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Adequate supplies of the micronutrient Se are required for normal health in both man 
and animals. Since the recognition of the essentiality of Se, decreased dietary Se supplies 
have been associated with a large number of clinical conditions. Additionally, Se 
supplementation of rodents has a beneficial role in the prevention of certain chemically- 
induced cancers. These findings have been the subject of a number of recent publications 
and are summarized in Table 1. 

The first functional selenoprotein to be identified was cytosolic glutathione peroxidase 
(cGSHPx; Rotruck et al. 1973). Despite the recognition that a number of proteins could 
be specifically-labelled with '%e, for several years cGSHPx remained the only identified, 
functional selenoprotein (Behne et al. 1988; Evenson & Sunde, 1988; Bansal et al. 1991). 
Consequently attempts were made to explain the role of Se in the prevention of many 
apparently unrelated diseases as antioxidant effects of cGSHPx. Also, since cGSHPx in 
blood and tissues reflects dietary Se intake the enzyme activity has been used as an index 
of nutritional Se status (Hoekstra, 1975; Combs & Combs, 1986). 

In recent years, however, several more selenoproteins have been characterized either 
by purification and sequencing of the protein and/or by cloning and sequencing of 
cDNAs. The purpose of the present short review is to describe some of these newly 
identified selenoproteins and how they may function in conferring the nutritional 
essentiality of Se. 

Table 1. Some conditions and functional changes associated with selenium 

1. Nutritional myopathy and other deficiency diseases in farm animals 
2. Cardiomyopathy and other deficiency diseases in humans 

3. Thyroid hormone and I metabolism 
4. Deficiency caused by TPN 
5. Effects on the immune response? 
6. Anti-cancer effects of supplementation? 
7. Relationships to CHD etc.? 
8. Changes in mood and well-being? 

(Keshan disease and Kashin Beck disease) 

For further details see: Boyne & Arthur, 1986; Combs & Combs, 1986; Arthur & Beckett, 1989; Bansal et al. 
1990, 1991; Benton & Cook, 1990, 1991; Turner & Finch, 1990, 1991; Vanderpas et al. 1990, 1993; Arthur, 
1991; Arthur er al. 1Y93; Corvilain er al. 1993; Lanfear et al. 1993; Ip & Lisk, 1994. 

CHD. coronary heart disease; TPN, total parenteral nutrition. 
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Table 2 .  Selenoproteins and selenium-binding proteins which have been purified 
andlor cloned 

1 .  GSH peroxidase: (a) Cytosolic, RBC 
(b) Plasma 
(c) Phospholipidhydroperoxide 
(d) Gastrointestinal 

2. Selenoprotein P 
3. Iodothyronine 5'-deiodinase 
4. Sperm capsule selenoprotein 
5. Selenoprotein W 

6. 58, 56 and 14 kDa Se-binding proteins 

For further details see: Rotruck er al. 1973; Takahashi er al. 1987, 1990; Yang er al. 1987; Avissar et ul. 1989, 
1994a; Arthur er al. 1990a,b, 1991, 1993; Berry er al. 1991; Hill ef al. 1991; Karimpour ef al. 1992; Burk & Hill, 
1993; Lanfear er al. 1993; Sinha ef al. 1993; Sunde ef al. 1993; Vendeland er al. 1Y93; Akesson er al. 1994; 
BrigeliusFlohe ef al. 1994. 

GSH, glutathione; RBC, erythrocyte. 

SELENOPROTEINS 

Studies using in vivo labelling with have shown that there may be up to thirty 
proteins which retain Se during subsequent purification and separation using sodium 
dodecylsulphate (SDS) polyacrylamide-gel electrophoresis. The ability of Se to remain 
bound at 100" under reducing conditions is taken as evidence of covalent or very strong 
bonds between trace element and protein rather than a non-specific interaction (Behne 
et al. 1988; Evenson & Sunde, 1988; Sunde, 1990, 1994). Ten of these 75Se-containing 
proteins have been further characterized, eight of which contain Se as selenocysteine. 
The form of Se in Se-binding proteins is not known (Table 2). The range of 
selenoproteins now identified is consistent with multiple biochemical functions for Se and 
these are discussed in the rest of the present review. 

G L L' T A TH I 0 N E P E R 0 X I D AS E S 

The discovery that there are four distinct glutathione peroxidases may go some way to 
explain the involvement of Se deficiency in the pathogenesis of apparently unrelated 
clinical conditions. The glutathione peroxidases function in different subcellular 
compartments and each of the four are impaired by Se deficiency to different degrees. 
Thus, depending on the sensitivity of each GSHPx to Se supply, loss of activity from a 
particular tissue or cell compartment could cause a specific organ-related disease (Arthur 
et al. 1987a). 

Cytosolic glutathione peroxidase 

cGSHPx was the first well characterized biochemical function for Se (Rotruck er al. 
1973). Since cGSHPx can metabolize H202 and lipid hydroperoxides it is thought to be a 
component of cell antioxidant systems (Hoekstra, 1975; Sunde, 1994). However, many 
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pathophysiological consequences of Se deficiency are not inextricably linked to changes 
in cGSHPx activity, and in Se-deficient rats hepatic cGSHPx activity may fall to <1% of 
control values without any obvious adverse clinical effects (Reiter & Wendel, 1983, 1984, 
1985; Arthur et al. 1987a,6; Burk, 1989). These observations led to proposals that there 
were ‘non-glutathione peroxidase’ functions of Se and that the enzyme may represent a 
storage form of the trace element (Burk, 1991; Sunde, 1994). However, under specific 
circumstances cGSHPx can have an antioxidant function. Transgenic cells over- 
expressing cGSHPx activity are more resistant to peroxide or drug challenge than 
wild-type cells and the ability of mouse neutrophils to kill ingested Candida albicans 
correlates with cGSHPx activity in the neutrophils over a ‘normal’ range of Se status 
(Arthur et al. 1986; Doroshaw et al. 1991; Mirault et al. 1991). Thus, cGSHPx may only 
have antioxidant functions under conditions where relatively large amounts of H202 or 
lipid hydroperoxides are produced in the cell cytosol. Current evidence, therefore, 
indicates that cGSHPx has both a Se storage and an antioxidant function. 

Plasma glutathione peroxidase (plGSHPx) 

plGSHPx, also called extracellular GSHPx, is distinct from cGSHPx both in structure 
and site of function. Antibodies to purified plGSHPx will not cross react with cGSHPx 
(Takahashi & Cohen, 1986; Avissar et al. 1991). Human and rat plGSHPx have been 
cloned, and hybridization studies indicate that the kidney and lung are the major sites of 
synthesis (Takahashi et al. 1990; Yoshimura et al. 1991; Avissar et al. 1994a,b). This is 
supported by studies which show that anephric patients have very low plGSHPx activities 
with apparently normal plasma Se concentrations. plGSHPx activities are returned to 
normal after renal transplantation of these patients, without any change in plasma Se 
concentrations (Avissar et al. 19946). More detailed hybridization studies showed that 
plGSHPx mRNA occurred in the proximal tubular epithelial cells and the parietal 
epithelial cells of Bowman’s capsule (Avissar et al. 19946). Despite the detailed 
knowledge of plGSHPx structure and synthesis, its function is not known. The 
glutathione (GSH) substrate for plGSHPx occurs in very low concentrations in the 
plasma which has led to the suggestion that the enzyme may function other than as a 
glutathione peroxidase. The concentrations of GSH in the kidney would allow the 
enzyme to act as a peroxidase and, thus, it may have a specific function in the renal 
proximal tubules. However, plGSHPx cDNA has a signal sequence and the enzyme is 
glycosylated, indicating that it is a secretory protein consistent with a function in the 
extracellular space (Takahashi er al. 1990; Avissar et al. 19946). 

Gastrointestinal glutathione peroxidase (giGSHPx) 

giGSHPx has been identified by expression of a cDNA isolated from human hepatoma 
cells. Antibodies to giGSHPx do not cross react with either cGSHPx or plGSHPx; 
however, the properties and the structure of giGSHPx are very similar to those of 
cGSHPx. mRNA for giGSHPx is found in human liver and colon but not in other‘tissues; 
in rats the mRNA is detected only in the gastrointestinal tract. The function of this form 
of glutathione peroxidase has yet to be established but its location suggests a role in 
protecting against adverse effects of ingested hydroperoxides (Chu ef al. 1993). 
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Phospholipid hydroperoxide glutathione peroxidase (PGSHPx)  

PGSHPx is different from the other glutathione peroxidases in that it is a monomer of 
approximately 20 kDa, it is less specific with regard to GSH as its reducing substrate, and 
it is closely associated with intracellular membranes (Ursini et al. 1985; Thomas et al. 
1990; Maiorino et al. 1991a). Unlike cGSHPx, PGSHPx will react with phospholipid 
hydroperoxides which are likely to occur in cell membranes undergoing oxidative stress 
(Maiorino etal.  19916). PGSHPx activity is better preserved in Se deficiency than are the 
other glutathione peroxidases, indicating that it may have a more important antioxidant 
function (Weitzel et al. 1990). The basis of the biochemical and nutritional interactions 
between Se and vitamin E may be the action of PGSHPx and the vitamin as antioxidants, 
preserving membrane lipid integrity. 

The tissue distribution of PGSHPx is different from that of cGSHPx in particular; it is 
abundant in the testes and may be regulated by gonadotrophins (Roveri et al. 1992). 
PGSHPx also has a phosphorylation site which may have a role in regulation of enzyme 
activity (Schuckelt et al. 1991; BngeliusFlohe et al. 1994). Potentially, therefore, 
PGSHPx may have a function in controlling metabolism rather than just being an 
antioxidant protecting against lipid peroxidation. Regulation of the levels of eicosanoid 
hydroperoxides by PGSHPx would influence many cell functions (Bryant et al. 1983; Cao 
et al. 1992; Weitzel & Wendel, 1993). 

. .. 

SELENOPROTEIN P 

Of plasma Se in humans and rodents 60430% occurs as selenoprotein P. The protein has 
been purified from rat and human plasma and cDNA clones have been prepared and 
sequenced (Yang et al. 1987; Hill et al. 1991,1993; Akesson et al. 1994). In both cases the 
cDNA contains ten UGA codons in the open reading frame specifying ten selenocysteine 
residues. Additionally, selenoprotein P contains twenty-three histidine residues and 
seventeen cysteine residues, indicating a great potential for binding free transition metals 
(Hill et a f .  1991). 

Despite detailed knowledge of its structure, the function of selenoprotein P has not 
been established. When Se-deficient rats are treated with Se the first selenoprotein 

.synthesized is selenoprotein P (Burk et a f .  1991). This corresponds with protection 
against toxic effects of diquat, which causes hepatic necrosis in Se-deficient rats. Thus, it 

-has been suggested that selenoprotein P may have an antioxidant function, although 
initially it was hypothesized to be a Se-transport protein (Hill & Burk, 1994). In 
Se-deficient rats there seems to be some selective uptake of injected selenoprotein P by 
the brain but there is no other direct evidence to support a transport function (Burk et al. 
1991). It would be unusual to have a Se transport protein with such potential antioxidant 
properties and, furthermore, the energy required for its synthesis would be wasted since 
the selenocysteine in the protein would have to be returned to an inorganic form for 
synthesis of other selenoproteins. The same argument about waste of energy would apply 
to the hypothesis that cGSHPx is a Se storage protein. However, both selenoprotein P 
and cGSHPx may keep Se in a chemically-inactive form which will not interfere with 
redox-active thiols in the cell. 
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IODOTHYRONINE 5 ‘ - D E I O D I N A S E  ( I D I )  

The observation that, in rats, plasma thyroxine (T4) concentrations increased and 
plasma 3,3’,5-triiodothyronine (T3) concentrations decreased in Se deficiency led to the 
demonstration that this resulted from decreased hepatic type I ID1 activity (Arthur et af. 
19876, 1990b; Beckett et af. 1987, 1989, 1990, 1992). This work continued with the 
identification of ID1 as a Se-containing protein (Arthur et af. 1990a, 1991, 1993). 
Conventional protein chemical techniques were used to prove that ID1 contained one Se 
in each substrate-binding subunit and, using an expression cloning system, Berry and 
Larsen (Behne et af. 1990; Berry et af. 1991; Berry & Larsen, 1992) demonstrated that 
ID1 contained selenocysteine inserted via a UGA stop codon in a similar fashion to that 
of other selenoproteins. ID1 activity in liver and kidney is regulated by Se supply in the 
normal nutritional range; thus, Se plays an important role in the control of thyroid 
hormone metabolism (Arthur & Beckett, 1994). Decreases in plasma T3 concentration 
in Se deficiency, however, are less than might be predicted, which indicates that 
compensatory mechanisms ameliorate some of the adverse effects of the loss of ID1 
activity (Beckett et af. 1992, 1993b; Chanoine et af. 1992, 1993; Arthur et af. 1993). 
Nevertheless, in conditions such as I deficiency, where thyroid hormone metabolism is 
impaired, Se deficiency may provide an additional stress with possible adverse effects on 
growth development, thermogenesis and neonatal survival (Geloen et al. 1990; Beckett 
et af. 19936; Nicol et af. 1994). 

An important compensatory mechanism which preserves T3 in Se-deficient rats is 
increased thyroidal T3 production, probably coming from induction of thyroidal IDI, 
despite its being a selenoenzyme whose activity would be expected to decrease (Beckett 
et af. 1993~;  Chanoine et af. 1993). Human thyroid also contains ID1 activity and, thus, 
the potential to maintain T3 production from T4 when Se supplies are limiting (Beech 
et af. 1993). However, many species including ruminants and pigs do not express ID1 in 
the thyroid and, thus, there may be major differences in the response of thyroid hormone 
metabolism to Se deficiency (Beech er af. 1993). Unless other mechanisms exist to 
preserve thyroidal T3 production, lack of ID1 activity in the gland may confer greater 
susceptibility to the effects of Se deficiency on thyroid hormone metabolism. 

SPERM CAPSULE SELENOPROTEIN 

Se deficiency causes abnormal sperm development in the rat. Compared with normal 
rats, Se-deficient rats produce fewer spermatozoa and these have abnormal tails and are 
immobile (see Calvin et af. 1987). The abnormalities have been associated with more 
fragile mitochondrial capsules, which contain a major structural selenoprotein. The 
cDNA which codes for mouse mitochondrial capsule selenoprotein has three inframe 
UGA codons that probably code for selenocysteine and the predicted molecular weight 
of the protein is 21.1 kDa (Karimpour et af. 1992). This is the first protein subunit found, 
other than selenoprotein P, which contains more than one selenocysteine. Sperm capsule 
selenoprotein also has six Pro-Cys-Cys-Pro sequences with eighteen to twenty cysteine 
residues and twenty-three to twenty-seven proline residues in total, which supports a 
structural role for the selenoprotein, since the intramolecular sulphydryl bonds will 
confer stability. Loss of this structure in Se deficiency would explain adverse effects on 
sperm function and lower fertility. Much work remains to be done, however, to confirm 
the function of the protein. 
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S E L E N O P R O T E I N  W 

Selenoprotein W is a low-molecular-weight protein (9.5-10.0 kDa), of unknown 
function, which has been purified from rat muscle. It is believed to be similar to the 
low-molecular-weight selenoprotein that occurs in lamb muscle and which decreases in 
concentration during the onset of myopathy in combined Se and vitamin E deficiency. 
Selenoprotein W contains approximately 1 g atom Se/mol, as selenocysteine, at position 
12 in its sequence. A partial amino acid sequence is not similar to any previously 
published sequences, indicating that selenoprotein W is not a fragment or subunit of one 
of the selenoglutathione peroxidases (Vendeland et al. 1993). Since selenoprotein W 
contains redox-active selenocysteine and occurs at concentrations similar to those of 
cGSHPx in heart and muscle it has been proposed that it may be an antioxidant. Until 
further investigations such as the response of the protein to Se depletion and repletion 
and further structural analysis are carried out, the antioxidant function can not be 
confirmed. 

S E L E N I U M - B I N D I N G  P R O T E I N S  

Proteins of 14 kDa and 56/58 kDa bind 7sSe both in vivo and in cell culture systems. Fatty 
acid-binding protein has been identified as the 14 kDa Se-binding protein, and the 56 
kDa protein is closely related to proteins which bind many drugs and their metabolites. 
The 58 kDa-binding protein shows sequence homology with protein disulphide 
isomerase. However, in mouse mammary epithelial cells in culture, changing medium Se 
concentration did not affect levels of the 58 kDa protein (Sinha et al. 1993). Further- 
more, Se does not regulate protein disulphide isomerase activity either in rats or in 
cultured cells (Arthur et al. 1991; Sinha et al. 1993). The Se-binding proteins have been 
hypothesized to have an anti-cancer effect; labelling of the 58 kDa protein with 7sSe 
corresponded to inhibition of DNA synthesis by Se added to cell cultures and the 56 kDa 
protein (SP56) may be involved in the regulation of cell growth by modulating regulatory 
proteins (Bansal et al. 1990; Sinha et al. 1993). However, since levels of the Se-binding 
proteins are not apparently regulated by availability of Se, more experimental infor- 
mation is required to define their function in vivo. 

C O N C L U S I O N S  

The identification, sequencing and cloning of several selenoproteins has indicated a 
hitherto unrecognized complexity in the biochemical roles of Se. Since dietary Se intake 
can affect many biological functions and processes, the challenge is now to relate these to 
the biochemistry of selenoproteins. 

Se has clearly defined roles in antioxidant systems and in thyroid hormone metabolism 
but the precise functions of selenoprotein P, sperm capsule selenoprotein, selenoprotein 
W and the Se-binding proteins remain to be established. Additionally, in vivo and cell 
culture-labelling studies with 75Se indicate that there are at least ten more selenoproteins 
to be characterized. Thus, although much is now known about the nutritional biochem- 
istry of Se, the functions of many selenoproteins remain to be established. Only when 
this has been achieved will all consequences of changes in Se status be understood. 

Work in the authors’ laboratories was supported by the Scottish Office Agriculture and 
Fisheries Department (SOAFD) and the The Wellcome Trust. 
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