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Abstract

Gibbs fields are constructed and studied which correspond to systems of real-valued spins
(e.g. systems of interacting anharmonic oscillators) indexed by the vertices of unbounded
degree graphs of a certain type, for which the Gaussian Gibbs fields need not be existing.
In these graphs, the vertex degree growth is controlled by a summability requirement
formulated with the help of a generalized Randić index. In particular, it is proven that the
Gibbs fields obey uniform integrability estimates, which are then used in the study of the
topological properties of the set of Gibbs fields. In the second part, a class of graphs is
introduced in which the mentioned summability is obtained by assuming that the vertices
of large degree are located at large distances from each other. This is a stronger version
of the metric property employed in Bassalygo and Dobrushin (1986).
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1. Introduction and paper overview

1.1. Introduction

The theory of Gibbs random fields has its roots in statistical physics where they serve as
mathematical models of phase transitions, e.g. in ferromagnets; see [10]. Recently, the interest
in Gibbs fields has been stimulated by applications in probabilistic combinatorics, statistical
inference, and image processing. Typically, such a field is a collection of dependent random
variables, called spins, indexed by the elements of a discrete metric space (e.g. of a graph).
Their joint probability distributions are defined by the families of local conditional distributions
constructed by means of interaction potentials. We quote the monographs [10] and [11] as
standard sources in the theory of Gibbs fields. Each spin takes values in the corresponding
single-spin space, say Sx . Most of the Gibbs fields constructed on general graphs have finite
single-spin spaces. Perhaps, the best studied example is the Ising model where Sx = {−1, 1} for
all x. By the compactness of Sx , such Gibbs fields exist for arbitrary graphs; see [11], [12], [13],
[17], and [18]. Their properties are closely related to those of random walks or corresponding
percolation models; see, e.g. [12], [17], and [18]. The development of the theory of Gibbs
random fields with unbounded spins, started in the late seventies in the pioneering works of
Ruelle [20], Lebowitz and Presutti [16], and Cassandro et al. [6], was strongly motivated by
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physical applications, especially in Euclidean quantum field theory (see, e.g. [21]). Since that
time, such random fields have been extensively studied; see, e.g. the bibliographical notes in
[19]. However, the results obtained in all these works were restricted to the case where the
underlying metric space is a simple cubic lattice Z

d . In [15] and [19], the theory of Gibbs
random fields was extended to unbounded spin systems living on more general discrete metric
spaces, including graphs of bounded degree. In this context, we also mention the paper by
Hattori et al. [14], who studied a Gaussian field on a bounded degree graph. However, in
the case where both the spins and the vertex degrees are unbounded, all methods used in the
abovementioned works cannot be applied.

In the present paper we develop a new method of constructing Gibbs random fields with
unbounded spins (we take Sx = R for all x), which can also be applied to unbounded degree
graphs of a certain kind. In such graphs, the degree growth is controlled by a summability
requirement formulated with the help of a generalized Randić index; see [7]. By means of
this method we construct and study such random fields and analyze the influence of the graph
geometry on their stability. To the best of the authors’ knowledge, the present study is the first
attempt in such a direction. Our motivation behind doing this study is as follows.

• Random fields on Riemannian manifolds, especially those associated with the corre-
sponding Laplace–Beltrami operators (cf. [8]) can be approximated by their discrete
versions living on appropriate graphs [9]. This also includes the case of quantum fields
in curved spacetime; see [1] and [22].

• As the degree of the graph can be related to the curvature of the corresponding manifold,
the use of unbounded degree graphs essentially extends the class of manifolds that can
be approximated in the above sense.

• Another application is the description of systems of interacting oscillators located at
vertices of an infinite graph—the so called oscillating networks; see Section 14 of [4].
We also refer the reader to survey [5], where other relevant physical models can be found.

In the present paper we construct Gibbs random fields, derive exponential integrability estimates
and support properties for such fields, and present a concrete family of unbounded degree
graphs, which can serve as underlying graphs for our model. The essential property of these
graphs is that the vertices of large degrees are located at large path distances from each other.
Similar graphs were employed in [3] to study Gibbs random fields on Z

d with finite single-spin
spaces and random interactions. We plan to continue investigating the model introduced here
in forthcoming papers. In particular, we are going to study the problem of uniqueness of Gibbs
random fields, as well as the ergodicity properties of the corresponding stochastic dynamics.
Another direction where the technique developed here can be of use is the study of Gibbs fields
with unbounded spins and unbounded random interactions.

1.2. Paper overview

The model we deal with is the triple (G,W, V ), where G = (V,E) is a graph, and W : R ×
R → R and V : R → R are functions (potentials). The properties of the triple (G,W, V ) are
specified below in Assumption 1. This triple determines the heuristic Hamiltonian

H(ω) =
∑
〈x,y〉

W(ω(x), ω(y)) +
∑
x

V (ω(x)), (1)

where the first and second sums are taken over all edges and vertices, respectively, of the graph.
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For this model, Gibbs random fields are defined as probability measures on the configuration
space � = R

V. In contrast to the case of bounded spins, it is unrealistic to describe all Gibbs
measures of an unbounded spin system without assuming a priori any of their properties. Thus,
among all Gibbs measures corresponding to (1) we distinguish those that have a prescribed
support property, i.e. such that µ(�t) = 1 for an a priori chosen �t ⊂ �. We introduce a scale
of such sets �t , which are weighted Lp spaces on the vertex set V. In Theorem 1, we show
that the sets of Gibbs measures supported by such Lp spaces of configurations are nonvoid
and locally setwise compact. Here we also show that each Gibbs measure obeys important
integrability estimates, the same for all such measures. In Theorems 2 and 3, these results are
modified and extended. First we prove that the sets of Gibbs measures obtained in Theorem 1
are also weakly compact provided that the interaction potential W : R

2 → R is continuous.
Then in Theorem 3 we make precise the support properties of the Gibbs measures. These results
are valid for any graph possessing the summability specified in Assumption 1. To provide a
nontrivial example of unbounded degree graphs with this property, in the second part of the
paper we introduce a new class of such graphs, which we believe is interesting in its own right.
This class is characterized by the following property (cf. (46) and (45)). For vertices x and
y, such that their degrees, n(x) and n(y), exceed some threshold value, the path distance is
supposed to obey a ‘repulsion’ condition,

ρ(x, y) ≥ φ(max{n(x), n(y)}), (2)

where φ is a given increasing function. In such graphs, every vertex x has the property that

sup
{y : ρ(x,y)≤N}

n(y) ≤ φ−1(2N),

whenever N exceeds some integer Nx , specific for this x. By means of this property, for
φ(b) = υ log b[log log b]1+ε, υ, ε > 0, we obtain the estimate

∑
{y : ρ(x,y)=N}

[n(y)]1+θ ≤ exp(aN),

which holds for any θ > 0 and an appropriate a > 0, whenever N ≥ Nx . In Theorem 4, we
show that the latter estimate implies the required summability (5).

The rest of the paper is organized as follows. In the first part, we place emphasis on the
probabilistic nature of the problem, whereas the second part, Section 4, is devoted to the graph-
theoretical aspects of the problem. In Section 2 we specify the class of models by imposing
conditions on the graph and on the potentials. The only essential condition imposed on G is
the summability (5). The potentials are supposed to obey quite standard stability requirements
only. We note, however, that the stability condition (7) is slightly stronger than that with q = 2,
typical for graphs of bounded degree. In view of this fact, the Gaussian case is not covered by
our theory. Thereafter, we formulate Theorem 1 and its modifications—Theorems 2 and 3. The
proof of Theorem 3 follows from the estimates obtained in Theorem 1. The proof of Theorem 1,
which is the main technical component of the first part of the paper, is given in Section 3, where
we also discuss the proof of Theorem 2. The proof of Theorem 1 is preceded by a number of
lemmas, in which we elaborate the corresponding tools. The key element here is Lemma 2, the
proof of which crucially employs the summability (5). In Section 4 we introduce and describe
the class of graphs possessing property (2), which, by Theorem 4, can serve as underlying
graphs for our model.
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2. The setup and the main results

2.1. The model

The underlying graph G = (V,E) of model (1) is supposed to be undirected and countable.
Two adjacent vertices x, y ∈ V are also called neighbors. In this case, we write x ∼ y and
〈x, y〉 ∈ E. The degree of x ∈ V, denoted by n(x), is the cardinality of the neighborhood of x,
that is, of the set {y : y ∼ x}. We use the shorthand

∑
x

=
∑
x∈V

, sup
x

= sup
x∈V

,
∑
y∼x

=
∑

{y∈V : y∼x}
.

The graph is assumed to be locally finite, which means that n(x) ∈ N for any x. At the same
time, we assume that supx n(x) = +∞, which is reflected in the title of the paper. Of course,
our results are trivially valid for bounded degree graphs.

A sequence ϑ = {x0, x1, . . . , xn}, such that xk ∼ xk+1 for all k = 0, . . . , n − 1, is called a
path. Herein, some of the vertices may be repeated. The path connects its endpoints x0 and xn;
it leaves the vertices x0, . . . , xn−1 and enters x1, . . . , xn. The number of left vertices, denoted
by ‖ϑ‖, is called the length of the path. For x, y ∈ V, by ϑ(x, y) we denote a path, whose
endpoints are x and y. We assume that G is connected, which means that there exists a path
ϑ(x, y) for every x and y. The path distance ρ(x, y) is set to be the length of the shortest
ϑ(x, y). It is a metric on G by means of which, for a certain o ∈ V and α > 0, we introduce

wα(x) = exp(−αρ(o, x)), x ∈ V. (3)

For θ > 0, we also set

mθ(x) =
∑
y∼x

[n(x)n(y)]θ , x ∈ V. (4)

In mathematical chemistry, the sum of terms [n(x)n(y)]θ taken over the edges 〈x, y〉 of a finite
tree is known under the name generalized Randić or connectivity index; see, e.g. [7].

The remaining properties of the model are now summarized.

Assumption 1. The triple (G,W, V ) is subject to the following conditions:

(i) the graph G is such that


(α, θ) :=
∑
x

mθ (x)wα(x) < ∞ (5)

for some positive α and θ ;

(ii) W : R
2 → R is measurable, symmetric, and such that

|W(u, v)| ≤ 1
2 (IW + JW (ur + vr)) (6)

for some positive IW , JW , r , and all u, v ∈ R;

(iii) V : R → R ∪ {+∞} is measurable, the set {u : V (u) < +∞} is of positive Lebesgue
measure, and the estimate

V (u) ≥ aV |u|q − cV (7)

holds for all u ∈ R and some aV , cV > 0, q > r + r/θ , with θ being the same as in (i).
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A necessary condition for a Gibbs random field to exist is that the restriction of the cor-
responding Hamiltonian (1) to any finite � ⊂ V be bounded below, uniformly in �. This
property is often referred to as the (global) stability of the model. Assumption 1(ii) and (iii)
provide such a stability. For bounded degree graphs, it is enough to demand that q > r , in
contrast to q > r + r/θ in Assumption 1(iii). To illustrate the destabilizing effect of the graph,
let us consider the Gaussian Gibbs random field, which corresponds to the Hamiltonian

H(ω) =
∑
〈x,y〉

Jω(x)ω(y) + a

2

∑
x

[ω(x)]2, a > 0.

This field exists only if all local restrictions of the above quadratic form are positive definite.
This in turn is possible only if the vertex degree is bounded. Otherwise, we have to make the
second term [ω(x)]q , with q bigger than 2. Then the global stability will be secured for big
enough q, depending on the graph. For our graphs, it is enough to take q > 2 + 2/θ .

Let us give now an example of a graph, which has property (5). Herein, a ray is an infinite
sequence, {x0, x1, . . . }, such that each two consecutive vertices are adjacent.

Example 1. Let {nk}k∈N ⊂ N be an increasing sequence. The graph G is supposed to be a tree,
which consists of the ‘main’ ray {x1, x2, . . . }, comprising ‘main’vertices for which n(xk) = nk ,
and of the ‘auxiliary’ rays {xk, yk1, yk2, . . . }, k ∈ N, such that n(ykl) = 2. The vertex x1 is the
root for n1 − 1 ‘auxiliary’ rays, whereas, for the remaining xk , this number is nk − 2. For such
a graph, condition (5) is equivalent to

∞∑
k=1

(nknk+1)
θe−αk < ∞ and

∞∑
k=1

n1+θ
k e−αk < ∞.

If nk ≤ n0 exp(βk), the above conditions are satisfied provided that

β < min

{
α

2θ
; α

1 + θ

}
.

2.2. The basic result

Following the standard Dobrushin–Lanford–Ruelle (DLR) route (see [10]), Gibbs random
fields for our model are defined as probability measures on the measurable space (�,B(�)).
Here � = R

V is the configuration space, equipped with the product topology and with the
corresponding Borel σ -field B(�). By P (�) we denote the set of all probability measures on
(�,B(�)).

In the sequel, by writing � � V we mean that � is a finite and nonvoid set of vertices.
A property related to such a subset is called local. As usual, �c = V \ � stands for the
complement of � ⊂ V. For � � V and ω ∈ �, by ω� we denote the restriction of ω to
�, and use the decomposition ω = ω� × ω�c . For such �, we set ��=R

|�| and denote by
B(��) the corresponding Borel σ -field. A function f : � → R is said to be local if it is
B(��)/B(R)-measurable for some � � V. By Floc we denote the set of all bounded local
functions. The algebra of local events is

Bloc =
⋃
��V

B(��).

For an appropriate f : � → R and µ ∈ P (�), we write

µ(f ) =
∫
�

f (ω)µ(dω), (8)
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if the integral makes sense. In the sequel, we mostly use the following topology on P (�), cf.
Definition 4.2 of [10, p. 59].

Definition 1. The local setwise topology Tloc is the weakest topology on the set P (�) for
which the evaluation maps P (�) 
 µ �→ µ(A), A ∈ Bloc, are continuous. Equivalently, a net
{µι}ι∈I ⊂ P (�) is Tloc-convergent to some µ if and only if µι(f ) → µ(f ) for all f ∈ Floc.

We observe that Tloc is not metrizable. In view of Assumption 1(iii), we can define the
probability measure χ on R by

χ(du) = C exp(−V (u)) du,

where C > 0 is the corresponding normalizing factor. Thereafter, for � � V, we set

χ�(dω�) =
⊗
x∈�

χ(dω(x)), (9)

which is a probability measure on (��,B(��)). For a given � � V and a fixed ξ ∈ �, the
relative local interaction energy corresponding to the Hamiltonian (1) is set to be

E�(ω� | ξ) =
∑

{〈x,y〉 : x,y∈�}
W(ω(x), ω(y)) +

∑
{〈x,y〉 : x∈�, y∈�c}

W(ω(x), ξ(y)). (10)

Then by means of this energy, for such �, ξ , and A ∈ B(�), we define

π�(A | ξ) = 1

Z�(ξ)

∫
R|�|

1A(ω� × ξ�c) exp(−E�(ω� | ξ))χ�(dω�), (11)

Z�(ξ) =
∫

R|�|
exp(−E�(ω� | ξ))χ�(dω�),

where 1A is the indicator function. Hence, each π�(· | ξ) ∈ P (�). The family {π�}��V is
called the local Gibbs specification for the model we consider. Directly from definition (11),
we can verify that this family is consistent in the sense that

∫
�

π�(A | ω)π�(dω | ξ) = π�(A | ξ), (12)

which holds for all A ∈ B(�), all � ⊂ �, and all � � V.

Definition 2. A measure µ ∈ P (�) is said to be a Gibbs random field corresponding to the
Hamiltonian (1) if it solves the following (DLR) equation:

µ(A) =
∫
�

π�(A | ω)µ(dω), (13)

for all A ∈ B(�) and � � V.

Let G stand for the set of all solutions of (13). As is typical for unbounded spin systems, it is
far from obvious whether G is nonvoid. But if it is, the description of the properties possessed
by all of the elements of G is rather unrealistic. Thus, we construct and study a subset of
G, consisting of the measures possessing a prescribed (support) property. Such measures are
called tempered.
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For p ≥ 1 and α > 0, we set

‖ω‖p,α =
[∑
x∈V

|ω(x)|pwα(x)

]1/p

, (14)

where the weights wα are defined in (5). Then

Lp(V, wα) = {ω ∈ R
V : ‖ω‖p,α < ∞}

is a Banach space. Next, we define

α = inf{α : 
(α, θ) < ∞},
and let α > α be such that (5) holds for all α ∈ (α, α]. Finally, we set

p0 = r + r

θ
.

For α′, α ∈ (α, α] and p′, p ∈ [p0, q), by (14) we have

Lp′
(V, wα′) ↪→ Lp(V, wα) whenever α′ < α and p′ ≥ p. (15)

Notably, the above embedding is compact. Then, for α ∈ (α, α] and p ∈ [p0, q), we set

Gp,α = {µ ∈ G | µ[Lp(V, wα)] = 1}.
Clearly,

Gp′,α′ ⊂ Gp,α whenever α′ ≤ α and p′ ≥ p. (16)

The following statement is the main result of the first part of the paper.

Theorem 1. For every α ∈ (α, α] and p ∈ [p0, q), the set Gp,α is nonvoid and Tloc-compact.
For every λ > 0 and x ∈ V, there exists a positive constant C(p, α; λ, x) such that, for all
µ ∈ Gp,α , ∫

�

exp(λ|ω(x)|p)µ(dω) ≤ C(p, α; λ, x). (17)

Furthermore, for every λ > 0, there exists a positive constant C(p, α; λ) such that, for all
µ ∈ Gp,α , ∫

�

exp(λ‖ω‖p
p,α)µ(dω) ≤ C(p, α; λ). (18)

The proof of Theorem 1 will be given in Section 3. Now let us make some comments.

• For our graphs, we cannot expect that the constants C(p, α; λ, x) in (17) are bounded
uniformly in x. This could be the case if the quantities 
(α, θ) were bounded uniformly
with respect to the choice of the root o.

• Both estimates (17) and (18) also hold for p = q, but not for all λ, which ought to be
small enough in this case.

• The interval [p0, q) is nonvoid if q > r + r/θ , i.e. if the stabilizing effect of the potential
V is stronger than the destabilizing effects of the interaction and of the underlying graph,
caused by its degree property. If the graph is of bounded degree n̄ = supx n(x), condition
(5) is satisfied for any θ > 0 and α > log n̄. In this case, we can take θ arbitrarily large
and obtain q > r (or q ≥ r for small λ), which is typical for such situations.
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• According to (14) and (16), the stronger the estimates we want to get, the smaller the
class of tempered Gibbs random fields we obtain.

• In view of the specific features of the graph geometry, such as the degree unboundedness
and the lack of transitivity, the two basic statistical-mechanical tools—Ruelle’s supersta-
bility method and Dobrushin’s existence and uniqueness criteria—are not applicable to
our model.

2.3. Modifications and extensions

One of the natural properties of the interaction potential W which we, however, do not
mention in Assumption 1, is continuity. Thus, if we add it to Assumption 1(ii) then the kernels
in (11) acquire the so-called Feller property. This merely means that if f : � → R is bounded
and continuous then the function π�(f | ·), cf. (8), is bounded and continuous as well. The
proof of such a property is quite standard; see, e.g. the proof of Lemma 2.10 of [15]. Let Cb(�)

be the set of all functions just mentioned. Then the weak topology Tweak on P (�) is defined
to be the weakest topology in which the maps µ �→ µ(f ) are continuous for all f ∈ Cb(�).

Theorem 2. If, in addition to Assumption 1, we assume that the interaction potentialW : R
2 →

R is jointly continuous, then, for every α ∈ (α, α] and p ∈ [p0, q), the set Gp,α is Tweak-
compact.

The proof of this theorem will be discussed in Section 3. Now we present its extension.
Taking into account (15), we define the set of tempered configurations by

�̃t =
⋂

p∈[p0,q)

⋂
α∈(α,α]

Lp(V, wα). (19)

This set can be endowed with the projective limit topology and thereby turned into a Fréchet
space. By standard arguments, its Borel σ -field B(�̃t) has the property

B(�̃t) = {A ∩ �̃t : A ∈ B(�)}, (20)

in view of which we can define

G̃t = {µ ∈ G : µ(�̃t) = 1}.
The elements of the latter set have the smallest support we have managed to establish. In view
of (20), they can be redefined as probability measures on (�̃t,B(�̃t)). Let T̃weak be the weak
topology on the set of all probability measures P (�̃t). Clearly, T̃weak is stronger than the
topology induced on �̃t by Tweak.

Theorem 3. Let the assumptions of Theorem 1 or Theorem 2 hold. Then the set G̃t is nonvoid
and Tloc-compact or, respectively, T̃weak-compact.

Proof. Let G̃ be the intersection of all Gp,α , with α ∈ (α, α] and p ∈ [p0, q); see (19). By
the compactness established in Theorem 1, the set G̃ is nonvoid. Obviously, all its elements
belong to G̃t and, hence, these two sets coincide. Furthermore, the elements of G̃ obey estimates
(17) and (18) with all α ∈ (α, α] and p ∈ [p0, q). The Tloc-compactness has already been
mentioned. To prove the T̃weak-compactness, we consider the balls

Bp,α(R) = {ω : ‖ω‖p,α ≤ R}, R > 0, (21)
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and fix two monotone sequences αk ↓ α and pk ↑ q as k → +∞. In view of (18), for any
k ∈ N and ε > 0, we can pick Rk,ε > 0 such that

µ[Bpk,αk
(Rk,ε)] ≥ 1 − ε

2k

uniformly for all µ ∈ Gpk,αk
, and, hence, for all µ ∈ G̃t . By the compactness of the embedding

(15), the set
B =

⋂
k∈N

Bpk,αk
(Rk,ε)

is compact in �̃t , and is such that µ(B) ≥ 1 − ε for all µ ∈ G̃t . Thereafter, the T̃ weak-
compactness of G̃t follows by the renowned Prokhorov theorem.

Finally, let us mention one more possible extension of Theorems 1 and 2. The Gibbs
random fields constructed above can serve as equilibrium thermodynamic states of systems of
one-dimensional anharmonic oscillators, indexed by the vertices of G and interacting with each
other along the edges by the potential W (oscillating networks). Obviously, the above results
hold true if we replace the single-spin space R with R

ν, ν ∈ N, which would correspond
to multidimensional oscillators. Furthermore, by means of the technique developed in [2],
[15], and [19], our theorems can also be extended to the case where the single-spin spaces
are copies of Cβ—the Banach space of continuous functions (temperature loops) ω : [0, β] →
R

ν, β > 0, such that ω(0) = ω(β). In this case, the Gibbs random fields correspond to
the so-called Euclidean thermodynamic Gibbs states of a system of interacting ν-dimensional
quantum anharmonic oscillators, for which β−1 is the temperature.

3. Properties of the local Gibbs specification

In this section we prove that estimate (18) also holds for all π�(· | ξ). This will imply
all the properties of the family {π�}��V which we need to prove Theorem 1. We begin by
deriving a basic estimate, which allows us to control the ξ -dependence of the moments of π�

with one-point sets � = {x}. Its extension to arbitrary sets will be obtained by means of the
consistency property (12).

3.1. Moment estimates

From (6), by an easy calculation we obtain

|W(u, v)| ≤ �(|u|p + |v|p) + IW

2
+ 2(p − r)

(
JW

2p

)p/(p−r)(
r

�

)r/(p−r)

, (22)

which holds for all u, v ∈ R, � > 0, and p > r . We will use this estimate with � =
β/n(x)n(y), x, y ∈ V, where β > 0 will be chosen later in (27). For p ∈ [p0, q), we set

�xy(β, p) = γ (β, p)[n(x)n(y)]r/(p−r), (23)

γ (β, p) = IW + 4(p − r)

(
JW

2p

)p/(p−r)(
r

β

)r/(p−r)

,

and

C(β, λ, p) = cV + log

{∫
R

exp((λ + β)|u|p − aV |u|q) du

}

− log

{∫
R

exp(−β|u|p − V (u)) du

}
,
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where λ > 0 and aV , cV , and q are the same as in (7). Note that the integral in the latter line
is positive. In the lemma below, πx stands for the corresponding objects defined in (11) with
� = {x}.
Lemma 1. For every λ > 0, p ∈ [p0, q), x ∈ V, and ξ ∈ �, the following estimate holds:∫

�

exp(λ|ω(x)|p)πx(dω | ξ) ≤ exp

(
C(β, λ, p) +

∑
y∼x

2β|ξ(y)|p
n(x)n(y)

+
∑
y∼x

�xy(β, p)

)
. (24)

Proof. According to (11), for the left-hand side of (24), we have

LHS(24) = 1

Yx(ξ)

∫
R

exp

(
λ|u|p −

∑
y∼x

W(u, ξ(y)) − V (u)

)
du,

where

Yx(ξ) =
∫

R

exp

(
−

∑
y∼x

W(u, ξ(y)) − V (u)

)
du.

By (22), with � = β/n(x)n(y), and (23), we obtain

−
∑
y∼x

[
β

n(x)n(y)
(|u|p + |ξ(y)|p) + 1

2
�xy(β, p)

]
− V (u)

≤ −
∑
y∼x

W(u, ξ(y)) − V (u)

≤
∑
y∼x

[
β

n(x)n(y)
(|u|p + |ξ(y)|p) + 1

2
�xy(β, p)

]
− aV |u|q + cV .

Then

Yx(ξ) ≥ exp

(
−

∑
y∼x

[
β|ξ(y)|p
n(x)n(y)

+ 1

2
�xy(β, p)

]) ∫
R

exp(−β|u|p − V (u)) du,

and∫
R

exp

(
λ|u|p −

∑
y∼x

W(u, ξ(y)) − V (u)

)
du ≤ exp

(
cV +

∑
y∼x

[
β|ξ(y)|p
n(x)n(y)

+ 1

2
�xy(β, p)

])

×
∫

R

exp((λ + β)|u|p − aV |u|q) du,

which clearly yields (24).

Now, for λ > 0, p ∈ [p0, q), � � V, and a fixed x ∈ �, we set

Mx(λ, p,�; ξ) = log

{∫
�

exp(λ|ω(x)|p)π�(dω | ξ)
}
, (25)

which is obviously finite. Our aim is to find an upper bound for this quantity. Integrating both
sides of (24) with respect to π�(· | ξ) and taking into account (12), we obtain

exp(Mx(λ, p,�; ξ)) ≤ exp

(
C(β, λ, p) +

∑
y∼x

�xy(β, p) +
∑

y∼x, y∈�c

2β|ξ(y)|p
n(x)n(y)

)

×
∫
�

exp

( ∑
y∼x, y∈�

2β|ω(y)|p
n(x)n(y)

)
π�(dω | ξ). (26)
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In the sequel, the parameter α will be fixed. Then, for a given λ, the parameter β will always
be chosen in such a way that

2βeα < λ, (27)

which, in particular, yields ∑
y∼x

2β

λn(x)n(y)
≤ 1. (28)

To estimate the integral in (26), we use the multiple Hölder inequality,

∫ ( n∏
i=1

ϕ
αi

i

)
dµ ≤

n∏
i=1

(∫
ϕi dµ

)αi

, (29)

in which µ is a probability measure, ϕi ≥ 0, i = 1, . . . , n, are integrable functions, and
αi ≥ 0 i = 1, . . . , n, are numbers such that

∑n
i=1 αi ≤ 1. Applying this inequality to (26) and

taking into account (28) we arrive at

Mx(λ, p,�; ξ) ≤ C(β, λ, p) +
∑
y∼x

�xy(β, p) +
∑

y∼x, y∈�c

2β|ξ(y)|p
n(x)n(y)

+
∑

y∼x, y∈�

2β

λn(x)n(y)
My(λ, p,�; ξ). (30)

As the quantity we want to estimate appears on both sides of the above estimate, we proceed
as follows. For α ∈ (α, α], we set (cf. (3) and (14))

‖M(λ, p,�; ξ)‖α =
∑
x∈�

Mx(λ, p,�; ξ) exp(−αρ(o, x)), (31)

and obtain an upper bound for ‖M(λ, p,�; ξ)‖α . To this end, we multiply both sides of (30)
by exp(−αρ(o, x)), sum over x ∈ �, and obtain

‖M(λ, p,�; ξ)‖α ≤ ϒα
1 + ϒα

2 + ϒα
3 (�) + ϒα

4 (�).

Here
ϒα

1 = C(β, λ, p)
∑
x

exp(−αρ(o, x))

and

ϒα
2 = γ (β, p)


(
α; r

p − r

)
≤ γ (β, p)
(α; θ).

The latter estimate holds sincep ≥ p0 = r+r/θ . The term corresponding to the third summand
in (30) is estimated as follows:

∑
x∈�

exp(−αρ(o, x))
∑

y∼x, y∈�c

2β

n(x)n(y)
|ξ(y)|p ≤ ϒα

3 (�)

:= 2βeα
∑
x∈�c

exp(−αρ(o, x))|ξ(x)|p, (32)
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which is finite whenever ξ ∈ Lp(V, wα), and tends to 0 as � → V. In a similar way, we obtain

∑
x∈�

exp(−αρ(o, x))
∑

y∼x, y∈�

2β

λn(x)n(y)
My(λ, p,�; ξ) ≤ ϒα

4 (�)

:= 2βeα

λ
‖M(λ, p,�; ξ)‖α. (33)

Recall that β and λ are supposed to obey (27). Then from the estimates obtained above we
obtain

‖M(λ, p,�; ξ)‖α ≤ ϒα
1 + ϒα

2 + ϒα
3 (�)

1 − 2βeα/λ
, (34)

which yields
Mx(λ, p,�; ξ) ≤ Cx(λ, p, ξ) (35)

for some Cx(λ, p, ξ) > 0, which is independent of �, but obviously depends on x and on the
choice of the root o.

3.2. Compactness of the local Gibbs specification

The result just obtained allows us to prove the next statement, which is crucial for establishing
the relative Tloc-compactness of the family {π�(· | ξ)}��V, as well as the corresponding
integrability estimates.

Lemma 2. Let p ∈ [p0, q) and α ∈ (α, α] be fixed. Then, for every λ > 0 and ξ ∈ Lp(V, wα),
we find a positive constant C(p, α; λ, ξ) such that, for all � � V,∫

�

exp(λ‖ω‖p
p,α)π�(dω | ξ) ≤ C(p, α; λ, ξ). (36)

Furthermore, for the same λ, we find a positive constant C(p, α; λ) such that, for all ξ ∈
Lp(V, wα),

lim sup
�→V

∫
�

exp(λ‖ω‖p
p,α)π�(dω | ξ) ≤ C(p, α; λ). (37)

Proof. By (11) and (14), for any δ > 0, we have
∫
�

exp(λ‖ω‖p
p,α)π�(dω | ξ) = exp

(
λ

∑
x∈�c

|ξ(x)|pwα(x)

)

×
∫
�

∏
x∈�

[exp(δ|ω(x)|p)]λwα(x)/δπ�(dω | ξ). (38)

Now we pick δ such that
λ

δ

∑
x∈�

wα(x) ≤ 1,

and apply in (38) the Hölder inequality (29). This yields, see (25) and (31),
∫
�

exp(λ‖ω‖p
p,α)π�(dω | ξ) ≤ exp

(
λ

∑
x∈�c

|ξ(x)|pwα(x)

)

× exp

(
λ

δ
‖M(δ, p,�; ξ)‖α

)
. (39)
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By (34), the set {RHS(39)(�) | � � V} is bounded for every fixed ξ ∈ Lp(V, wα). We denote
its upper bound by C(p, α; λ, ξ) and obtain (36). Estimate (37) follows from (39) by (32),
(34), and the fact that ξ ∈ Lp(V, wα).

Lemma 3. For every ξ ∈ Lp(V, wα), the family {π�(· | ξ)}��V ⊂ P (�) is relatively Tloc-
compact.

Proof. According to Proposition 4.9 of [10, p. 61], the proof will be complete if we show
that the family {π�(· | ξ)}��V ⊂ P (�) is locally equicontinuous. The latter means that, for
each � � V and any sequence {Ak}k∈N ⊂ B(��) with Ak ↓ ∅, as k → +∞, we have

lim
k→+∞ lim sup

�→V
π�(Ak | ξ) = 0. (40)

Here, as well as in (37), by � → V we mean the convergence of the corresponding net with
the index set {�}��V, ordered by inclusion. To obtain (40), we adapt the arguments used in
the proof of Theorem 4.12 and Corollary 4.13 of [10, pp. 62, 63]. Let T be a positive number,
and let � be as above. Set

BT = {ω ∈ � : |ω(x)| ≤ T for all x ∈ � ∪ ∂�}, Bc
T = � \ BT ,

where ∂� is the outer boundary of � consisting of those y ∈ �c for which ρ(y,�) = 1, ρ
being the path distance. For a fixed k ∈ N, we have

lim sup
�→V

π�(Ak | ξ) ≤ lim sup
�→V

π�(Ak ∩ BT | ξ) + lim sup
�→V

π�(Bc
T | ξ). (41)

The second summand can be estimated by means of (37), which yields

lim sup
�→V

π�(Bc
T | ξ) ≤ C(p, α, λ) exp

(
−λT p

∑
x∈�

wα(x)

)
<

ε

2
, (42)

holding for any ε > 0 and sufficiently large T . To handle the first summand in (41), we first
estimate π�(Ak ∩ BT | η), η ∈ �, which in view of (11) is nonzero only if ω� × η�c ∈ BT .
For such η, by (10), (11), (6), and (9), we have

Z�(η) ≥ exp
(− 1

2 (IW |E�| + JWT r |∂�|) + ζ�
)
,

where E� ⊂ E is the set of edges with both ends in �, and

eζ� =
∏
x∈�

∫
R

exp
(−JW

(
n(x) + 1

2

)|u|r)χ(du).

Applying (6) again, this time to the numerator in (11), we arrive at

π�(Ak ∩ BT | η) ≤ exp(IW |E�| + JWT rC(�) − ζ�)χ�(Ak) <
ε

2
,

which holds, uniformly in η, for T obeying (42) and sufficiently large k by the continuity of χ�.
Then, for any � � V that contains �, by (12) we obtain

π�(Ak ∩ BT | ξ) <
ε

2
,

which when applied in (41) yields (40).
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Corollary 1. For every p ∈ [p0, q) and α ∈ (α, α], the set Gp,α is nonvoid.

Proof. For every � � V and ξ ∈ Lp(V, wα), by (11), each π�(· | ξ) is supported by the
set

{ω = ω� × ξ�c : ω� ∈ ��},
which yields

π�[Lp(V, wα) | ξ ] = 1.

Let us fix some ξ ∈ Lp(V, wα). By Lemma 3, there exists an increasing sequence {�n}n∈N,
which exhausts V, such that the sequence {π�n(· | ξ)}n∈N Tloc-converges to a certainµ ∈ P (�).
Let us show that this µ also solves the DLR equation. For any �, we find an n′ ∈ N such that
� ⊂ �n for all n ≥ n′. For such n and A ∈ Bloc, by (12) we have∫

�

π�(A | ω)π�n(dω | ξ) = π�n(A | ξ). (43)

By (11) we immediately find that the function � 
 ω �→ π�(A | ω) is in Floc. Thus, we can
pass in (43) to the limit n → +∞ and obtain µ ∈ G; see Definition 1 and Lemma 3. To prove
that µ is supported by Lp(V, wα), we show that this measure obeys estimate (18). For λ > 0,
we set

FN,�(ω) = exp

(
λmin

{
N;

∑
x∈�

|ω(x)|pwα(x)

})
, N ∈ N, � � V.

Clearly, FN,� ∈ Floc. Then, by (37) and the Tloc-convergence π�n(· | ξ) → µ, we have∫
�

FN,�(ω)µ(dω) ≤ lim
n→+∞

∫
�

FN,�(ω)π�n(dω | ξ) ≤ C(p, α; λ),
where the latter constant is the same as in (37). Thereafter, the proof of (18), with the same
constant, follows by Levi’s monotone convergence theorem. Hence, µ ∈ Gp,α .

Proof of Theorem 1. We proved above that the accumulation points of the family {π�(· | ξ)},
ξ ∈ Lp(V, wα), obey (37). Let us extend this to all µ ∈ Gp,α . For such µ, by (13), Fatou’s
lemma, and estimate (37), we obtain∫

�

FN(ω)µ(dω) = lim sup
�→V

∫
�

[∫
�

FN(ω)π�(dω | ξ)
]
µ(dξ)

≤
∫
�

[
lim sup
�→V

∫
�

FN(ω)π�(dω | ξ)
]
µ(dξ)

≤
∫
�

[
lim sup
�→V

∫
�

exp(λ‖ω‖p
p,α)π�(dω | ξ)

]
µ(dξ)

≤ C(p, α; λ).
Then we again apply Levi’s theorem and obtain (18). The proof of (17) follows by (35) along
the same line of arguments. Now let {µι}ι∈I ⊂ Gp,α be any net. Then its relative compactness
can be established by the same arguments used in the proof of Lemma 3. As Gp,α is evidently
Tloc-closed, the latter fact completes the proof.

Notes on the proof of Theorem 2. By the Feller property of the specification {π�(· | ·)}��V
and (13), we readily find that Gp,α is Tweak-closed. Clearly, the balls {ω : ‖ω‖p,α ≤ R}, R > 0,
are compact in � for any fixed α ∈ (α, α] and p ∈ [p0, q). Thus, by Prokhorov’s theorem, any
net {µι}ι∈I ⊂ Gp,α is relatively Tweak-compact for any ξ ∈ Lp(V, wα).
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4. Repulsive graphs

In the remaining part of the paper we present a family of unbounded degree graphs which
obey estimate (5). The defining property of such graphs is that vertices of large degree are
located at large distances from each other.

4.1. The family of graphs and the main statement

For n∗ ∈ N, we set

V∗ = {x ∈ V : n(x) ≤ n∗}, Vc∗ = V \ V∗. (44)

Definition 3. For an integer n∗ > 2 and a strictly increasing function φ : (n∗,+∞) →
(0,+∞), the family G(n∗, φ) consists of those connected simple graphs G = (V,E) for
which the path distance obeys the condition

ρ(x, y) ≥ φ[n(x, y)] for all x, y ∈ Vc∗, (45)

where
n(x, y) = max{n(x); n(y)}. (46)

No restrictions are imposed on ρ(x, y) if either x or y belongs to V∗.

Let us make some comments. The graph presented in Example 1 is certainly not in G(n∗, φ)
for any increasing φ. However, in this graph the increase of the degrees is allowed only along
a single ray (it is the ‘main’ ray in that example). That is why it possesses property (5). For
graphs in G(n∗, φ) with appropriate φ, this property also holds; see Theorem 4 below. In such
graphs, the vertices of large degree are sparse, but they can appear ‘in all directions’. To see
this, for a given x ∈ Vc∗, we set

K(x) = {y ∈ V : ρ(y, x) < φ[n(x)]}.
Then by (45) we have K(x)∩Vc∗ = {x}, i.e. such x ‘repels’all vertices y ∈ Vc∗ from the ball K(x).
For the sake of convenience, we will assume that K(x) contains the neighborhood of x, which
is equivalent to assuming that

φ(n∗ + 1) > 1. (47)

The graphs introduced and studied in [3] were defined by the condition which can be written
in the form (cf. Equations (3.8) and (3.9) of [3])

ρ(x, y) ≥ φ[m(x, y)], m(x, y) := min{n(x); n(y)}. (48)

In this case, a vertex x ‘repels’ from the ball {y : ρ(y, x) < φ[n(x)]} only those ys for which
n(y) ≥ n(x). We employ (45) rather than (48) in view of its application in Lemma 5 below;
see Remark 1 below for further comments. The concrete choice of the function φ in Theorem 4
is discussed in Remark 2 below.

Theorem 4. Let G be in G(n∗, φ) with φ having the form

φ(b) = υ log b[log log b]1+ε, ε > 0, b ≥ n∗ + 1 ≥ ee, (49)

where υ > 1/e and, hence, is such that (47) holds. Then, for any θ > 0, there exists α ≥ 0,
which may depend on θ , n∗, υ, and ε, such that 
(α, θ) < ∞ whenever α > α.
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The proof of Theorem 4 is given at the very end of this subsection. It is preceded by and
based on Lemmas 4 and 5, which in turn are proven in the remaining part of the paper. For
N ∈ N and x ∈ V, we set

S(N, x) = {y ∈ V : ρ(x, y) = N},
B(N, x) = {y ∈ V : ρ(x, y) ≤ N},

and

Tx(α, θ) =
∑
y

[n(y)]1+θ exp(−αρ(x, y)), α, θ > 0. (50)

Lemma 4. Let G be in G(n∗, φ) with φ obeying (47). Then, for every positive θ and α, it
follows that


(α, θ) ≤ nθ∗(eα + 1)To(α, θ). (51)

Lemma 5. Let G be as in Theorem 4. Then, for every θ > 0, there exists a > 0, which may
also depend on the parameters of the function in (49), such that, for any x ∈ V, there exist
Ñx ∈ N for which

Gθ(N, x) :=
∑

y∈S(N,x)

[n(y)]1+θ ≤ eaN , (52)

whenever N ≥ Ñx .

Remark 1. A condition like (48) could guarantee that estimate (52) holds only for N = Nk ,
k ∈ N, for some increasing sequence {Nk}k∈N ⊂ N. This would not be enough to prove
Theorem 4.

Proof of Theorem 4. By (50) and (52), we have

Tx(α, θ) ≤
Nx∑

N=0

exp(−αN)

( ∑
y∈S(N,x)

[n(y)]1+θ

)
+

∞∑
N=Nx+1

exp(−(α − a)N).

Thus, the proof of the theorem follows by (51) with α = a.

4.2. A property of the balls in repulsive graphs

The proof of Lemma 5 is based on a property of the balls B(N, x) in the graphs G ∈ G(n∗, φ),
due to which we can control the growth of the maximum degree of y ∈ B(N, x). Here we do
not suppose that φ has the concrete form of (49).

Lemma 6. Let G = (V,E) be in G(n∗, φ) with an arbitrary increasing function

φ : (n∗,+∞) → (1,+∞).

Then, for every x ∈ V, there exists Nx ∈ N such that

max
y∈B(N,x)

n(y) ≤ φ−1(2N), (53)

whenever N ≥ Nx .
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Proof. Given x, let x̃ be the vertex in Vc∗ which is closest to x; see (44). If more than one
vertex lies at the same distance from x, we take the vertex with the highest degree. For this x̃,
we have the following possibilities: (i) ρ(x, x̃) ≥ φ[n(x̃)]/2; and (ii) ρ(x, x̃) < φ[n(x̃)]/2.
The latter possibility also includes the case in which x̃ = x, i.e. where x itself is in Vc∗. In (i),
we set Nx = 1, which means that (53) holds for all N ∈ N. Indeed, if N < ρ(x, x̃) then the
ball B(N, x) contains only vertices y ∈ V∗, for which n(y) ≤ n∗ ≤ φ−1(2N) for any N ∈ N.
If N ≥ ρ(x, x̃) and maxy∈B(N,x) n(y) = n(x̃) we have N ≥ ρ(x, x̃) ≥ φ[n(x̃)]/2, which also
yields (53) for this case. Finally, let maxy∈B(N,x) n(y) = n(z) for some z �= x̃, which means
that n(z) > n(x̃). In this case, by (45) we have ρ(x̃, z) ≥ φ[n(z)], and

2N ≥ ρ(x, z) + ρ(x, x̃) ≥ ρ(x̃, z) ≥ φ[n(z)], (54)

which yields (53) for this case as well.
If (ii) holds, we let x1 be the closest vertex to x, such that n(x1) > n(x̃). Again, we take

the vertex with the highest degree if more than one such vertex lies at the same distance
from x. By (45) we have ρ(x̃, x1) ≥ φ[n(x1)]. If, for N ≥ Nx := ρ(x, x1), we have
maxy∈B(N,x) n(y) = n(x1) then

N ≥ ρ(x, x1) ≥ φ[n(x1)] − ρ(x, x̃) ≥ φ[n(x1)] − φ[n(x̃)]
2

≥ φ[n(x1)]
2

,

which yields (53). Finally, let maxy∈B(N,x) n(y) = n(z) for some z �= x1, which means that
n(z) > n(x1). In this case, ρ(x1, z) ≥ φ[(n(z)], and we obtain (53) by applying (54) with x̃

replaced by x1.

4.3. Proofs of Lemmas 4 and 5

First we prove an auxiliary statement. Recall that byϑ(x, y)we denote a path with endpoints
x and y. For a path ϑ , by Vϑ we denote the set of its vertices. A path is called simple if none
of its inner vertices are repeated. For m ≤ n, let ϑ ′ = {x0, . . . , xm} and ϑ = {y0, . . . , yn} be
such that x0 = yk , x1 = yk+1, . . . , xm = yk+m for some k = 0, . . . , n − m. Then we say that
ϑ ′ is a subpath of ϑ , and write ϑ ′ ⊂ ϑ .

Let �N(x) denote the family of all simple paths of length N originated at x. Then, for every
y ∈ S(N, x), there exists ϑ ∈ �N(x) such that ϑ = ϑ(x, y). We use this fact for estimating
the cardinality of S(N, x).

Proposition 1. (Cf. Assertion 6 of [3].) In any graph G, for any x ∈ V and N ∈ N, we have

|S(N, x)| ≤ |�N(x)| ≤ max
ϑ∈�N(x)

∏
y∈Vϑ\{xN }

n(y). (55)

Proof. We prove this proposition by induction in N . For N = 1, estimate (55) is obvious.
For any N ≥ 2, we have

|�N(x)| ≤ n(x)max
y∼x

|�x
N−1(y)|,

where �x
N−1(y) is the corresponding family of paths in the graph which we obtain from G

be deleting the edge 〈x, y〉. Every ϑ ∈ �N(x) can be written in the form ϑ = {xϑ̃} with
ϑ̃ ∈ �x

N−1(y) for some y ∼ x. Then by the inductive assumption we have

|�N(x)| ≤ n(x)max
y∼x

max
ϑ̃∈�x

N−1(y)

∏
z∈V

ϑ̃
\{xN }

n(z) ≤ max
ϑ∈�N(x)

∏
z∈Vϑ\{xN }

n(z),

which completes the proof.
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Proof of Lemma 5. We will prove that estimate (52) holds with Nx being as in Lemma 6
and a given by

a = 2e(1 + θ) + log n∗ + 3e

υ

∞∑
k=1

1

k1+ε
.

For any N ≥ Nx , by (53) and (55) we obtain

Gθ(N, x) ≤ exp

(
(1 + θ) logφ−1(2N) + max

ϑ∈�N(x)

∑
z∈Vϑ\{xN }

log n(z)

)
. (56)

By (49) we have

φ−1(2N) ≤ exp(2eN). (57)

If Vϑ ⊂ V∗ for any ϑ ∈ �N(x), the second summand in (56) does not exceed N log n∗, which
certainly yields (52) for all N ≥ 1. For Vϑ ∩ Vc∗ �= ∅, let Nx be as in Lemma 6. Then, for
N ≥ max{Nx;φ(n∗ + 1)/2}, we have

{y ∈ B(N, x) : n∗ + 1 ≤ n(y) ≤ φ−1(2N)} �= ∅.

Let k∗ be the least k ∈ N such that ck∗ ≥ n∗ + 1, where ck = exp(ek), k ∈ N. Then we set
bk∗ = n∗ + 1 and bk = ck for k > k∗. Let kN be the largest k such that bk ≤ φ−1(2N). For
k = k∗, . . . , kN and a given ϑ ∈ �N(x), let mϑ

k be the number of vertices y ∈ Vϑ such that
n(y) ∈ [bk, bk+1]. Given τ ∈ (0, N), for any ϑ ∈ �N(x), the number of vertices in Vϑ which
are at least a distance τ apart is 1 + N/τ , at most. Therefore,

mϑ
k ≤ mk := 1 + N

φ(bk)
≤ 3N

φ(bk)
.

Taking this into account, by (49) we obtain

max
ϑ∈�N(x)

∑
z∈Vϑ\{xN }

log n(z) ≤ N log n∗ +
kN∑

k=k∗
mk log bk+1 ≤ N

(
log n∗ + 3e

υ

∞∑
k=k∗

1

k1+ε

)
.

Applying (57) and the latter estimate in (56) we obtain (52) in this case also.

Remark 2. Our choice of φ made in (49) was predetermined by condition (57), which we used
to estimate the first summand in (56), as well as by the condition that

∞∑
k=k∗

log bk+1

φ(bk)
< ∞, (58)

which was employed for estimating the second summand in (56), for a concrete choice of the
sequence {bk}k≥k∗ made therein. In principle, any φ obeying these two conditions (for some
choice of {bk}k≥k∗ ) can be used. For bk = k, k ≥ k∗ = n∗ + 1, we can take φ(b) = b1+ε for
some ε > 0, which obviously obeys (57) and (58), but imposes a stronger repulsion (see (45)).
Our choice of φ in (49) seems to be optimal.
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Proof of Lemma 4. In view of (47), we have ρ(x, y) ≥ 2 for any x, y ∈ Vc∗; hence, for two
adjacent vertices, at least one should be in V∗. Taking this into account, by (4) and the triangle
inequality, we derive


(α, θ) =
∑
x

[n(x)]θ
(∑

y∼x

[n(y)]θ
)

exp(−αρ(o, x))

≤ nθ∗eα
∑
y

[n(y)]1+θ exp(−αρ(o, y)) + nθ∗
∑
x

[n(x)]1+θ exp(−αρ(o, x)),

which yields (51).
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