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Abstract

Let 4; (1<j<4) be any nonzero real numbers which are not all of the same sign and not all in
rational ratio and let p; be polynomials of degree one or two with integer coefficients and positive
leading coefficients. The author proves that if exactly two p; are of degree two then for any real n
there are infinitely many solutions in primes p; of the inequality

4

n+ Z A;94py)
j=1

<(maxp,)~*

where 0< < (+/(21)—1)/5760.
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1. Introduction

Let Ay,...,A;(s=>3) be any nonzero real numbers which are not all of the same
sign and not all in rational ratio. Baker (1967), pp. 166-167, introduced a new kind
of approximation analogous to Davenport and Heilbronn (1946), p. 186, by proving
that if s = 3 then for any positive integer N, (1.1) has infinitely many solutions in
primes p;:

Ly |A1p1+A2p2+ 43 ps| <(logmaxp,)~*.

Recently, Vaughan (1974a), p. 374, improved (1.1) and a result of Ramachandra’s
(1973), Theorem 3, by showing that for any real #, (1.1) can be replaced by

(1.2) |74+ A1 p1+ A2 05+ A3 p3) <(maxp;)=1/1°(log max p,;)*°.

(1.2) has been extended (Vaughan (1974b), p. 386, and Liu (1978), Theorems 1, 2)
to polynomials p,(x) of the same degree k >2 with integer coefficients and positive
454

https://doi.org/10.1017/51446788700013458 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700013458

2] Approximation by a sum of polynomials 455

leading coefficients, namely if 52 s4(k), 0 <y < yo(k) then (1.3) has infinitely many
solutions in primes p;, where sq(k) and y,(k) depend on k only (in particular,
50(2) =5):

1.3) In+ i/bm(p;)

< (maxp;)~".

In this paper we shall modify the methods of Schwarz (1963) and Vaughan (1974)
and prove

THEOREM 1. Let A; (1 <j<4) be any nonzero real numbers which are not all of the
same sign and not all in rational ratio. Let p; be polynomials of degree one or two
with integer coefficients and positive leading coefficients. If exactly two p; are of
degree two then for any real n there are infinitely many solutions in primes p; of the
inequality

<(maxp,)~*,

4
1'7'*‘ Z,l A;9(p,)
where 0 < B<(4/(21)—1)/5760.

REMARK. Since all preliminary lemmas in Section 3 are valid for p; of degrees
k;>2, the above theorem can be extended with no difficulty to s>4 polynomials
p; of different degrees k; with max k;>2. This kind of generalization will certainly
lead to a complete improvement of the results in Liu (1977), p. 199. For poly-
nomials of higher different degrees, a more interesting problem is to obtain a better
(or smaller) value of so(k) where k = maxk;, for which (1.3) has infinitely many
solutions in primes p;. This problem seems to require a new idea.

In the following proof we shall see that the hypothesis in Theorem 1 that exactly
two p; are of degree two is needed only in the proof of Lemma 9. So by the same
proof we can extend Theorem 1 to the case that exactly three p; are of degree two
provided that 1,/4; is irrational for at least one pair p,, p;, which are both of degree
two. That is

THEOREM 2. Let A; (1 <j<4) be any nonzero real numbers which are not all of the
same sign and let A,/A, be irrational. Let p; be polynomials of degree one or
two with integer coefficients and positive leading coefficients. If p,,p, and exactly
one of P, P4 are of degree two then for any real n there are infinitely many solutions
in primes p; of the inequality

<(maxp,)~*,

4
‘ n+ .ZI A;p,py)
j=
where 0 < f<(1/(21)—1)/5760.
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The author wishes to thank the referee for his valuable comments and suggestions
which brought improvement in the presentation of the paper and for pointing out
that Theorem 2 can be obtained simuitaneously.

2. Notation

We shall only give a proof for Theorem 1. Throughout, n and p with or without
suffices denote positive integers and primes respectively; x is a real variable and
[x] is its integral part. We write e(x) = exp (i2nx). k; and «; (>1) are the degree
and the leading coefficient of p; respectively. For the given f, let « be some
positive constant satisfying

@.1) 1928 <a < (v/(21)—1)/30.

Without loss of generality let A,/1, be irrational and |1,]| <|4,[. Then it is known
(Hardy and Wright (1960), Theorem 183) that there are infinitely many convergents
a/q with (a,q) = 1, 1 <q such that

A a 1
2.2 —_——— < —,
@2 7| <2
Put
2.3) P=gV-20 [ =logP,
(2.4) Qj = Pllk.i, Lj = log QJ.

We always choose P (that is, q) to be large and ¢ small so that all inequalities in
Sections 3-5 hold. If X>0 we use Y<X(or X> Y) to denote | Y| < KX, where K
is some positive constant which may depend on the given constants o, 4;, ¢ only.

Let
2.5) t=P5
72 if x=0,
K. =K(x)=
(sin ztx)%/(nx)* otherwise.
Obviously, we have
(2.6) K.<7
Let
g =gx) = z e(xp4p)),
eQ;<p< Oy
2.7)
Q;
I =1x) = f " elsp oo dy,
&gy
(2.8) A=(/QD-D/10, oo=1-A.
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We use p = o+it to denote a typical zero of the Riemann zeta function {(s) and
Z; (or }) to denote the summation over all those zeros p with |7] < QJ4 and 6> 0,.

P
It is known (Ingham (1940) that

2.9) Y1 Q3(1-e/2=0) [5 <04,

Let

(2.10 Gy(x,p) =3 n~ 1 * 4% e(x[p (n*/*;)])/logn
where summation is over all n such that (¢Q)*s<n<P;
(2.11) Jy=J;(x) =Y ; Gx,p),

(2.12) Ay = Afx) =g+ J;— 1,

3. Preliminary lemmas

The proof of Lemmas 4, 5, 8 is similar to that of Lemmas 9, 10, 13 in Liu (1978).

LEMMA 1. For any real y we have

on e(xy) K(x) dx = max (0,7 — |y|).

Proor. This follows from Lemma 4 in Davenport and Heilbronn (1946).

LEMMA 2. Let k = max k, If m 2271, then

1<jsm

[I1 § e pfp))? Kix)dx <c(logmax @)F [] Q-G

-% j=1 €Q;<p<Qy Jj=1

w0

where C is a positive constant depending on k only.

Proor. This can be proved by the same argument as Lemma 4 in Liu (1977),
since Theorem 4 in Hua (1965) (that is Lemma 3 in Liu (1977)) is valid for poly-
nomials with integer coefficients.

LemMA 3. (a) Suppose that 2< Y< Q;. Then
Y logp+Y;YPp~'— Y<Qj L2

psY

where D is some large positive constant.
(b) Y5 05<Q,exp(—LL"),

PRrROOF. (a) can be proved by the same argument as that of Lemma 3 in
Vaughan (1974a), p. 376. (b) can be shown by the same proof as that of Lemma
8 in Vaughan (1974a), p. 379.
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LEMMA 4. We have
A)(x)< Q3 L5(1+ x| P),

where D is the same positive constant in Lemma 3(a).

Proor. For simplicity, in the following proof we shall drop all suffices j whenever
there is no ambiguity. Without loss of generality we replace eQ,; and (¢Q,)* in
(2.7), (2.10) simply by 2. Let

{logn-&-z*n‘““’”" if n = p* for some p< Q,
a,=

Y*p-1+em otherwise;

@3.n

b, = e(x[p(n'*)])/logn and b, = e(xp(n'’*))/logn.
Then by (2.7), (2.11) we have
3.2 gx)+J(x)= Y a/b,—b)+a,b,=S,+S,, say.

2<nsP
As for any real y
e(x[yD) —e(xy) <|x|
and p(n) is integral valued, we have

(3‘3) S1 — Z* Z n-! +(p/k)(bn —b,;)

2<nsP
<|x|T* 07 <|x| @ exp(— LV5).

The last inequality follows from Lemma 3(b).
We come now to consider S,. Note that by Abel’s partial summation,

Z nle/o—-1 — [z]p/k_ Z n{(n+ 1)(p/k)— 1__ppiky= 1}

nsz nsz—1

o [Z] z(P/k)-— 1 +fz (1 __p/k) [y]y(ﬂ/k)—z dy
1

But if z< Q% go<a< 1, [t| < Q4, then

ﬁ(l — plk) yI=2([y] - y) dy

<(1+(a+|r|)/k)j Lyt dy € QAL
1

Hence

(3.4) Y nem-1_zPk(k/p) < QL.

n<z

It follows from (3.1), (3.4), (2.9) and Lemma 3(a) that for any z < Q*
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G5 3 %'—z”"= Y logp+¥* 27 p=t— 214 O(QAL)Y*]

n<z pszl/x
< anLz + QALG QA3(1“00)/(2"0‘°) < Q¢°L6.
The last inequality follows from (2.8). Putting A(z) =Y n<.a,/k and using Abel’s
partial summation (Theorem 421 in Hardy and Wright (1960)) we have

1/k 1/k
s, = ka(p)CPL ) e(XP(P )] J' k)2 {e(xp(z ))} dz—a, b
dz logz
_ kPl/k 1/k llk e(xp(zl/k)) 4 6
= logPe( xp(P1/*y)— k “Togz dz+ O(Q% L5(1 + | x| P)).
The last equality follows from (3.5) and (2.9) by which @, b, <} *1< Q4. Then
3.6) S, = I(x)+ O(Q° L%(1 + |x| P))

on integrating by parts and changing the variable to y = z'*, Lemma 4 follows
from (3.2), (3.3) and (3.6).

LEMMA 5. Let
(3.7 §=Pp-1+e
We have
(3.8) I(x) < Q,min (1, (|x] P)~%),
4
(9) J | J,(x)|? dx < Q3% exp (—2L}/%),
-3
3
(3.10) [! eoraxegis.
-1
5
(311) j A2 dx < 03 Mexp(~ 2L},
-6
(]
(3.12) J lgx)|? dx< Q3 M.
-

Proor. In the proof we shall drop all suffices j. (3.8) follows from (2.7) by partial
integration. By (2.11) and Hélder’s inequality,

b4 3
(3.13) J &IJ(x)lzdx< Y Y| 1G(x,py) Glx, ps)| dx

P P2 J -}

b + 3 %

<) Z(J-_*IG(x,pl)Izdx) (J_*IG(x,pz)Izdx>
+ +\2
=(Z(J-_*|G(x,p)|2dx) ) .
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Note that for any large positive integers m, n with [m—n| >2, we have

fp(m'/9])# [p(n'™)]

since when y tends to infinity, (d/dy)p(y'’*) tends to the value of the leading
coefficient of p which is not less than one. Let H(n) = n=1+“®(logn)~1. Then by
(2.10), Parseval’s identity and o< 1

(3.14) r |G(x,p)|2dx< ¥ {H(n)*+H(n) H(n—1)
-3 (e

Yr<n<P
+Hm)Hn+1)}< Q- *+27L-2,

Then (3.9) follows from (3.13), (3.14) and Lemma 3(b).
(3.10) follows from (3.8) and the partition of the interval |x|<1/2 at + P~
By Lemma 4, (3.7), (2.4) we have

3
J~ IA(x)lzdx< Qzaole 03 Q2k< Q26°+3’k_kL12.
-é

Then (3.11) follows since by k<2, (2.1) and (2.8) we have
200+ 30k <204,+2A=2.
(3.12) follows from (2.12), (3.9), (3.10), (3.11) easily. This proves Lemma 5.

4. Contribution of the integrals over E,, E,, E;
Let

4 4
.1 ¥ =W¥(x)= 1_1[ gA;x), P*=W*x)= [;[ I(4;x);
42) E,={x||x|<P=1*%), E, ={x|P-1*<|x|<P%, Es={x||x|>P%;
43 s=(i 1/k,>—1.
j=1
LEMMA 6. We have
j |W(x)—¥*(x)| K(x)dx <7* PSexp(—L'?).
E

PROOCF. By (4.1), (2.12)

4

4 -1
4.9 Y- = _Zl (A4 %)= J(4; X)) Il_[ gn(Anx) 1 1y(Ay %),
j=

i+

where [[9g, = []4 1, = 1. It follows from (4.4), (2.6) and ||, |g;| < Q, that
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@3) j - kst j A+ D (L] 0s 09 dx
E, E,

4
+ Y | s+ el TT Q;.)dx}.
i=2JE h#1,j
Then Lemma 6 follows from (4.5), Hélder’s inequality and Lemma 5.

LEMMA 7. Suppose that a and q are integers such that q=1, (a,q9) =1 and
|x—alq|<q=2. If
log V> 2®%-22k;+ 1) loglog Q,,
where

(4.6) V = min(Q}'%,q, Plg),

J
then
Y o<, epAP)<Q, VY,
where pi; = ((k;+1)22¢%;+ D)~ 1,

Proor. This lemma is a direct consequence of the theorem in Vinogradov (1938),
p. 5.

LEMMA 8. Let j = 1,2, and xe E,. If there are integers a;,q; with (a;,q;) = 1 and
g;=1 such that
4.7 |4, x—a;lq;| <eq; ' P1*"

then either q, > P* or q, > P°.

PRroOOF. We first show that a,#0. For if a, = 0 then by (4.7), we have x¢ E ,.
This is impossible.
Next, suppose that both

4.83) g:<P* and g¢,<P%
By (4.7), (4.8) and xe€ E,

a, 1

4.9 % 919> S(szl+8q2_1P_l+a)szl—I%SP_Ha

a;
)..1 X ——
q1

242
<(Pa+8|,12|—1)81)—1+a<28P—1+2a.

Similarly since |4, <|4,| we have

1
(4.10) ﬂ——q1q2 <,12x—32—> <2eP-1+2%
g1 Azx q:
It follows from (4.9), (4.10), (2.3) that
“4.11) la2q141/A;—a,q,| <4eP™1*2*<}g™ 1
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By (2.2) for any integers a’,q’ with 1 <q’ <g we have

Ay lag'—a’q] Ay a 1 q 1
4.12) . g > '(——f—— i P
% 1 99 A q|) 9 24 24
By (4.11), (4.12), (2.3) and a,#0 we see that
(4-13) |a2q1|>q=Pl—2¢-

But by (4.7), (4.8), xE,

4.14) '% 9192 <[22 x| +eg; ' P~ **) P2*<2[,| P
2

In view of (4.13), (4.14) we have a contradiction since by (2.1), (2.8) a < 4/3<1/5.

LeEMMA 9. If at least two p; in W(x) are of degree 1 then for any positive constant
B we have

~

J [¥(x)| K.(x) dx <72 L~ PS.
E,

Proor. It is known (Theorem 36, Hardy and Wright (1960)) that for j = 1,2
and each xeE, there are integers a;,q; with (a;,q)) =1 and 1<g;<P"%¢"!
such that

[4;x~a,/q;| <eg; *P~*+* (j=1,2).
By Lemma 8 either ¢, > P* or g, > P* Let

Eyy ={x€E;|q,>p%; E,; ={x€E,|lq,>P%.
Then

4.15) J |'P| K,dxsj |'¥| K,dx+j || K. dx = F,+ F, say.
E, Ez, E;;
By Lemma 7, (2.1), (2.5) we have, for any positive constant B+ C and each
xeE,;(j=1,2)
4.16) g4 x) R Q; P~ <t Q, LB+

since in (4.6) V>min(Q}3,eP*) =¢eP* and u; = ((k;+1)22%+V)"1>1/192.
We come now to estimate _#,. As it is given that among p, (A5 1) there is a poly-
nomial of degree 1, for simplicity we let k, = 1. By (4.16), Holder’s inequality and
Lemma 2 we have

+ 1
jl <TQ1L_(B+C)(J‘E Ig2|2thx> (J;E’ Ingd»,zKrdx)

<TQ1 L_(B+C)(TLC ng - ”)*(rLC Q§ ~(k3/2) Qi-(h/Z))*}
<T*L-BPS,
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where S is defined in (4.3). Similarly,
F <K’ L-Bps,
By (4.15) the lemma follows.
LeMMA 10. Let
Q(x) = Z e(’“"(}’x LR ] .Vn)),

where  is any real valued function and the summation is over any finite set of values
of Y15 ..., Vu. Then for any X >4/t we have

o

j I909|2 K(x) dx < (8/X7) f Q)2 K, (x) dx.
fxj>X ©

PRroOF. This lemma is due to Davenport and Roth (1955), p. 82. See, for example,
Lemma 13 in Vaughan (1974b), p. 394.

LeMMA 11. For any positive constant B we have
j W(x)| K(x)dx <t LB PS,
E,
Proor. By Holder’s inequality, (4.2), Lemmas 10, 2, (2.4) and (4.3) we have

© 31 w© E3
J. |W| K, dx <(zP%)™?! q Iglgzlszdx) (J' Igsg.-.I’K,dx)
E; - -0

<(1p«)- 1(TLC Q%‘(M/Z) Q%"“"/Z))*(‘th Q%—(k:ﬂ) Qi-(h/z))«}
<LCP-*PSgr?L-BpS
since by (2.1) a>28.

5. Completion of the proof of Theorem 1

LEMMA 12. For any positive constant B we have

J |P*(x)| K(x)dx <12 L~ 8PS,
x¢E,

ProoF. By (3.8), (2.4), if |x| > P~'** we have I,(x)< Q} *|x|~!. Then, by (2.6),
4.3),

4
j |‘l’*|K,dx<‘tzP3“'“’1—[ Q}"‘1<1‘2L'BP5.
x¢E, 1
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LEMMA. 13. We have

f e(nx) P*(x) K (x)dx>1t?>L~* PS.

Proor. Without loss of generality, let A, A, <0. Then define the set %#* by the
following conditions (5.1), (5.2), (5.3):

(5.1 eP<z;<26P (j=3,4), +/(e)| /Al P<z,<+/(8)|A1/22| P;

and z, >0 and satisfies

4
(5.2) Api(zi*M) =y—n— 'Zz 4 pj(z}/kj),
J=
for some real y with

(5.3 ly| <4t

Note that such z; is uniquely defined if the right-hand side of (5.2) is large enough.
We shall show that

eP<z,<P.

Hence if # denotes the cartesian product of the intervals e&P<z;<P(1<j<4)
then

(54) B> B*.
We see that for large z,
(5.5) Yo, 2;<py(zj*) < 20z,
where o is the positive leading coefficient of p;. It follows from (5.2), (5.3), (5.5),
(5.1) that

4
Pi(z1*) 23| Ax/A | @z z, — 47| A" = (] +2 _23 1Al ayz;) [Ad] =1
j=

4
> \/(E)P{%orz—<(2P\/(8))“ +1nl (V@ P)~ 1 +44/(e) ;3 4] a:) Mll“}

>44/(e) Pa,.
So by (5.5)
z; >P(zy*1) (22y) = > eP.

Similarly, we have p,;(z}/¥") < 54/(¢) Pa, and hence z, < P. This proves (5.4).
By Lemma 1, (4.3), (5.4), we have

© @© 4 P
f e(xn) P* K, dx =J ( I j e(x/l,pj(z}/"f))z}”"f’“l(logz,)"ldz,)
7

- -\ j=1 J(Qp)*

x e(nx) K, dx
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> fl P(l/kj)—lL—lj
j=1

4
max(O,r— ‘q+ > Apfzi)
2 j=1

)dz1 ...dz,

>PS-3L-* | Ytdydzydzydz,>t*L~*P5.
2

This proves Lemma 13.

We come now to the proof of Theorem 1. By (4.1), Lemma 1, we have

)<1N,

where N is the number of solutions (p,, p,, ps, ps) of the inequalities eQ,;<p; < Q;
(1<j<4) and |n+).14;p,(p,))| <. So it suffices to show that £ — oo as P— 0.
By Lemmas 13, 12, 6, we have

© 4
S = J‘ e(xn)¥K dx= Y max(O,‘t— n+ Y A;p4p))
™ ¢0;<p,< 0, 1

<j<

@

-0 x¢E,

(5.6) J e(xm)PK.dx = j e(xn)¥Y* K, dx —J e(xm)P* K dx
E,

—J e(xn) (P*—P) K, dx
E,

>t2PSL~%(1—L~B**—L*exp(—LY5))> 12 L~*PS.
It follows from (5.6), Lemmas 9, 11 that

3
I = ZJ e(xn¥YK,dx> 1> L~*PS(1 —2L-B8+%)» L4 PS-2¢
w=1 JE,

This completes the proof of Theorem 1.

6. Remark

K.W. Lau and the author are able to replace the 1/10 in (1.2) by any con-
stant <1/9 (to appear in Bull. Austral. Math. Soc.).
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