the global Green
function on R? provided that we are in the transient case, i.e.,

(0.14) Gra(x, y) < +00.

m(-) is no longer a solution as in (0.11) but only a supersolution, i.e.,

(0.15) B*m(x) < 0; x€R

It will furthermore be necessary that on the actual domain €2, 1 is an adjoint solution
(0.16) B*m(x) =0; x¢€Q,

e.g. in the transient case (0.14) we can set m(x) = G(X*, x) with X* ¢ Q. The reason
for this will become apparent in (A.15). It should be observed that positive adjoint
solutions exist for any domain if the coefficients are C°°. In general however these
solutions explode when the coefficients “become” L°°. In the above procedure, on
the other hand, we keep control of the L!-loc norms and this is essential if we want
our theorem to make sense for L> coefficients and for the martingale problem (and
not merely to hold independently of the smoothness).

If (0.15) holds we can use the measure di = m dx to reverse the process (0.6) and
construct

(0.17) Z5(t) €t < ty,
the process generated by:
M*:at'i'-A*; L*:6[+‘B*7

where A*, B* are the formal adjoints of A and B w.r.t. du. These operators have 0,
or B*m < 0, as constant terms so the construction of (0.17) is possible. This process
moves backwards in time and I shall use the notations:

(0.18) Pr(s,x5t,9); P*(s,x35t); sop>s>t, x,y € £,
for the Green function and the probability of life of (0.17).

Example (Periodic Coefficients) Let us suppose that the coefficients of L in (0.2) are
periodic and that

aij(x+e) = a;j(x), bj(x+e) = bi(x); x€R,
(0.19) e =1(0,...,0,1,0,...,0) = coordinate unit vectors, i, j,k=1,...,d.

A global adjoint solution m(-) > 0, B*m = 0 on R that is periodic m(x+e;) = m(x)

(x € RSk = 1,...,d) then exists. This is because of obvious reasons of ergodicity
(cf. [14] V Section 5, [6] Chapter 3, 3.1.)
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0.2 The Doubling Property of the Measure and the Gaussian Kernel

Let now m(-) be defined in some arbitrary domain P C R“ and let us assume that
it satisfies B*m < 0 there. Then the measure, du = mdx satisfies the doubling
property of the volume

(0.20) Vi(r) = /L(Br(x)) 5 B(x) CP
for Euclidean balls (cf. [5] [19]). More precisely we have:
(0.21) Vi(2r) S CVi(r); By (x) CP r<r,,

where C depends on ry and where we can take ro = 400 if b; = 0 in (0.2). It follows
that if 2, p, m and ry are as in (0.11), (0.12), (0.13) and if we define:

_ 2
(0.22) Gs = Gs.(t;x, ) =V '(V1) e@(—%) i x,y€Q,

then for all ¢ > 0 there exists ¢, C s.t.
(0.23) Gs (t;x,y) < CGs,, (t;,%); t< ré.

This means that the definition (0.22) of the above Gaussian kernel is essentially sym-
metric in x, ¥ and we can even write it in a formally symmetric form:

T [x = yI?
(0.24) Gs(t,x,y) &~ Vi *(V1)V, 2 (V1) exp -

ct

0.3 Statement of the Gaussian Estimates

Theorem Let § be some bounded Lipschitz domain then the Green function of either L

of M (cf. (0.8) (0.9)) satisfies

(0.25) p(s,x;t,y) = P(s, x;1)P*(t, y; 5) Gs(t — s;x, y);
xyeQ, ssteR 0<t—s<T,

where the constants depend only on d, A, Lip(Q2), diam(£2), T. If we assume that Q) is as
in (0.3) and T = 400, then the same estimate holds for the divergence form operator M
in (0.1) and also for the nondivergence form operator L in (0.2) provided that we are in
the transient case (0.14) and that the drift term is zero b; = 0 (1 < i < d).

When Q = R?and M is in divergence form (0.25) is the classical Aronson estimate
[1]. By scaling, it is furthermore clear that we can multiply diam(2) by A > 0 and
T by A% and the constants of (0.25) do not change (for the operator L and A > 1
this is only possible if b, = 0). The above theorem holds also, and gives significant
information, for the operator L as in (0.2) with periodic coefficients (0.19), b; = 0
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and T = +oo. In this case P(t,x) = P*(t,x) = 1 and V.(t) = t%(t > 1). Not
surprisingly therefore we have:

2
(0.26) P.[z(t) € Bi(y)] = £2 exp<—|x4ty> ;0 X,y € Rd, t>1.
c

For the operator L, both the kernel and the definition of Gs depend on the choice of
the positive adjoint solution, the constants in (0.25) are however uniform w.r.t. that
choice. An easy corollary of (0.25) is the following:

Local Gaussian Estimate
(0.27)
ps, x5t y) =" Gs(t —s5x,9); 0<t—s<T, x,y€,0(x),(y) >0 >0,

where here and throughout we denote
O(x) =d(x,00); x€Q,

the Euclidean distance to the boundary, and where in (0.27) the constants depend
also on &.

Neumann Conditions The above result is an estimate on the diffusion z(t) € ,
(t > 0) with Dirichlet conditions at the boundary. Other boundary conditions can
be considered. To fix ideas let us consider the operator M in the symmetric time-
independent case a;;(x) = aj;i(x). Then the definition of the Neumann conditions at
the boundary in terms of Dirichlet forms can be found in [21]. In that case we have
P(t,x) = 1. Let us also assume that € is of the upper half space type. In that case the
estimate (0.25) holds again and we have:

=yl

;5 x,yeQ t>0.
) w

pi(x, y) = 1 exP(

The upper estimate in the above equivalence is already known [39]. Of course

there other intermediate boundary conditions (: mixed Dirichlet-Neumann) where
P(t,x) # 1. The question whether (0.25) holds in that generality, and under what
boundary conditions, is an interesting problem. But apart from some isolated exam-
ples I do not know the answer.

More General Domains It is routine to generalize the theorem for N.T.A. domains

[26] [28], and also for noncylindrical Lip(1,1/2) domains in time space ([43] 8.3,
[28] 31).

0.4 The Discrete Setting

The diffusion considered in (0.6) admits natural discrete Markov chain analogues

(0.28) P(z(n+ D=y zn) = x) =K(x,y); n=0,1,...,x,y¢€Z
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where K is a sub-markovian kernel on Z¢. I chose to discretise here the state space and
consider Z¢, but this of course is not necessary, we can consider analogous Markov
chains on RY with

(0.29) K(x,y) >0, x,y¢€ Rd7 /K(x, y)dy <1.

Together with the above submarkovian property, to make the Gaussian estimates
(0.25) go through, one has to impose some additional conditions on the kernel:

Finite Span and Ellipticity

(i): There exists a > 0 s.t.

(0.30) K(x,y) =0 |x—yl=a
(ii): There exists g9 > 0 s.t.

(0.31) K(x,y) > e0; |x—yl <1

In addition, and this is in analogy with the divergence form or the non divergence
form of the operators M and L, we have to impose one or the other of the following
two conditions:

(R): Reversibility The kernel is doubly submarkovian:

(0.32) > K(y,x) = /K(y,x) dy<1; xez’
Y

(C): Centered We are dealing with a centered space unhomogeneous random walk
(¢f: 131]) K(x, y) = e(x, y)(x, y € Z))

(0.33) delxy) =1 > elx,y)x—y)=0.

y y

Time unhomogeneous variants of the above can also be considered.
The two conditions above are verified simultaneously in the most important ex-
ample of the time and space homogeneous random walk

(0.34) K(x,y) = e(x, y) = plx — y); / xdp =0,

where ;1 € P(Z?) is a centered probability measure.
The exit time 7 = 0, 1,2, . .., and the probability of life and transition kernel

(0.35) P(n,x), pa(x,y); x,y € Zd, n=0,1,...,

can be defined as in (0.7) (0.8) (0.9) (0.10) with respect to, say, the Lipschitz domain
Q2 C R? of the upper half space type (0.3). Bounded domains 2 can also be consid-
ered but in that case, since we cannot let the time ¢ tend to zero, we have to present
our results in terms of diam(2) — oo.

The exact analogue of our theorem in 0.3 holds in the setting of the random walk
(0.34), and also to a certain extent in the above two more general cases (R) and (C).
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0.5 The Doubling Property of the Probability of Life

One technical and nontrivial result that will be proved for the operator L and a
bounded domain is that

(0.36)

< P(tlax) <C(t_2

c
s 0<th <t <T,
= P(ty,x) T 1‘1) e

where C = C(d, A, Lip(Q2), diam(£2), T). If Q2 is as in (0.3) then we can take in (0.36)
T = +o0o. The analogous result for the operator M is

0.37 1<
(0.37) T P(s,xt) T

P(s, x;t th —s\C
Pls,xst) _ (: ) i os<th<thxeEWLb-s<T
1— S

The estimate (0.37) has been proved in [43] and should not be confused with the
backwards Harnack estimate of [23] [15] [16] [17] that in the present context says
that for a bounded domain we have

P(s1,x1)

-1 2
C gmgc; S1, Sy <t —ty, x €Q, |51 — 5] < ad*(x), to >0,

where C = C()\7 d, Lip(£2), diam(€2), a, to) . It is of interest however that for the
particular coparabolic function u(s,x) = P(x,s;t) the proof of [16] can easily be
adapted to the unbounded upper half space domain (0.3). I shall have no use of
this fact here and will not give the details. If however we combine this fact with the
Gaussian estimate (0.25) we see that the backwards Harnack estimate holds for the
unbounded domain €2 and the coparabolic function u(s, x) = p(s, x; to, o) provided
that |x — yo| < C,C™! <ty —s < C, 6(yy) < C. This last point is implicit in [37].

The result (0.37) for the time dependent operator M in divergence form also works
for time dependent operators in nondivergence form

(0.38) % — aij(t,x)&-c?j — bi(t,x)é)i.

The proof of this however involves additional complications. This fact will not be
needed and the proof will not be given here.

0.6 The Tools of This Paper
The Harnack and the Carleson Principles [35] [29] [13] [4] Ishall use throughout
the following adapted version of the Euclidean and the parabolic r-Ball (¢f. [13]):
(039) B, =[jx]| <cr|x'|<rlcR% D, =[-r}r] xB CR!=RxR"

where x = (x;,x’) € R%isasin (0.3) and ¢ > 0 is appropriate. The standard Harnack
principles [35] [29] assert that if u(t, x) > 0 satisfies Lu = 0 or Mu = 0 in D, then

2
(H) u(0,0)SCu(%,x); x€B0<r
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We shall say (following [4] [27]) that a function of the form

v(t,y)
m(y)’

is a parabolic normalized adjoint solution (p.n.a.s.) of L in P if B*m = 0 on P if
(0 — B*)v =0in Pand if m > 0, B*m < 0 is some appropriate larger domain
P; D P. The following direct analogue of P. Bauman’s Harnack principle then holds
for positive (p.n.a.s) ™~ > 0in D,

(0.40) u(t,y) =

(t,y) e PC D,,

2
(H) u(0,0)gCu(%,x); x€B;0<r

Precise results in that direction will be formulated and proved in the Appendix of
this paper. Let now €2 be as in (0.3) and normalize by 0 € 92, ©(0) = 0. Let
u(t,x) > 0 satisfy (9, — L)u in Q N D3, and u™(t,x) > 0 be a (n.p.a.s.) in 2 N D3,
where {2 = R x Q. And let us assume that u|,, = |, = 0. The following Carleson
principles then hold:

(C) u(t,x) < Cu(A,); u(t,x) <Cu(h); (t,x) € QND,, r>0,
where the well codified notations [15] [17]
(0.41) A, (0) = (t =8r*,x; = cr,x’ =0); A, (0) = (t = =8, x = cr,x’ = 0),

are used. The above estimate for u (in the classical setting) was proved by Carleson in
[8]. In the present setting, proofs of (C) for parabolic functions u can found in [23]
(for continuous coefficients) and [15] [16] [17] (in full generality). A proof of (H)
and a proof of (C) for both u and 4™ will be outlined in the appendix.

The A, Weights [19] [32] [28] [27] The function m that is either a positive solution
or supersolution, B*m = 0 or B*m < 0, in B,,, satisfies the A, condition in B, (it
gives rise to an A,.-weight). This means that for any ball B C B, and any subset
E C Bthe measure p in (0.12) satisfies

o) (1)
(0.42) uw)§C<BI’

for appropriate constants, and | - | indicating the Lebesgue measure. Proofs and back-
ground material can be found in the above references. Together with the doubling
property (0.21) we shall also make explicit use of the following reverse Holder in-
equality that is verified by m (¢f. [19])

d

(0.43) \B|_1/mﬁ(x) dng(|B|_1/m(x)dx) ﬁ,
B B

where B C B, is an arbitrary Euclidean ball. As usual the above two estimates (0.42)
(0.43) hold for r < ry and the constants depend on ry but we can take rp = +oo if
b; = 01in (0.2).
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Remark An analogue of (0.43) for time dependent adjoint solutions m(¢, x) of (0.38)
also holds, and this fact is essential if we wish to give a proof of (0.37) for the operator
(0.38). In that analogue however B has to be replaced by D,, a ball in space time as
in (0.39). And furthermore the ball on the right hand side of (0.43) has to be larger
than that on the left.

0.7 General Plan of the Paper

The logical order in which the various components of the proof are presented is the
following:

Ay, Ay, As: The proof of (H)

Section 1: The interior Gaussian estimate

B;: The proof of (C) for u™ (and for u)
Section 2: The doubling property for P(t, x)

Section 3:  Proof of the Theorem: The upper estimate
Section 4: Proof of the Theorem: The lower estimate.

The reason that made me push to the appendix the proofs of (FH) and (C) is that
these results stand apart and because the proofs are straightforward adaptations of
the work of L. Carleson [8] and P. Bauman [4]. In that appendix I will be brief
and the reader who is not an expert in the subject may very well have to consult the
original references.

In the methods of this paper we can distinguish two separate directions: The po-
tential theoretic arguments that center around the appendix and Section 4, and the
Gaussian estimate techniques that are used in Section 0.3. In Section 0.3 a special
device is borrowed from Usakov (cf. [39]). These two directions can be studied inde-
pendently.

1 The Local Gaussian Estimate
1.1 The Gaussian Mass Escape

The following estimates are basic for the diffusion z(¢) € R? (t > 0) that is generated

by L or M.
RZ
(1.1) Pol|z(t)| > R] < Cexp(——t>; Rt>0,
c
R2
(1.2) Py[ sup |z(s)| > R] §Cexp(——t);R,t>0.
c

0<s<t

The maximal estimate (1.2) is an easy consequence of (1.1) and of the Markov prop-
erty (in [42] the reader will find a general; discussion of (1.1) and of the Markov
property). The estimates (1.1) and (1.2) for the operator M follow from the Aronson
estimates ([1] cf. also [20]). For the operator L, which here could even be time de-
pendent, the estimates are a consequence of Martingale theory. We have (cf. [33]), in

https://doi.org/10.4153/CJM-2003-018-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2003-018-9

410 N. Th. Varopoulos

terms of Ito calculus and vector notations in the coordinates of R,
t t
(1.3) 2(t) :/ \/de/ Bdt,
0 0

where ((t) = (ﬁl(t), .. ) € R? is standard brownian motion, and A = (aij),B =
(b1, ..., by) are the coefficients of L. The estimates (1.1) (1.2) then follow by repre-
senting the coordinates of z(t) as time changed brownian motion plus a drift term.
The upshot is that (1.1) and (1.2) hold for all t > 0 if the drift of B = 0, otherwise
they only hold for 0 < t < t; and the constants depend only on d, A and .

1.2 The Upper Gaussian Estimate For the Operator L
The function u™(¢t, y) = p:(x,y) (t > 0,y € Q)isa(n.p.a.s.) and by (1.1) it satisfies:

- R2
(1.4) / u(t,f)du(f)SCeXP(——); 0<t<tyx,y€q,
Br(y) ct
0(x),6(y) > do, |x— y| = 2R, Br(y) C Q.

This together with the scaled Harnack estimate (H) for the function u™ (¢, £) in the
ball Br(y) gives the upper estimate of (0.27).

1.3 The Mass Escape For the Adjoint Diffusion

One should observe that from the local upper Gaussian estimate (0.27) (applied to a
larger domain if necessary) we can recover back the Gaussian mass escape property
simply by integrating:

(1.5) Poll2(1)] > R] = / 200, ) du(y).

[y|>R

The doubling property (0.21) is essential here. Given that the Gaussian estimates
are symmetric with respect to the two diffusions z(¢) and z*(¢) (¢f. (0.6) (0.17)) we
conclude from the about remark that the Gaussian mass escape estimates (1.1) and
(1.2) hold also for the adjoint diffusion z*(¢) (t < 0).

1.4 The Lower Gaussian Estimate

The procedure that allows us to obtain the lower Gaussian estimate in (0.27) as a
simple consequence of the Gaussian mass escape and of Harnack (H) is standard
(e.g. [44]). The only novelty here, when dy is not the Lebesgue measure, is that we
have to use the doubling property (0.21). The first step is to use (1.1) to deduce that
for 0 < t <ty and ¢ > 0 large enough we have

(1.6) P.l2(t) € Bu(ev/)] = 1 — / pee ) d() > 3.

[x—y|>evt
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Harnack [i.e., (H) for the n.p.a.s u™(t, y) = p:(x, )] and (1.6) implies therefore that
(1.7) pr(x,x) > CVX_I(\/E); x€Q, 0(x) >, 0<t<ty.

This is the lower estimate (0.27) for x = y. The off diagonal estimate (0.27) is easily
deduced from (1.7) by the following argument. In time-space we “join” x = (f, x) to
y = (2t, y) € Q by a sequence of points x = dy, ..., dn+1 = ¥

: j
(1.8) aj:<aj,(l+N+1)t:tj), X =dg,...,aN+1 € £,
(1.9) |aj+1_aj|zM§ 0<j<N,
N
and we apply scaled (H) successively. For this to be possible we must have
t
(1.10) |aj+1—aj|2~ﬁ; 0<j<N+1.
(1.9) and (1.10) put together give
_ 2
(1.11) N~ M

The errors, on the other hand, that pile up from the use of these Harnack estimates

_ 12
put together amount to CN ~ ¢V, Hence the Gaussian factor exp(— %) (where
we have the minus sign in the Gaussian because we are dealing with a lower estimate).

1.5 The Discrete Setting

The Gaussian mass escape estimates hold in both the discrete settings (R) and (C)
of Section 0.4. Indeed the setting (R) in its global form with = R? has been ex-
haustively studied by many authors: Gaussian estimates, upper and lower, Harnack
estimates, etc. The paper [25] contains the upper Gaussian estimate in R? and there-
fore the mass escape (1.1). Observe however that in the particular case of the random
walk (0.34) the local Gaussian estimate (upper and lower) is an easy consequence of

the Edgeworth, expansion for the central limit theorem (cf. [22]) and a coarse Gaus-
2

sian estimate of the form p*"(x) < cn? exp(—%) (n> 1;x € Z9) (cf. [40] [9]). The

Gaussian mass escape in the setting (C) also holds and is a consequence of martingale

theory (c¢f. [10]). This is because under the setting (C) the coordinate functions

(1.12) xi(zn); i=1,2,....d, x=(x1,...,x)) €RY, n>1,

are Martingales and it is only a matter of estimating the maximal function in terms
of the uniform norm of the square function. An alternative proof can be found in
[43] Section 8.1 where I show that the transition Markov operator T attached to the
chain (C) of Section 0.4 satisfies the estimate

(1.13) e Te™ || oo < exp(cs®); s ER,
where ¢ is any function on Z that satisfies the Lipschitz condition

(1.14) lp(x) — ()| < [x =yl x,y€Z.
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2 The Doubling Property of the Probability of Life

I shall assume the € is bounded and I shall prove the doubling property for the prob-
ability of life for the operator L (cf. Section 0.5); the corresponding results for M are
contained in [43]. Scaling will be used and I shall consider the scaled domains:

(2.1) M=Q; r>0,
I shall then show that
(2.2) P(1,x) — P(1+h,x) <ch"P(1,x); x€Q,, r>R>0,

where we may as well assume that 0 < h < 1, and where C and « only depend on d,
A, Lip(€2), diam(€2) and R but not on r. The point here is that 2, as r — oo looks
more and more like the domain (0.3) and diam(€2,) — oo but the Lipschitz constants
of the functions that define the boundary stay the same. In the course of the proof
I shall have to introduce the measure di = mdx. A subtle point occurs in the use
of this reference measure, because we certainly cannot use the same m for all these
domains simultaneously. This however will cause no problem. The argument that I
will give below adapts to the upper half space domain (0.3) and T = +oo provided
that we are in the transient case (0.14). The estimate (2.2) then holds for all r > 0 (in
this case we can even use the same m in all scales). Alternatively we can assume that
the coefficients are C*° and consider a global reference measure, since that reference
measure does not appear in (2.2) or (0.36) the fact that this reference measure might
explode as the coefficients become L>° makes no difference.

The proof of (2.2) that I shall give below is an adaptation of the corresponding
proof in [43] for the operator M, and, just as in [43], once we have (2.2) the estimate
(0.36) follows. The only difference being that 0 < ¢ < T because now r > R.

Proof of (2.2) We shall assume that r is large enough that 0 < h < 1 and to simplify
notations drop the r from the notations and set €, = €2. We have then

(2.3) P(l,x)—P(l+h,x):/Qpl(x,y)M(h,y)m(y)dy:/Q +/Q =]+,

where
(2.4) M =kxedx) <1]; Q=[xeLdix) >1],

where m(-) > 0 satisfies B*m = 0 as in Section 0.1 in some ball B with %B D Qand
where

(2.5) M(h,y) =P,[z(s) ¢ Qforsome0 <s<h]; yeQ, h>0.

By the estimate (1.2) we have

2
(2.6) M(h,y)gCexp(—ac(hy)>; yeQ h>o,
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and therefore the contribution of J’ satisfies the estimate (2.2). It is therefore J that
we must estimate. Toward that we shall fix Q;, Q,...,€ 9 a finite number of
points and local Euclidean coordinates near each Qj, as in (0.3), i.e., x = (x1,x’) and
x(Q;) = 0, to define:

(2.7) Ti=T(Qj) = [px") <x <GC;|x'| <Cl; j>1.

This can be done in such a way that

(2.8) o<t
7 j
J

For every j = 1,. .., we have (we drop the j here)

52
/ S/Pl(x,y)eXp(— (hy))m(y)dySABC,
T; T C

where

1

1 2 i
(2.9) Az(/p?(x,y)dy)“; B:</Texp(_5c(hy)) dy) < on?
T

C= (/Tm”’(y)dy) %7

The Holder indices é + % + % = 1 will be chosen so that (cf. (0.43))

gl

(2.10) C; < C/ m(y)dy,
5

]

where B; = B, ( Q;j +(1,0,... 7O)) . These are balls with centers at Q; pushed inside
2 by a unit vector. Clearly if r is large enough the above balls are disjoint (r > 0 can
always be achieved by scaling) and if their radius a is small enough we have, by the
Carleson principle

(2.11) Aj §Cyingjp2(x,y).
If we put all this together we conclude that

(2.12) / Schi/ pa(x, y)m(y)dy.
T; B;

]

We can sum over j and we obtain

(2.13) J < Z/ < ch*Z/ pa(x, y)m(y) dy
T; Bj

< chv / pa(x, y)m(y) dy = Ch¥P(2, x).
Q
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This is the required estimate (2.2) because P(t, x) is decreasing in ¢.

Remark The above argument adapts to the time dependent operator (0.38) and even
for a domain (0.3) in a nontransient case. To do that we have to use the remark in
Section 0.7 and the “doubling property” of Lemma 4.1(a) of [37]. The details will be
left to the interested reader.

The Doubling Property for the Reversed Diffusion It will be essential in what fol-

lows to prove the same doubling property for the probability of life of the reversed
diffusion z*(t) (t > 0) [cf. (0.17) (0.1)]. In other words that we have:

(2.14)

P*(t1,x) 1\ ¢
< P (0y.%) SC(E) ; 0<h < <T.
where to avoid confusion we replace here t by —t and make the process move forward
in time. This however is not an additional problem. Indeed the ingredients that
have been used in the above proof are the Gaussian (maximal) mass escape (1.2),
the interior Harnack principle and the Carleson principle for (n.p.a.s.), i.e., for the
y-variable in the diffusion kernel p,(x, y). The diffusion kernel of z*(¢) with respect
tody =mdxis

p;k(xv }’) = pt()/; X),

and the Harnack and Carleson principles hold again for the y-variable. It follows that
the same proof can be repeated for z*(¢) and we obtain (2.14).

3 The Upper Gaussian Estimate

I shall treat simultaneously here the case of the operators M and L in (0.1) and (0.2)
and use the notation of Section 0.1 where the Heat diffusion kernel is taken w.r.t. dy,
but to simplify notations I shall denote throughout du by dx, which therefore, in the
case of the operator L, will not in general be Lebesgue measure. Once more the key
step is the Gaussian mass escape.

3.1 The Gaussian Mass Escape

We shall prove the following estimate:

(1) IsmRE) = / p(s, x5, ) dy

[x—y[>R
R2
c(t —s)

<CP(s7x;t)exp(— ); s<t,xeQ, t—s<T

To fix ideas I shall assume that €2 is the “upper half space” (0.3) that T = 400 and
that s = 0. We set then

(3.2) 10, R, t) = I(R);  P(0,x;1) = p(t),
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and by the doubling property Section 0.5, Section 2 we have:

p(n) <c(t_2)c; 0<t <t.

3.3 1<
(3.3) .

T pt) T

We shall also denote
(4)  Tf(x) = / .t ) () dy, T = Toos f € L%, s <1,

the (time dependent) semigroup attached to the process (0.6). The proof of (3.1)
follows closely an argument due to Usakov [39]. The first step consists in showing
that
(3.5)

R, — R))?
Itz(RZ) < Cexp(—c%) p(tl) +I[1(R1)§ 0<t) <t 0 <Ry <R,.
2 —h
I shall set
(3.6) h=7,L=t,Ri=p, =R u=uly) =p0,x571,y),
(3.7) u=ux,+u(l —x, =u +u,

where Y, is the characteristic function of the ball B,(x). We have
(3.8) L®) < / T uy dy + 1, (p).
l[y—x|>R

To see this we use the fact that T;"_, is sub-markovian and therefore that:

(3.9) T~y < |lua2])y = L (p).

To conclude the proof of (3.5) it suffices to estimate the first term of the right hand
side of (3.8) by

2
(3.10) exp(—cu> p(7).

t—T7
This follows from the estimates
(3.11) llur|li = p(7); supp u; C B,(x),
together with the Gaussian mass escape (1.1).
Remark The time-dependent semigroup (3.4) can be defined for noncylindrical do-

mains in time space and the above argument goes through for divergence form oper-
ators and Lip(1, 1/2) domains.
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3.2 A Digression: The Discrete Setting

The proof of the estimate (3.5) only used the Gaussian mass escape of the diffusion.
Because of Section 1.5 this proof extends therefore at once to the two discrete settings
(R) and (C) of Section 0.4.

3.3 The Iteration and the Proof of (3.1)

We go back to the continuous time setting and we complete the proof of (3.1). To do
this we follow [39] and iterate (3.5). We obtain:

S (Rj —R;j1)?
(3.12) L(R) <CY pltj)exp| —c—L——= ) +1, (Ry),
= tji—1 —tj
wherem =1,2,...;R,t > 0and
(3.13) .
t:to>tl>...>tj:2*1t...; R:R0>R1>~-~>Rj:R/j>---.

The Gaussian mass escape (2.1) implies that
(3.14) I (R,) — 0.

This allows us to eliminate the second term on the right hand side of (3.12) and
replace the first by the infinite series. We can then use (3.3) to estimate the sum of the
infinite series. (This elementary computations, where we can assume that R* > ¢,
has been carried out in excruciating detail in [24]). The estimate (3.1) follows.

3.4 The Discrete Time Process

The first part of the argument goes as before. Indeed the estimate (3.1) needs proof
only for 1 < t < R%. When R is large enough the second term in the right hand side
of (3.12) is 0 for some m because of the finite span condition (0.30). It follows that,
as long as we have at our disposal the (discrete) analogue of (3.3), we can finish the
proof as before. The discrete analogue of (3.3) is in general a real issue, but there is
one context at least where this holds, this is the context of the:

Homogeneous Random Walk (0.34) Indeed the results of [43] imply that in that
case (€2 is as in (0.3)) we have:

(315 1< <c(E

C
< < ) . C<m<m xeZ'nQ, éx) >C.
P(ny, x) m

The behaviour for n;,n, = 0,1,...,C is trivial to control for then P(-,x) = 1.
The behaviour for 0 < §(x) < C is equally trivial for the following (ellipticity and
the geometry of () is used however) Harnack estimate holds: There exists C > 0 s.t.

(3.16) CP(n+C;x)) > P(n,xy); n=0,1,..., x1,% € Q, |xj —x| <1,
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and (3.16) allows us to move away from the boundary simply by shifting the time. It
follows that we have in general

P C
(3.17) 1< (”"x)<c( 2 ); 0<m <m,xeZ'nQ.

— P(ny,x) — n+1
This means that we can finish the proof of (3.1) in the discrete setting as before.
The Non Homogeneous Case The same estimate (3.1) holds in the general nonho-

mogeneous cases (0.32) and (0.33) but this needs proving. I shall not give the proof
of this fact in this paper. The details will be written elsewhere.

3.5 The Gaussian Mass Escape of the Reversed Process

Together with the estimate (3.1) we also have:
(3.18)

RZ
/ p(s,xt,y)dx < CP*(t, y;5) exp(_
[x—y|>R

c(t —s)

); s<tyxeQ, t—s<T.

It is only a matter of repeating the same proof for the adjoined process z*(t), t < 0
(¢f. (0.17)) for indeed all the necessary ingredients of the proof (: Gaussian mass
escape, doubling property of the probability of life etc.) are shared by the process
z*(t) (0.17).

3.6 Proof of the Upper Gaussian Estimate (0.25)

There are several ways of playing this “end game”. The first that comes to mind (but
perhaps not the most intelligent) is the following: We use interior Harnack or Car-
leson and (3.1) to deduce that

(3.19) p(s,xt,y) < CP(s,x:t) Gs(t — 5%, 9); x,y€Q,0<t—s<T,
which, by the doubling property of the measure, gives

(3.20)
_ P 1
J(s,x1) = | p*(s,x51,7) e@(f%) dy < CP* (s, )V ((t —5)7);
Q

x€Q, s<t,

for € > 0 small enough. The corresponding adjoint estimate
(3.21)

2 1
J(t, y55) :/pz(gx;t, ¥) exp(s'i%) dx§CP*Z(t,y;s)Vy_l((t—s)i),
Q -

also holds.
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We can then use Holder, and some intermediate time point, say s < u = 5% <,

(and the triangle inequality) to deduce that

(3.22) p(s7x;t,y)=/p(5,x;u,2)p(u,z;t,y)dz
Q
< Cexp —M ]%(s x'u)]*%(t ysu).
- c(t—s) v e

This together with the doubling property of P and V completes the proof of the upper
Gaussian estimate (0.25) and also the corresponding upper Gaussian estimate in the
setting of the Homogeneous random walk (0.34). These random walks are thus seen
to satisfy:

(3.23)  pulx,y) < CP(n,x)P*(n,y) Gs(mx,y); x,y € 2°NQ, n= 0,1,...,

where P* ~ P corresponds to the random walk induced by the measure p*(x) =
p(—=x).

3.7 The Time Dependent Non-Divergence Form Operator (0.38)

Our starting estimate (3.1) holds also for the time dependent operator (0.38) because,
as we already pointed out at the end of Section 0.5, the estimate (3.3) holds for these
operators also.

Unfortunately however it is not easy to exploit this estimate, as we did in this
section, and obtain the corresponding Gaussian estimate for the kernel. The reason
is simply that we no longer have at our disposal the reference measure (0.12) and the
adjoint solutions of (0.38) are time-dependent. We shall therefore leave matters at
that.

4 The Lower Gaussian Estimate

To simplify notations I shall assume that the operators L and M are time independent
and I shall give a proof of the lower estimate of (0.25). We shall fix x, y € € (£, say,
is as in (0.3)) and join them as we did in Section 1.4 by a chain of points similar to
what we had in (1.8) (1.9) that satisty (1.10) and (1.11). We shall show that we can
chose the points a4, . . ., ay so that

41 pilx,a) = CVIH(VDPE, %) pilan, y) = CV (VP (1, y).

(4.2) (5((1]-)26'\/;; j=1,2,...,N, ay = x, aN+1 = J.

From (4.1) and (4.2) we can easily conclude the lower Gaussian estimate (0.25). In-
deed we can use the scaled interior adjoint parabolic Harnack to compare p;(x, a;)

with py,,, (x,aj41) for j = 1,..., N —1. This is possible because of (4.2) and will take
us, as in Section 5.1, from p;(x, a;) to py, (x, an) with a factor CN. This together with
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the first condition (4.1) gives
(43)  par(x,§) = Cpyy (x,an)

12
> CV,{(V1)P(t, x) exp(—cu) ;€ € Byy(cVt) = By.

By the semigroup property, we have on the other hand:

(4.4) palx,y) > Ppau(x, w)p,(u, y) du.

By

The second condition of (4.1) and the doubling property of the volume together
with (4.3) (4.4) implies therefore the lower estimate (0.25). It remains therefore to
construct a sequence dy, . . . , ay that satisfies (4.1) and (4.2). But, by the geometry of
Q, only a; and ay present a problem, because they have to satisfy (4.1) and

(4.5) 8(ar),8(an) > cV/t.

The other points can then be picked up more or less at will on some curve that joins
a; to ay that stays away from the boundary 0€Q. I shall describe below two different
constructions that allow us to have (4.1) and (4.5) simultaneously. Observe however
that we only need to construct a; = a with the following two properties:

(4.6) pi(x,a) > CV (VDP(t,x); 6(a) > e/t

For then the same construction, applied to the reversed diffusion z*(¢) (¢f. (0.17)),
will give the last point ay.

First Method. Based on the Parabolic Boundary Harnack Principle We shall start
from the fact that:

(4.7) pi(z,2) > CV ' (VE);, z€Q, 6(2) > eVt

This is a consequence of the local Gaussian. It follows that if 5(x) > ¢/t we can take
a = x. If 6(x) < +/t we shall take a = x + (1/1,0, ..., 0) (notations of (0.3). Let us
consider the two parabolic functions.

(4.8) u(s,z) = ps(z,a), v(s,z) = P(s,z); s>0,ze

These functions satisfy:

(4.9) u(t,a) ~ Va_l(\/f)7 vit,a)=1l; 0<t<T.

The first estimate (4.9) comes from (4.7), the second follows from the Gaussian mass

escape applied to a ball of radius ~ 1/t around a. The parabolic Harnack boundary
principle (c¢f. [23] [17]; this principle is stated in (A.5) for the special case ) =
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Euclidean ball) will then be used and will allow us to “shift” the a in (4.9) to x close
to the boundary. If this argument is done with care, it can easily absorb the time lag in
the Harnack principle (because of the doubling property of the volume in (4.9)). The
argument works therefore without having to resort to any kind of doubling property
(or backwards estimates [17]) for the probability of life.

The only drawback that the above argument has is that it uses the boundary Har-
nack principle not only for parabolic functions (where the result can be found in the
literature (cf. [23] [15] [16] [17]) but also n.p.a.s. For the operator M (even for the
time dependent case cf. [43]) this is no problem because the adjoint operator M* is
of the same form as M. But for the operator L this has to be proved.

The Harnack boundary principle for p.n.a.s., as pointed out in the appendix By,
holds good. But unfortunately the details of the proof are to be found nowhere.
It follows therefore that unless I am prepared here to write down the proof of the
Harnack principle for p.n.a.s. the above construction of the point ay is incomplete.

Second Method. Based on the Upper Estimate Let ) again be as in (0.3). Then the
upper Gaussian estimate (0.25) allows us to assert that there exist A > 0 large enough

s.t.
P [|x—z(t)] S AV56(2(t)) > A7'WET > t]
= [l =yl < aVEd) = A7 Vil dy
(4.10) > %P(t,x); xeN 0<t<T,
where dy denotes as before the measure du(y), and [- - - | inside the integral denotes

the indicator function. To see this we can scale and assume that t = 1. We have
already seen in (3.1) that

(4.11) P~'(1,x) pi(x, y)dy — 0,
|x—y|>A

uniformly in x as A — oo. It remains to verify that for fixed A > 0 we can find
e =¢c(A) > 0s.t.

(4.12) / P10, Y)[0(y) < eldy < iP(l,x).
[x—y[<A 10

If we use the upper estimate (0.25) we see that the left hand side of (4.12) can be
estimated from above by

(4.13) Vo ()P ) / [6(y) < €] dy.
[x—yl<A
It remains therefore to show that for fixed A > 0

1

(4.14) V(1) Jjx—y)<a

[6(y) <eldy — 0,

https://doi.org/10.4153/CJM-2003-018-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2003-018-9

Gaussian Estimates in Lipschitz Domains 421

uniformly in x, as € — 0. This is a consequence of (0.21) and (0.42).
From (4.10) it follows in particular that they exists a € () s.t.

(4.15) lx —al <AVt, 8(a) > A7t pix,a) > CP(t,x) Vo (V1),

where the doubling property is used once more. This concludes the construction for
(4.6).

5 The Discrete Results
5.1 Centered Random Walks: (C) of Section 0.4

We have already seen how in the setting of the homogeneous random walk (0.34) in
Q (Q is, say, as in (0.3)) we can prove the upper Gaussian estimate (3.23). We can
also prove the following lower Gaussian estimate: There exists ¢ > 0, that depends
on Lip(€2), d and the parameters a and £¢ (0.30), (0.31), of the measure (0.34) p, s.t.
the diffusion kernel and the probability of life (0.35) satisfy

—4 * _ |x - y|2 .
(5.1) Pn(x,y) > cn”2P(n,x)P*(n, y) exp )

xy€Q, |x—y| <cn, n>0.
¢ should be thought as a sufficiently small constant. The restriction to the range:
(5.2) |x —y| < et,

is essential here. This is because, by (0.30), p,(x, y) = 0 for |[x — y| > Cn. Observe
also that (5.1) holds trivially if n < C~! (for then x = y), so it is only a matter of
proving it for n large enough. This result has important applications. I shall therefore
explain below how one adapts the proof of Section 4 to make it work in this discrete
setting (C) of (0.34).

The proof of (5.1) in this discrete setting consists of two parts:

Step 1: The Construction of the Points a, and ay that Satisfy (4.1) and (4.5) From
these the other intermediate points a;,...,ay—; asin (1.8) (1.9) (1.10) (1.11) (4.2)
can constructed.

Step 2: The Use of the Interior Parabolic Harnack in the Successive Steps Between
ajandaj,, j = 1,2,... Here we only need the parabolic Harnack and we do not
need to worry about n.p.a.s. because the reversed process z*(n) n = 1,... (i.e., the
analogue of (0.17)) is just the random walk generated by p*. It is here however that
the condition (5.2) becomes essential.

Indeed there is no way that we can use that discrete parabolic Harnack (in any
form whatsoever) unless the time step t;;; — tj, (tx = 0,1,2,...) between d;;; and
d; in (1.8) satisfies

t
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This together with (1.11) forces us to restrict ourselves to the range (5.2). If the con-
dition (5.2) is verified however the Step 2 can be carried out in the above discrete
setting without any difficulty. We can for instance use the discrete parabolic Harnack
that is proved in [30]. The results of [30] work in the setting of space unhomoge-
neous random walks (0.33). In Section 5.3 below I will outline a simple proof of this
parabolic Harnack in the homogeneous case (0.34). To carry out the Step 1 on the
other hand we only need the upper Gaussian estimate and (implicitly) the doubling
property of P(n,x). These facts have already been seen to hold for homogeneous
random walks (cf. Section 3.4). This completes the proof of (5.1).

The above proof and (5.1) easily extends to the general unhomogeneous random
walks (0.33) provided that we can carry out the following steps:

(1) Prove the parabolic Carleson principle.

(2) Define the analogue of the adjoined solutions m(x) x € z4 (¢f. (0.11)) and
prove that they have the “correct” A, properties.

(3) Use the adjoined solution m(-) to reverse the process and prove the Harnack
principle for the corresponding n.p.a.s.

(4) Prove the Carleson principle for n.p.a.s.

(5) If we use the same strategy toward (3) we have to prove “en route” the para-
bolic Harnack boundary principle (¢f. (A.5)) and also some form of a backwards
estimate (¢f. (A.6)). [5') While “we are at it” we might as well prove the Harnack
boundary principle for n.p.a.s. (¢f. By) but this is not essential].

The above program is carried out in a forthcoming joint paper with S. Mustapha.

5.2 Reversible Chains: (R) of Section 0.4

The Gaussian estimate both upper and lower (with the additional range restriction
(5.2) for the lower estimate) hold for the process in (R) of Section 0.4.

The situation here is considerably simpler because the local Gaussian and the
parabolic Harnack are known to hold. As I already pointed out the local upper Gaus-
sian, and the Gaussian mass escape where proved for the first time in [25]. This paper
contains new ideas and is significant. Alternatively one can use the argument that we
gave in Section 3 (which essentially is due to Usakov) to prove these facts.

The interior parabolic Harnack (in all scales) also holds in the context of (R). This
fact in the classical setting (divergence form symmetric diffusion) is the celebrated
Moser Harnack theorem cf. [35] [34] [36]. Moser’s ideas have been adapted by vari-
ous authors (including myself [41]) and have been made to work in various settings.
In [11] one finds a “manifold” version that brings out the essential geometric features
of Moser’s proof. Another variant of Moser’s proofs that puts [11] in a discrete set-
ting and works for graphs can be found in [12]. For us this is what is needed because
Z¢ is a graph. Allis well therefore for a symmetric (i.e., K(x, y) = K(y,x); x, y € Z9
Markov chain as in (R) Section 0.4.

Having this, the program 1) -5) described in the previous section can be carried
out quite easily and the Gaussian estimate (0.25) follows.

In fact the only “real problem” in carrying the program 1) -5) out in the case of
a centered random walk (0.33) was the analysis and the study of the p.n.a.s. in the
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discrete setting. This difficulty disappears in the case of the reversible Markov chains
(0.32).

5.3 The Discrete Parabolic Harnack For Homogeneous Random Walks

In the proof of the lower Gaussian estimate that I gave in Section 5.1. I used the
discrete parabolic Harnack of [30]. This is unfortunate because the paper [30] (which
gives the discrete analogue of the Krylov-Safonov parabolic Harnack [29]) is long and
technical. However in the case of a homogeneous random walks (0.34) a much easier
proof of the parabolic Harnack estimate can be given. Here is how it goes:

Start from the local Gaussian estimate, which as we already pointed out is a con-
sequence of standard [22] and relatively easy [40] [9] facts. Then use the procedure
of [20] Section 3 to deduce Harnack. That procedure has its origin in one of the con-
structions of [29] and [8], but the way that it is presented in [20] it is easy and self
contained. For homogeneous random walks this is therefore a much more satisfac-
tory way to prove the parabolic Harnack estimate.

6 The Neumann Boundary Conditions (an Outline)

Only an outline of the Neumann estimate in Section 0.3 will be given here because
the upper estimate is already known cf. [39] but I shall propose here an alternative
approach. The Dirichlet form analysis that I developed in the decade of the 80’s (cf.
[41] [44]) applies here to the semigroup generated by the Dirichlet form:

Do) = /2 05,0000 dxs o € C(9)

closed with Neumann conditions. To be able to prove the basic estimate (cf. [41]
[44]):
[fll 2 <CD(f); f € Dom(Neumannin{2), n > 3,

(the case n = 1,2, as usual, has to be treated a posteriori) one can use the Calderon
extension theorems [7]. A strong form of that extension can be found in [38] where
the author constructs a linear operator that extends H; (£2), the Sobolev space (: f €
L[*|Vf| € L?), and the LP(Q) spaces simultaneously, from €2 to R?. Once this is
done the diagonal estimate

d
pelx,x) <ct72; x€Q,t>0,

follows by the general theory [44] [41]. The upper Gaussian (global on the whole of
) follows then by [25] or [39]. It should be noted that the original proof in [39] is
more flexible (but more involved) and it applies to more general domains (i.e., €2 is
not necessarily Lipschitz).

The lower Gaussian Neumann estimate all the way up to the boundary can now
be deduced from the upper estimate as in Section 4. Once more it is not essential that
0% should be Lipschitz for this argument to work. The fact that

|B|~! Vol,,[(¢ — Nhd of OQ) N B] — 0; & — 0,
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uniformly for all Euclidean balls B suffices.

An Example (Without Proof!) Let Q2 = (x; > 0) be the (genuine) upper half space
in R and let E C 992 = R?~! be the (d — 1)-dimension Cantor set (i.e., the product
of the Cantor middle-% set with itself (d — 1)-times). Let T, be the Heat diffusion
semigroup (i.e., generated by A = >~ 60—};, or more generally by a symmetric M(0.1),
in 2) with mixed boundary conditions:

Dirichet on F;  Neumann on 91 \ E.

Then the estimate (0.25) holds. The proof is not hard and generalizes to the more
general subsets E that have the property that for any ball B C 9 = R%~! there exists
By € BN (99 \ E) such that |B;| > &o|B| for some fixed g > 0. All these sets E
are of (d — 1)-dimensional Lebesgue measure zero. For this reason I do not consider
these examples as particularly significant, and I shall leave matters at that. The reader
who wishes to write down the proof for himself should note that the above mixed
boundary conditions correspond, by reflexion, to Dirichlet boundary conditions in
Q' =RY\ E

Appendix

A. Interior Estimates

A,. The Parabolic Hopf Principle for L It will be convenient here to define the
parabolic ball not as in (0.39) but

(A.1) D, = [—8r*,8r%] x [|x| < r] = [~8r*,8%] x B, C R% r>o0.

For any point £ = (¢,Q) € 9D, = [—8r?,8r*] x OB, the lateral boundary of the
cylinder D, I shall denote by % the derivative in the inward normal direction v,.
(In the notations and the letters used here I try in what follows, to stay close to P. Bau-
man’s choices whose proof, in [4], I shall adapt). Let u(¢) > 0 (£ = (t,Q) € D,) be
a parabolic function (i.e., Lu = 0 with L in (0.2). If we want the considerations that
follow to hold for large as well as for small r we must impose the zero drift condition
b; = 01in (0.2)). I shall make the additional assumption that u|yp, = 0, i.e., that u
vanishes on the lateral boundary of D,. In this section we shall show that

(A2) iu(g) ~ Eu((); Ee -1 x0B,, (€D, 0<r<r.
Jvg r 2

The above estimate should be compared with the Lemma 4.3 in [4] where u is
replaced by v(-) the time-independent function that vanishes on the lateral boundary

(A.3) v(t,P) = v(P) = G(PYy); P € B,

https://doi.org/10.4153/CJM-2003-018-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2003-018-9

Gaussian Estimates in Lipschitz Domains 425

where G is the Green function of B in B, with a pole at Yy, with |Yy| =
estimate (A.2) holds then (¢f. [4]) for v:

> say. The

0
(Ad) 5O~ SWC); €€ —4,47] x BB, (=(t,Q), |Q = .
vq r 2

We shall deduce (A.2) from (A.4) and from the parabolic Harnack principle at the
boundary [23] [17]. With the notations as above and as in (0.41), this principle can
be formulated as follows:

Let us fix £ = (+,Q) € 9D, |t| < r* and let ¢, 1) be two positive parabolic
functions that are defined in some Nhd of £ in D, and vanish on the lateral boundary
©lap, = ¥|ap, = 0. We then have

2(Q) _ o 2(AN)
YO T T Y(4,08)]

Furthermore if we assume that ¢ is as above and is globally defined in D, and vanish
on the lateral boundary we can improve this estimate because we then have [15]:

(A.5)

0 < p < po small enough, ¢ € D, { = € Ds.

(A.6) ©(t;,P) = @(t,P); PEB,, —r* <t, t, <r.

The proof of these Harnack type of principles can be found in [23] [17]. We can
now conclude the proof of (A.2). Indeed, with the notations that we have already
established, we have

o)

2u(t, Q)
(A.7) 3'%7 = lim w; —2r <t <2r*, Q€ OB,.
%v(Q) e—0 v(Q+evg)

If we combine (A.4) (A.5) (A.6) (A.7) the estimate (A.2) follows.

A,. The Heat Diffusion Kernel Let B C R? denote the Euclidean unit ball and let
p:(Q,Y) (Q,Y € B) be the diffusion kernel of L in B. In out context here we shall
think of

u(t,Q) = p(Q,Y) fort >0, u(t,) =0 fort <0,

which is a parabolic function for (¢, Q) # (0,Y), i.e., the Green function of ( % —1L)
in B = R x B (cf. [13]). If we use these notations, and put together the estimates of
the previous section, with r = 1 we obtain

N —

(A.8) %pt(Q,Y) <CIIY) =Cpi(0,Y); Q€ OB, t <ty [Y]| <
Q
Where C depends on t; here, we also have
0
(A.9) 8—P5(Q7 Y) = IL(Y);
vqQ

ps(Q, Y1) ~ H(Yy)
P (Q,Yy)  II(Y3)’

Y.Y1,Y€B1, Qe B, 0<dp <5, 51,5 <&,

(A.10)
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where the constants depend on d,. To prove the estimate (A.10) we perform the shift
s1 — s, = 51 + aand apply the comparison results (A.5) (A.6) to the two functions

%0(57 Q) = pS(Qa Yl)’ ,(/)(Sa Q) = Ps+a(Qa Y2)7
the time independence of L is used in an essential way here (cf. [15]).

A3 The Interior Parabolic Adjoint Harnack Principle 1 shall preserve the notations
of Section Ay, Section A, (with r = 1) and I shall consider u™(t,Y) > 0 (0 < t < 4,
Y € B) some p.n.a.s. as in (0.40). By a simple use of Green’s formula (cf. [13] for the
classical case and [4] for the elliptic case) we have:

v =i~ [ ie—r.omMY 2
(A1) u() =urY)~ /a,”(t ™ Q) g P (@Y 4. Q)

~ m(Q)
Y)d
N /E)O[QEB} 00,0 Q1) dQ

=I(t,Y;u) + Ip(t,Y;u); t>0,Y €B.

Here p:(Q,Y) is the diffusion kernel of L in the unit ball B, 9; = [t,0] x OB is the
lateral boundary of the cylinder, so that 0 < 7 < t on 0, and s(7, Q) denotes the
n-dimensional surface measure of the lateral boundary. Jj is the bottom boundary
[T = t] of the cylinder. The = indicates once more positive constants that only

depend on d and A.

A simple use of the Section A, estimates and of (A.14) that will be proved below
implies:
(A.12) L& 1) = Io(&3 ) &,6 € [1,2] x By,

uniformly in u™. Let us denote by

IL(Y)
A.13 F(Y)= ——; Y € B,
(A.13) (Y) () €
We then have:
(A.14) F(Y,) ~ F(Y,); Y., Y, EB%

To see this we fix £9 > 0 and apply the formula (A.11) to u™ = 1,t = 1. We have

~ PI(Q) 0)
(4.15) 1~ FY) /B Q) I1(0) “aQt ~/81;r>§ " /81;50<r<% " /81;0<T<£0

where (A.10) is used in Ip. The estimates (A.8), (A.9) imply then that, for £y small
enough,and Y € B% , the second term in the right hand side of (A.15) will absorb the
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fourth (no matter what the additional constants that are involved in the comparisons
of A; might be). The fourth term can thus be ignored and we are left with

Pl (Q7 0)
11(0)

(A16) 1 zF(Y)[/Bm(Q)

1
dQ+/ mQdsr, Q)]s Y] < L,
IT>€) 2

by (A.9) (with constants that depend on the choice of €y). The estimate (A.14) fol-
lows.

Let us now consider &; = (¢, y;), i = 1,2 two points such that Y,,Y, € B% and
withl < t) <t < 2,60 < th —t; < 2&p, for some g5 > 0 to be chosen later. We
have

(A.17) 1,(@,5):/ +/ =L+DL; i=12.
Tt —th T>h—h

Using the decomposition (A.17) and the estimates of A, as before we see that if &y is
small enough we have (with constants that depend on &)

(A.18) L(&) = F(Y)) u(t; — 75 Qm(Q) ds,

I —h <7<ty

(A.19) I(&) < C, F(Yh) u(ty — 73 Qm(Q) ds.

O0<T<t
Since the integrals on the right hand sides of (A.18) and (A.19) are identical, if we
combine (A.12) (A.14) (A.17) we obtain the required Harnack estimate (for r = 1):
(A.20) u(&r) < Cul&).

This can be scaled to any 0 < r < 1y, and if the drift term in L vanishes (: b; = 0) it
can be scaled to any r > 0.

B. Boundary Estimates

B, Lower Bound of the Caloric Measure Let 0 € 02 with  as in (0.3) and let
B, = [|x1] < cr,|x'| < r] and D, be as in (0.39). We shall denote by 2 = R x Q
and by h,(E), E C 9(D, N ) the caloric measure of L in D, N ) at the point A, =
(017% cb>1,0) € D, (with the same c as in the definition of B,) with 6;,6, € (0,1).
The caloric measure is the hitting probability of the process ( —t,z(t)) = z(t),t > 0
(cf. (0.6), [13] [15]). We have then:

(A.21) h(D,NOQ) >C; 0<r<ry,

whereC =C ( A, d, Lip(€2), ro) but is independent of r and of 6y, 6,.
The argument to prove (A.21) is easy. Let P(r) be the probability of the paths that
have the following properties:

2(0)=A,, 2(s) CDy; 0<s<t,
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and such that the distance of z(¢) from the point x; = —r, x’ = 0is < r, and where
we assume that t ~ r2. Such paths clearly exit D, N Q at D, N 952 and we have
h,(D, N OSY) > P(r). We have P(r) > ¢ > 0 and (A.21) follows. To see this last point
the reader could observe that the local Gaussian (0.27) implies, by scaling, a lower
estimates:

pf(x, y) > CGs(t;x,9); x,y € Bu—sr(0) 0 <t < AR?,

where pR indicates the diffusion killed at OBy, and the constant C only depends on
d, A\, 6 and A but is uniform in R.

We can easily improve and obtain similar lower bound for the caloric and the
adjoint caloric measure of the set D, N 92 N (t < 0). To see this we just have to
condition on the position of z as it crosses the level t = 0.

B,. The Holder Continuity at the Boundary Let the notations be as before with
0 € 012 and for any function ¢ let as denote by:

M(r) = M(p;r) = sup[p(t,x); —r* <t < 0;x € B,N Q.

The representation of a parabolic function u or of a n.p.a.s. ™ in terms of caloric or
adjoint caloric measure together with B, implies that for every 0 < 6 < 1 there exists
0 < p < 1s.t. the above indicator M(r) for u or u”™ satisfies

(A.22) M(Or) < pM(r); 0<r<ry.

provided that u| o0 = 4~ |ga = 0. An immediate consequence of this is that:

(A.23) u(€), u(€) = 0(d“(£,00)

where o« > 0 depends on d, A, Lip 2. The proof of (A.23) that one finds in the
literature (cf. [18] [27]) for solutions Bu = 0, or for parabolic functions, depend
on the construction of appropriate barrier functions and not on Gaussian estimates.
The advantage of our approach is that it is symmetric and works equally well for
parabolic functions as well as for n.p.a.s.

B3 The Carleson Principle for the Operator L This principle asserts that
(A.24) M(p;r) < Cp(Ar); 0 <r<r,

where M(-) is as in the previous section A, is as in (0.41) and ¢ > 0 is either a
parabolic function or a n.p.a.s. in Do, N € (Section 0.6(C)) that satisfies ©la0—0-
This follows from the interior Harnack estimates (H) or (H) that hold for ¢ and
from (A.22). The argument goes as follows: We normalize r = 1, p(A;) = 1. Let
then m > 0 belarge enough and let us assume §; = (t1,x1), —1 < t; < 0,x; € BiN{2
is such that ¢(&;) > m. The parabolic Harnack on the other hand implies the “chain
condition” (cf. [28] Section 1.3 adapted to the parabolic setting). This together with
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the normalization p(A,) = 1 forces d(¢;,9Q) < Cm . One then uses (A.22) to find
&, € Dy N Q with an even higher value ¢(&,) > p~%p(£;) and a parabolic distance
d(&1,&) < Cm— 0%, where a can be chosen at will. The normalization ¢(A;) = 1
is used again and so on. The sequences so constructed &1, &, ..., if m > 0 is large
enough, will stay in D, (¢f. (0.39)) and has therefore a limit point. This gives a
contradiction. This argument goes back to Carleson [8] and can be found in the
literature in a large number of places (e.g. [26] Lemma 4.4). The reader should check
this and fill in the details for himself.

It is worth noting that the same type of argument can be used to show that the
interior Harnack estimate (H), (H) will follow if we already know that the local Gaus-
sian estimate holds. This is explained in details in [20] (Section 3).

B, The Boundary Harnack Principle For (N.P.A.S.) The result described here is
not essential for the paper but it is related. The claim is that the (local) parabolic
boundary Harnack principle holds for the comparison of two nonnegative n.p.a.s.
defined in D, N2 that vanish on D,NdS). One way that this can be seen is by adapting
the proofin [3] [2]. The proofs in [3], [2] are probabilistic and therefore they easily
adapt to the time space process (—t,z(t)) e R4 (¢f (0.6) [13]). Furthermore we
have at our disposal the necessary tools ((H), efc.) to adapt these proofs equally well
to the process ( —t,z*(t)) € R

I do not claim of course that the above is a proof. But since no essential use will
be made of this boundary Harnack principle for (n.p.a.s.) I will leave matters at that.
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