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SOLUTION OF THE 'CUBE' FUNCTIONAL EQUATION 
IN TERMS OF 'TRILINEAR COEFFICIENTS'(1) 

BY 

H. T. HEMDAN 

1. Introduction. We consider the following three functional equations 

f(x + v,y + v,z + v)+f(x + v,y + v,z-v) + f(x + v,y-v,z + v) 

+/ (* + v, y ~ v, z - v) + f{x - v, y + v, z + v) + f(x -v,y + v,z-v) 

+/ (* ~v,y-v,z + v)+f(x -v,y-v,z-v) 

= 8/(x, y, z), 

f(x + v, y, z)+/(x - v, y, z)+/(x, y + v, z)+f(x, y-v,z) 

(2) + f(x, y,z + v) + f(x, y,z-v) 

= 6/(x, y, z), 

/(x + v, y + Ï̂ , z +1>) + /(x + v, y +1>, z - v) + f{x + ^, y - v, z + v) 

+ f(x + v, y - v, z - v)+ f(x- v, y + v, z + v)+f(x- v, y + v, z - v) 

(3) +/(x - v, y - v, z + v)+f(x -v,y-v,z-v) 

= f(x + v, y, z )+/(x - v, y, z)+/(x, y + v, z) + /(x, y - v, z) 

+/(x, y, z + v)+/(x, y, z - v) 4- 2/(x, y, z), 

where f:R3-*R. 
Considering their geometric meaning, equations (1) and (2) are known as 

'Cube' and 'Octahedron' functional equations, respectively. Under the assump­
tion of continuity, Haruki [2] has proved that (1) and (2) are equivalent. 
Etigson [3], has proved the equivalence of (1) and (2) under no regularity 
assumption. We will give here another proof. Also, under the assumption of 
continuity, Haruki has solved the 'Cube' functional equation. He gave the 
solution as a certain polynomial of fifth degree in x, y, z individually whose 
terms are the partial derivatives of a given polynomial. 

In this paper, we first show that each of the 'Cube' and 'Octahedron' 
functional equations is also equivalent to (3) under the assumption of con­
tinuity, then, under this assumption, we give the solution of these functional 
equations in a form different from that given in [2]. The solution will appear as 
a certain polynomial of fourth degree in x, y, z individually with trilinear 
coefficients, as are defined in the next section. 

(Received by the editors March 12, 1975.) 
(1) Presented at the 34th Ontario Mathematics Meeting, University of Guelph, February 1975. 
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2. Definitions. In the two dimensional space xy, a general bilinear polyno­
mial of the first degree both in x and y will be called a 'Bilinear Coefficient' 
and will be denoted by ft. If bh eh ft, kt are real constants, then 

ft s btxy + etx 4- fty + kt. 

An ordered 4-tuple of elements may be used to denote ft, that is 

ft = (fcf, ei9 ft, kt). 

In a similar way bilinear coefficients in xz and yz spaces may be defined and 
denoted by yt and 8t respectively. 

Also, in the three dimensional space xyz, a general trilinear polynomial of 
the first degree in x, y, z, will be called a 'Trilinear Coefficient' and will be 
denoted by at. If ah bh ch dh eh ft, hh kt are real constants, then 

ai = a(xyz + bxxy + cxxz + dtyz + exx + fty + htz + kj. 

An ordered 8-tuple of elements may be used to denote ai5 that is 

ai = (ai5 bh ch di,ehgh hh kt). 

3. Notations. For convenience when dealing with functions of three vari­
ables, we shall use the symbols Xv, Yv, Zv, respectively, for the linear 
translation operators (which are commutative and distributive) 

(4) 

Xvf(x,y,z) = f(x + v,y,z), 

Y"f(x,y,z) = f(x,y + v,z), 

lZ"f(x,y,z) = f(x,y,z + v), 

in place of the customary symbols Ev
x, E"y, E"z. 

Using these symbols, (1) may be written 

(5) {XVY"ZV + X" YVZ" + X" Y~"Z~ + X"Y"'Z"'+ X"Y "Z" + X - " Y VZ" 

+ X-Y-vZ'' + X-vY-''Z'v)f(x, y, z) 

= 8/(x,y,z), 

or, in factored form, 

(6) {(X- + X-")(Y" + Y'")(ZV + Z-)}/(x, y, 2) = 8/(x, y, z). 

Similarly, (2) and (3) may be written 

(7) (X" + X~v + Y" + Y - + Z» + Z-)/(x, y, 2) = 6f(x, y, z), 

(8) {(r+ri(r+r")(r+z-")}/(x, y, 2) 
= (Xv + X -" + YV+ V " + Z" + Z - " + 2)f(x, y, 2). 

https://doi.org/10.4153/CMB-1976-028-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1976-028-5


1976] 'CUBE' FUNCTIONAL EQUATION 

In addition to the above notations, we introduce the following. Let 

183 

(9) 

xv = xv+x~v, 

zv = zv+z~v, 

M„ = 2(X„Y„+XVZV + YVZV),, 

x2v = x2v+x-2v, 
Y2v=Y2v+Y~2v, 

z2v = z2v+z-2v, 

x v A. v ^ V 5 • 

(10) 

According to these notations we will have 

X„ = X2v + 2 , . . . 

Yv
=z Y2v + 2,... 

Zv = Z2v + 2,... 

L^ = L2v + Mv + 6 , . . . 

Ml=16L2v + 2M2v + 8LvNv + 48,... 

L N2
v = 4L2v + M2v + N2v + 8. 

Equation (6) will become 

Nvf(x, y, z) = 8/(x, y, z), 

or, more simply, equations (6), (7) and (8) may be written 

(11) Nv = 8 

(12) Lv = 6 

(13) Nv = Lv + 2. 

4. Equivalence of (1), (2), and (3). We now state and prove the following 
theorem. 

THEOREM 1. Under no regularity assumptions, equations (1), (2) are 
equivalent, while under the assumption of continuity each of (1) and (2) is 
equivalent to (3). 

Proof. We first prove the equivalence of (1) and (2) (or (11) and (12)). We 
show that (12) implies (11). Given 

Lv = 6 

:.L2
V = 3 6 . 

Substituting from (10) and using L2v = 6, we get Mv = 24 

(14) .-. M* = (24)2. 

Following the same procedure as before, we get Nv = 8, which is (11). 
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Conversely, we show that (11) implies (12). That is, given 

NV = S 

.'. N2
V = 64. 

Following the same procedure and using N2v = 8, we get 

(15) M„ = 48-4JU, 

Squaring both sides of (15), using Nv = 8 and substituting for Mt„ M2v from the 
same equation we get 

(16) L2v = 6 4 L v - 3 7 8 . 

Replacing v by 2v and using the same equation we get 

(17) L 4 , = (64)2LV™ (65)(378). 

Squaring (16) and using (10) we get 

(18) L4v + M2v + 6 = (64)2(L2v + Mv + 6) - (128)(378)LV + (378)2, 

using (15), (16), (17) we finally get 

193,536L„ = 1,161,216, 

that is 

Lv = 6. 

This completes the proof of the first part of the theorem. Now we prove the 
other part of the theorem. Equations (1) and (2) are equivalent without any 
continuity assumption (as we have just proved) and they obviously imply (3). 
We show the converse, that is, (3) implies either (1) or (2) under the assump­
tion of continuity. Given is now 

Nv = JU + 2. 

Squaring both sides of the above equation and using (10) we get 

M2v + 4L2v = Mv + 4Lv. 

Replacing v by v/2 we get 

Mv + 4LV = Mvl2 + 4Lv/2, 

and by iteration we get 

Mv 4- ALV = Mv/2« + 4L v / r . 

https://doi.org/10.4153/CMB-1976-028-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1976-028-5


1976] 'CUBE' FUNCTIONAL EQUATION 185 

Since / is continuous, take the limit as n-»oo5 noticing that 

lim Lv/2
n = 6, 

n—*<x> 

lim Mv/2» =24, 
n-*oo 

lim Nv/2» = 8. 
n—»oo 

Thus 

MV + 4LV = 48 

4L„ = 48-M V . 

From this equation, we may proceed in a similar manner as from (15) on, to get 

Lv = 6, 

as we wanted to show. This completes the proof of the theorem. 

5. Solution of the 'Cube' functional equation. In terms of the trilinear 
coefficients at, we state and prove the following theorem. 

THEOREM 2. If and only if f:R3-> R is continuous and satisfies the 'Cube* 
functional equation (1) for all x, y, z, then 

/(*, y ,z )= X aijkx
2iy2iz2k

9 a m s O 
0<i,/ ,k<2 
i+j+k=£3 

where aijk =• ah 1 < i < 17, are trilinear coefficients which are not all independent. 

If 

« 2 1 0 = « i , « 1 2 0 = « 2 , « 1 1 0 = « 3 , « 2 0 1 — « 4 , 

« 1 0 2 = « 5 , « 1 0 1 = « 6 , « 0 2 1 = « 7 , « 0 1 2 = « 8 , 

« O i l = « 9 , « 2 0 0 = « 1 0 , « 1 0 0 = « 1 1 , « 0 2 0 = «12* 

« 0 1 0 — « 1 3 , « 0 0 2 = « 1 4 , « 0 0 1 = « 1 5 , « 0 0 0 = « 1 6 , 

« 1 1 1 = « 1 7 = 0 , 

then, the 'dependence relations' between the coefficients are as follows: 

«2 = irau ~bu -5c i /3 , -3d i /5 , -Sex/3, -3g i /5 , -hu -fci), 

a4 = (~ai, -3&i, -Ci/3, -du -eu - 3g l 5 ~hJ3, - k i ) , 

a5 = (ai, 5fci, Ci/3, 3di/5, 5ci/3, 3gi, hJS, ki), 

a7 = (ai, 3bi, 5cx/3, di/5, 5ei, 3gi/5, hJ3, kt), 

«s = ( - a i , -5&i, -cu - d i / 5 , -56 i , - g i , -h i /5 , - k O , 
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and (a3, a9, a12), (a6, a9, a14)9 (<*3, oc6, a10), (alu a13, aiS) are related by the 
following four sets of conditions 

3a3 + 3a 9+10ai2 = 0 3e3 + e9 + 6e12 = 0 

3&3 + &9+10bi2 = 0 g3 + g9+10gi2 = 0 

c3 4- c9 4- 2ci2 = 0 h3 + 3 h9 + 6hi2 = 0 

d3 + 3d9+ 10di2 = 0 k3+k94-6ki2 = 0 

3a6 + 3a9 + 10ai4 = 0 3e6 + e9 + 6e14 = 0 

66 + fc9 + 26i4 = 0 g6 + 3g9 + 6g14 = 0 

3c6+c94-10ci4 = 0 h 6 +h 9 +10hi4 = 0 

d6 + 3d9+10di4 = 0 k 6 +k 9 + 6ki4 = 0 

3a3 + 3a 6+10aio = 0 e34-e6+10eiO = 0 

3&3 + b6+10fc10 = 0 3g3 + g64-6g10 = 0 

c3 + 3c6+10c1 0 = 0 h3 + 3h6 + 6hio = 0 

d34-d6 + 2d10 = 0 k 3 +k 6 + 6ki0 = 0 

a n 4- a13 + a15 = 0 3exl 4- e13 + e15 = 0 

36ii + 3613 + fei5 = 0 gu + 3gi3 + g15 = 0 

3cn 4- c13 4- 3ci5 = 0 hn 4- h i 3 4- 3 his = 0 

dn 4- 3 d i 3 4- 3d i 5 = 0 kn 4- k13 + k15 = 0. 

Except for these relations between the coefficients ah they are arbitrary. This 
shows that the solution contains 128 real constants but only 56 of them can be 
chosen arbitrary. One way of choosing the arbitrary constants is to take all the 
constants of each linear coefficient as either independent (arbitrary) or depen­
dent (and in that sense we may consider the linear coefficient as independent or 
dependent). Thus only 7 linear coefficients are independent. These are: one of 
(au a2, a4, a5, a7, a8), five of (a3, a6, a9, a10, alu a12, a13, a14, a15) and al6. 
For example, we can consider au a3, a6, a9, « n , a13, a i 6 as independent, the 
others as dependent. 

Proof. To prove this theorem, we need the following three lemmas: 

LEMMA 1. If f:R3-> R is of class C°° and satisfies the 'Cube' functional 
equation, then (dl+j+k/dxl dy1 dzk)f, i, /, k = 1, 2, 3 , . . . also satisfy the 'Cube' 
functional equation. 

(See [2]). The proof of this lemma is easy. 

LEMMA 2. If and only if /:R2—> R is continuous and satisfies the following 
functional equation 

f(x + v, y 4- i/) + /(x 4- v, y - v) + f(x -v,y + v) + f(x -v9y-v) = 4/(x, y), 
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which is known as 'Square' functional equation, then 

(19) f(x,y) = axy(x2-y2) + b(3x2y-y3) + c(x3-3xy2) + dxy 

+ e (x 2 -y 2 ) + gx + Jiy + k, 

where a, b, c, d, e, g, h, k are real constants. 

The proof of this lemma is given in [1] and will not be repeated here. 

LEMMA 3. If f:R3->R is of class C°° and satisfies the 'Cube' functional 
equation for all x, y, z, then 

d6f/dx6 = 0, d6f/dy6 = 0, d6f/dz6 = 0, d6f/dx2 dy2 dz2 = 0. 

Proof. In Theorem 1, we have proved the equivalence of 'Cube' and 
'Octahedron' functional equations. The latter may be written as 

(20) X v + Y v + Zv = 6. 

Multiply both sides of (20) by Xv, add YVZV to both sides and use (14) to get 

(21) X 2 +12 = 6XV+YVZV. 

Multiply both sides of (21) by Xv and use (11) to get 

X 3 - 6 X 2 + 1 2 X v - 8 = 0, 

which is 

(22) (X3v + X _ 3 v - 6X2 v - 6X _ 2 v + 15XV + 15X"V - 20)/(x, y, z) = 0, 

that is 

(23) f(x + 3v, y, z) + f(x-3v, y, z)-6f(x + 2v, y, z)-6f(x-2v, y, z) 

+ 15/(x + v, y, z) + 15f(x - v, y, z) - 20/(x, y, z) = 0. 

Differentiate (23) six times with respect to v and put v = 0, to get for all x, y, z 

(24) d6fldx6 = 0, 

as we wanted to show. In a similar manner we can show that 

(25) d6fldy6 = 0 and d6fldz6 = 0. 

To prove that d6f/dx2 dy2 dz2 = 0, we make use of the above results, as follows: 
Differentiate (1) twice with respect to v and put v = 0 to get for all x, y, z 

~2 »\2 «\2 

(26) i L / + i L ; + i L ^ o . 
dx2J by23 dz2j 

Differentiate (1) four times with respect to v and put v = 0 to get for all x, y, z 
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Differentiate (26) twice with respect to x, y, z respectively, add these last three 
equations and use (27) to get for all JC, y, z 

•}4 ^4 ^4 

<28) 5?'V /+i?'-°-
Differentiate (26): (a) twice with respect to x then twice with respect to y, (b) 
twice with respect to x then twice with respect to z and (c) twice with respect 
to y then twice with respect to z, add these last three equations to get 

-, a6
 f , a6

 f , à6 d6 

dx2dy2dz2Ï dx4dy21 dx4dz2f dy4dx2Î 

~.6 «*6 «^6 

Differentiate (28) twice with respect to x, y, z respectively, add these last three 
equations, use (24) and (25) and compare with (29) to get for all x, y, z 

(30) £W>-°-
as we wanted to show. This completes the proof of the lemma. 

Using distributions, the assumption that / is of class C°° can be reduced to / 
is continuous since the distribution for / satisfies Laplace equation as we have 
seen before. 

Now we will start proving the theorem. In terms of the bilinear coefficients 
/3i5 the solution (19) of the 'Square' functional equation, may be written in the 
following form 

/(x,y) = i81x2 + |32y
2 + i83, 

where the coefficients j8i and j83 are independent, while j32 depends on jSi and 
is given by j32 = (-ei , -3bu -4gi, -fci). 

Equation (30) implies 

(31) (d4/dx2dy2)f(x, y, z) = z<f>1(x, y) + <M*, y). 

Using lemma 1 and substituting in (1), we find that each of </>! and \\fx satisfies 
the 'Square' functional equation, thus we may write 

<M*,y) = i M 2 + j32y
2 + j33, 

il>i(x,y) = p4x
2 + p5y

2 + p6, 

and equation (31) may be written in the following form 

(32) (d4/dx2dy2)f(x,y,z) = a\x2 + a*2y
2 + al, 

where a i , a2 , aà are trilinear coefficients as defined before. Equation (32) 
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implies 

d2 

(33) 7 - 2 / U y, z) = a1x
2y2 + a2y

4 + a3y
2 + (y<l>2(x, z) + ip2(x, z)). 

ox 
Differentiating (33) twice with respect to z, we get 

r) 4 t)2 A2 

a v 2 - 2 / f o y> *) = y7i2 ^ ( x , z)+—2 <M*, z). 
aX aZ aZ aZ 

Following the same procedure as before, we will find that each of (d2ldz2)<f>2 

and (d2/dz2)i/f2 satisfies the 'Square' functional equation (in the xz space), thus 
we may write 

d2 

(34) —5 <t>2(x, z) = yix
2 + y2z

2 + 73, 
dZ 

d2 

(35) —5 ^2(x, z) = y4x
2 + y5z

2 + y6. dz 

The last two equations imply 

/**\ y<M*> z) + i/>2(x, z) = a4x
2z2 + a5z4 + a6z2 

(36) 
+ (yz/i(x) + yf2(x) + z/3(x) + /4(x)). 

Substitute from (36) into (33) and differentiate this last equation four times 
with respect to x and use lemma 3 to get 

(37) yzft\x) + y/(
2
4)(x) + z/(

3
4)(x)+/?>(*) = 0, 

which implies, by differentiation with respect to y and z, that each of fu /2, /3, 
/4 is a polynomial of the third degree in x. Equation (33) implies 

/(x, y, z) = aiX4y2 + a2x2y4 + a3x2y2 + a4x4z2 + a5x2z4 

(38) + a 6 x V + x2yz/i(*) + x2y/2(x) + x2z/3(x) 

+ x2/4(x) + (x</>3(y, z) + i/f3(y, z)). 

Differentiating (38) twice with respect to y and twice with respect to z we get 

(39) ^^f(x'y'z)=x^hp<t>3{y'z)+^j?,,/3iy'z)-
Following the same procedure as before, we find that each of (d4/dy2 dz2)$3 

and (d4/dy2dz2)i/>3 satisfies the 'Square' functional equation (in the yz 
space), thus we may write 

a4 

(40) —i—5 4>3(y,z) = S i y
2 + Ô2z

2+Ô3, 
oy dz r

2 

-»4 

(41) - ! — 2 ' M y , z ) = 84y2+S5Z2+Ô6, 
dy dz 
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and, as before, these last two equations imply 

xcf)3(y, z) + i/>3(y, z) = a7y
4z2 + agy

2z4 + a9y
2z2 

+ xzf5(y) + xU( y) + z/7(y) + /«(y) 

+ JJ Uy/9(z) + jc/10(z) + y/ii(z) + /1 2(z))dzdz, 

and equation (38) may be rewritten as 

/(JC, y, z) = a^y2 + a2x
2y4 + a3x

2y2 + a4x
4z2 + a5x

2z4 

+ a6x2z2 + a7y
4z2 4- a 8y 2z 4 + a 9y 2z 2 

/42x + x2yzf1(x) + x2y/2(x) + x2zf3{x) + x2/4(x) 

+ xz/5(y) + xf6(y) + z/7(y) +/8(y) 

+ J J (xyf9(z) + x/10(z) + y/u(z)+/1 2(z)) dz dz. 

Differentiating this equation six times with respect to y and using lemma 3, we 
get 

(43) xz/(
5

6)(y) + xfi\y) + zf? (y)+^6 )(y) = 0. 

As before, the above equation implies that each of /5, /6, /?, /s is a polynomial 
of the fifth degree in y. Also by differentiating (42) six times with respect to z 
and using lemma 3, we get 

(44) xyf9
4\z) + xf&(z) 4- yftKz) + / $ ( z ) = 0, 

which implies that each of f9, f10, flu f12 is a polynomial of the third degree in 
z. Finally equation (42) may be written in the following form 

f(x, y, z) = a^y2 + a2x
2y4 + a3x

2y2 + a4x
4z2 + a5x

2z4 

+ a6x
2 z2 + a7x

4 z2 + asy
2 z4 + a9y

2 z2 + QÙIQX4 

+ a11x
2 + a12y

4 + ai3y
2 + a14z

4 + a15z
2 + a16. 

and when the summation sign is used, the above solution may be written in the 
following final form 

(45) / ( * ,y , z )= I aijkx
2iy2jz2\ a m - 0 , 

0<i,j ,k<2 
i+j+k=<3 

where aijk = ai are trilinear coefficients as defined before. This completes the 
proof of the 'if part of the theorem. 

To prove the converse, that is, the function given by (45) and satisfying the 
'dependence relations' (given in the statement of the theorem), satisfies the 
'Cube' functional equation (1), it is enough to show that (45) satisfies (2). This 
can be shown easily if we expand the left side of (2) using Taylor's formula 
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around the point (x, y, z). We notice that the 'dependence relations' are 
consequences of (26) and (28). This completes the proof of the theorem. 

6. Particular solutions of the 'Cube' functional equation. As mentioned 
before we will take the coefficients au «3, a6, a9, alu a13, a16 as independent, 
the others as dependant. A special solution arises from the choice 

«! = (0,0, 0,0, 0,0, 0,0), 

a1 = a3 = a6=a9 = axl = a13, 

a16 = (l , 1 ,1 ,1 ,1 ,1 ,1 ,1) . 

From the 'dependence relations' it follows that all other coefficients are zeros 
and equation (45) gives 

f(x, y, z) — xyz + xy + xz + yz 4- x + y + z + 1, 

which is a polynomial of the first degree in each of x, y, z. Another particular 
solution results from the choice 

«i = a3 = a6 = a9 = (0, 0, 0, 0, 0, 0, 0, 0), 

«11 = «13 = «16 = ( 1 , 1, 1, 1, 1, 1, 1, 1) . 

The 'dependence relations' show that all of a2, a4, a5, a7, a8, a10, a12, a14 are 
zeros, while a i 5 is given by 

«is = (-2, - 6 , - | , - f , - 4 , - 4 , - f , -2) , 

and we get the following solution 

/(x, y, z) = (x2 + y2+l)(jcyz + xy + xz + yz + x + y + z + l ) 

-2z2(jcyz + 3xy + 2xz/3 + 2yz/3 + 2x + 2y + z/3 + l ) , 

which is a polynomial of the third degree in each of x, y, z. It can be easily 
shown that these particular solutions satisfy the 'Cube' functional equation by 
following the proof of the second half of Theorem 2. 
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