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Abstract

Detecting sets of relevant patterns from a given dataset is an important challenge in data mining.
The relevance of a pattern, also called utility in the literature, is a subjective measure and can
be actually assessed from very different points of view. Rule-based languages like Answer Set
Programming (ASP) seem well suited for specifying user-provided criteria to assess pattern
utility in a form of constraints; moreover, declarativity of ASP allows for a very easy switch
between several criteria in order to analyze the dataset from different points of view. In this
paper, we make steps toward extending the notion of High-Utility Pattern Mining; in particular,
we introduce a new framework that allows for new classes of utility criteria not considered in
the previous literature. We also show how recent extensions of ASP with external functions can
support a fast and effective encoding and testing of the new framework. To demonstrate the
potential of the proposed framework, we exploit it as a building block for the definition of an
innovative method for predicting ICU admission for COVID-19 patients. Finally, an extensive
experimental activity demonstrates both from a quantitative and a qualitative point of view the
effectiveness of the proposed approach.

KEYWORDS: high-utility pattern mining, answer set programming, facets, advanced utility
functions

1 Introduction

Pattern mining is one of the data mining branches that attracted vast attention in the

literature. Pattern mining algorithms extract human-understandable knowledge from

databases and have fostered a growing interest in the development of scalable and flex-

ible methods for data analysis. In this context, flexibility is intended as the ability to

incorporate users’ prior knowledge and multiple criteria to measure the relevance of a

pattern in the analysis process. These criteria can be modeled in the form of constraints

to validate a set of candidate patterns. The first and most common studied constraint

is the frequency threshold, where a pattern is validated only if it appears sufficiently of-

ten (Agarwal and Srikant 1994). Frequent pattern mining is a fairly well-studied problem,
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and effective solutions are available also in the logic programming arena (Järvisalo 2011;

Gebser et al. 2016; Guyet et al. 2014).

However, frequency alone may be of little interest in many cases. As an example, con-

sider a sales database and the pattern {windshield washer fluid ,new windshield wipers};
this pattern can be very frequent but uninteresting, as it represents a common pur-

chase. But what if we also consider the price of the products and a constraint on the

minimum profit given by the corresponding purchase pattern? In this case, the pattern

{car , car alarm} might be more interesting than the previous one, even if less frequent.

In light of this last consideration, the academic community has begun to emphasize

that pattern validity can be assessed according to utility functions (Fournier-Viger et al.

2019; Gan et al. 2019); the introduction of the notion of the utility of an item and, more

generally, of a pattern made it possible to develop a new generation of pattern mining

approaches called High-Utility Pattern Mining – HUPM (Fournier-Viger et al. 2019; Gan

et al. 2019; Yao et al. 2006).

However, the basic assumption of HUPM is that each item is associated with one, static,

external utility; this limits the flexibility expected from modern data analysis processes.

For instance, continuing the example on the sales database, it would not be possible

to devise validation constraints that dynamically combine price and minimum packaging

size of the various products composing the pattern in the utility calculation; this could be

very valuable, for example, in logistics optimization applications. Generalizing, it would

be really important to be able to combine, in a flexible way, different aspects of the items,

which we call facets in the following, to compute patterns’ utility.

Another limitation of HUPM lies in the fact that the expected input is a flat rep-

resentation of transactions; this allows only local utility notions to be defined. On the

contrary, a multi-layered representation of the data, coupled with the possibility of com-

bining different facets in utility functions, may allow more advanced pattern constraints

to be defined. As an example, by grouping purchases by customer and considering the

degree of each customer satisfaction as a facet, one can identify patterns with a good

correlation between customer purchases and their satisfaction. This is not possible with

classical HUPM methods.

Finally, it can be useful to incorporate users’ prior knowledge into pattern constraints,

in the form of pattern masks, to assess pattern utility. For instance, it may be useful to

state that only certain combinations of product categories are relevant for the analysis.

Again, this is not currently possible in the classical HUPM setting.

A first contribution of the present paper is the definition of a framework, which we

call e-HUPM, that generalizes the classical HUPM in the following directions:

• Dataset representation. A multi-layered representation of the input is defined, where

aggregation levels of transactions, objects, and containers are conventionally iden-

tified.

• Facets. We introduce the notion of facet, which can be associated with an item, a

transaction, an object or a container; each of these elements may be characterized

by more than one facet.

• Utility functions. In order to make the most of facets and layers, we introduce a

taxonomy of utility functions classes, most of which are not allowed in classical

HUPM.
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• Pattern masks. We introduce the notion of pattern mask, in order to specify struc-

tural or semantic constraints patterns must comply with.

To solve the pattern mining problem introduced above, a guess-and-check resolution

scheme, with the support of rule-based languages such as Answer Set Programming

(ASP), seems to be quite intuitive and effective. In particular, we have seen that solu-

tions for frequent pattern mining are already available in ASP (Järvisalo 2011; Gebser

et al. 2016; Guyet et al. 2014); however, the constraints we are concerned with in this

work to validate patterns come in the form of potentially complex functions, which are

difficult, or even impossible, to express in ASP. In order to solve this issue, we resort

to recent extensions of ASP systems, such as DLVHEX (Eiter et al. 2016; 2018), WASP

(Dodaro and Ricca 2020), clingo (Gebser et al. 2019), etc., which allow external calcula-

tion functions, usually written in Python, to be integrated into ASP programs.

A second contribution of the present work is a modular ASP encoding of the proposed

framework, so that, given a pool of alternative encodings for each module, even those

unfamiliar with ASP can set up their own variants in a way that provides a high degree

of flexibility for data analysis.

Finally, as a third contribution, we exploit the proposed framework and the correspond-

ing ASP-based solution as a building block for the definition of an innovative method for

predicting the ICU admission for COVID-19 patients, based on patients’ blood results

and vital signs.

The remainder of the paper is organized as follows. In Section 2, the general frame-

work is proposed, along with all of its components and the problem definition. Section 3

is devoted to the design of the ASP solution. The application of our framework to a

biomedical context is presented in Section 4, whereas an extensive experimental evalua-

tion is presented in Section 5. In Section 6, a broad overview of related work is presented.

Finally, in Section 7 we draw our conclusions and highlight future research directions.

2 A general framework for extending high-utility pattern mining (e-HUPM)

In this section, we present our framework. First, we briefly recall the classical background

definitions related to the HUPM problem. Then, we show how we extend the classical

problem in several ways. In particular, we first extend the concept of Transaction database

with Containers and Objects ; then, we extend the concept of utility with the notion of

facet. After this, we introduce a new classification of pattern utility functions and the

notion of pattern mask. Finally, we provide a formal definition of the problem addressed

in this work.

2.1 Background

We now briefly summarize the classical definitions and notations for the HUPM problem

based on the ones presented in Fournier-Viger et al. (2019). It is worth pointing out that

several variants of this problem have been proposed in the literature; since it is out of

the scope of the paper covering all of them here, we focus on the most classical one.

A quantitative transaction databaseD is composed of a set of transactions and denoted

as D = {T1, T2, . . . , Tn}. Each transaction Tp is uniquely identified by a transaction
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identifier (tidp) and contains a set of items Ip where each Ip ⊆ I = {i1, i2, . . . , im}. Each
item i ∈ I is associated with an external utility eu(i), and every occurrence of i in a

transaction Tp is associated with an internal utility iu(i, Tp) which generally represents

the quantity of i in Tp. In the classical definition of HUPM, both external and internal

utilities are positive numbers. The objective of HUPM is the identification of sets of items

(patterns) that present a high utility, that is, a utility higher than a certain threshold thu.

The utility of an item i in a transaction Tp is obtained as eu(i) × iu(i, Tp). Given a

pattern P appearing in a transaction Tp, the utility of P in Tp is denoted as tu(P, Tp)

and is computed as
∑

i∈P eu(i)× iu(i, Tp).

Given the set TP of transactions containing occurrences of the pattern P , the utility

of P in the database D is denoted by u(P ) and computed as u(P ) =
∑

Tp∈TP
tu(P, Tp).

Problem definition. Given a pattern P , P is a high-utility pattern if its utility u(P )

computed over its occurrences in D is greater than a utility threshold thu. The problem

of high-utility pattern mining is to discover all high-utility patterns in a database D.

2.2 Databases, containers and objects

The first extension we propose with respect to the classical HUPM relates to the database

representation. In the classical context, a database is simply composed of a flat set of

transactions. Here we assume that a database of transactions is organized in different ab-

straction layers. This allows us to include more sophisticated utility functions in order to

analyze, as an example, correlations among different transactions at different abstraction

levels. Here we propose a possible hierarchy for the database, which fixes some boundaries

for the definition of the problem; clearly, more general structures and more layers can be

defined in different contexts. The proposed reference database structure is as follows:

Database → Container → Object → Transaction

In particular, given a database D and a set of transactions {T1, T2, . . . , Tn}, D is

organized as a set of containers C = {C1, C2, . . . , Cr} where each container Cs can be

associated with a set of objects O = {O1, O2, . . . , Ot} and each object Ou contains a

set of transactions {T1, T2, . . . , Tv}. Clearly, each transaction is composed of a (possibly

ordered) set of items. Each transaction belongs to precisely one object, and each object is

associated with precisely one container. Observe that this representation allows covering

several interesting application scenarios.

Example 1. (Running example) In order to better describe our framework, let us

introduce a running example concerning scientific reviews, which will be explored further

in the experiments. This context presents several peculiarities captured by our framework.

In particular, we build upon the paper reviews use case presented in Chakraborty et al.

(2020); it deals with papers, reviews, and annotated sentences. Each paper is a container

in our model; for each paper, several reviews are available: each review is an object in

our model. Each review contains a list of sentences: each sentence is a transaction in our

model.

�
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Table 1. Terminology and facets for the paper reviews use case running example

introduced in Example 1

e-HUPM Use case Facets Domain of the facet

Database Set of reviews –
Container Paper (Decision) ({0 (Reject), 1 (Accept)})
Object Review (Rating, Confidence) ({1–10}, {1–5})
Transaction Sentence (Appropriateness, Clarity, Originality,

Soundness, Comparison, Substance, {−1 (Negative), 1 (Positive),
Impact, Recommendation) 0 (Neutral or Absent) }

Item Word –

2.3 Utilities and facets

The second main generalization deals with utility representation. As a matter of fact,

a great limit of the classical definition of HUPM, and its variants, is that each item is

associated with a unique, external, and fixed value of utility. We next extend the notion

of utility with the concept of facet. In fact, in several contexts, the utility of an item

can be defined from different perspectives, which we call facets. Then, each item can be

associated with a list of values defining its utility from different perspectives. Moreover,

given the new organization of the database, facets can be defined also for transactions,

objects, and containers. Formally:

Item utility vector. Given an item i, the utility of i is defined by an item utility vector

IUi = [iu1, iu2, . . . , iul], where each iuk describes a certain facet of i.

Transaction utility vector. Given a transaction Tp, the utility of Tp is defined by a

transaction utility vector TUTp
= [tu1, tu2, . . . , tum], where each tuk describes a facet of

Tp. Observe that these facets for the transaction describe properties of the transaction

as a whole and represent a different information than the standard internal utility of an

item i in the transaction Tp. In order to keep the compatibility with the classical problem,

we assume that the internal utility of i in Tp is available and represented as q(i, Tp).

Object utility vector. Given an object Ou, the utility of Ou is defined by an object utility

vector OUOu
= [ou1, ou2, . . . , oun], where each ouk describes a facet of Ou.

Container utility vector. Given a container Cs, the utility of Cs is defined by a vector

CUCs
= [cu1, cu2, . . . , cuo], where each cuk describes a facet of Cs.

It is worth observing that the length of any of the above utility vectors could be 0 if

no interesting facet can be defined for that vector. The list of facets is fixed at problem

modeling stage; however, we assume that all utility vectors of a certain type have the same

number of facets. All utilities introduced above are not constrained to be numeric values.

The interpretation and combination of utilities is left to the pattern utility computation

function, introduced in the next section.

Example 2. (Running example) Table 1 illustrates the correspondence between our

e-HUPM framework, and the paper reviews use case adopted from Chakraborty et al.

(2020). The table depicts the selected facets for each domain element and its represen-

tation in the database, for example, facets for containers, objects, and transactions; the

database and items have no associated facets. Each container represents a paper, and

for a container Cs, we have one single facet, that is the decision. Reviews information

https://doi.org/10.1017/S1471068423000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000066


318 F. Cauteruccio and G. Terracina

Table 2. Examples of container, object, and transaction utility vectors for the paper

reviews use case running example

Database elements Utility vectors Database elements Utility vectors

Containers (papers) Transaction (reviews’ sentence)
C1 CUC1

= [0] S1 TUS1
= [−1,−1, 0, 1, 0, 0, 0,−1]

C2 CUC2
= [1] S2 TUS2

= [ 1, 0, 1, 0,−1,−1, 0, 0]
Object (reviews) S3 TUS3

= [ 1, 1, 1, 0, 0, 0, 0, 1]
R1 OUR1

= [2, 4] S4 TUS4
= [ 0, 1,−1, 1, 1, 0, 1, 1]

R2 OUR2
= [4, 3]

R3 OUR3
= [9, 3]

Table 3. An excerpt of the transactions contained in the paper reviews use case, along

with some objects and containers, used in the running example

Container Object TID Transaction

C1
R1 S1 {(paper, 2), (hard, 1), (narrow, 1)}
R2 S2 {(problem, 1), (paper, 1), (concern, 1), (reproducibility, 1)}

C2 R3
S3 {(paper, 1), (readable, 1)}
S4 {(paper, 1), (good, 1), (experiment, 1), (reproducibility, 1)}

are represented by objects and for an object Ou we have two facets, namely rating and

confidence. Each review’s sentence is a transaction, and for a transaction Tp, we have

the facets corresponding to the eight annotated aspects defined in Chakraborty et al.

(2020) and reported in Table 1. Finally, each sentence’s word is an item. Table 2 depicts

the utility vectors for container, object, and transaction respectively, relative to a sim-

ple instance excerpt adapted from the dataset; this excerpt is reported in Table 3 for

completeness of presentation. In this table, for a better readability, we report the word

corresponding to each item. We point out that a preprocessing pipeline is applied to the

sentences with usual stemming and lemmatization procedures. Note that each transac-

tion Tp is a set of pairs (i, q(i, Tp)) where i is an item and q(i, Tp) its quantity in the

transaction Tp. �

2.4 Pattern utility computation

Recall that a pattern is a (possibly ordered) set of items, and it may occur in a certain

number of transactions. The generalization of utilities in facets and the structuring of the

database at different abstraction levels pave the way to more advanced and diversified

computations of utilities.

Intra-pattern utility. First of all, given a pattern P , composed of a set of r items and

occurring in a transaction Tp, all the item utility vectors of items i ∈ P must be merged

into a unique item utility vector IU . In this process, internal utilities of items for Tp

can be taken into account. Formally, given the set IUS = {IU1, . . . IUr} of item utility

vectors associated with each item i ∈ P , let’s define the intra-pattern utility function ip
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which takes as input the pattern P , the transaction Tp and the associated set of item

utility vectors IUS , and generates a unique item utility vector for the pattern occurrence:

IUTp
= ip(P, Tp, IUS ).

Example 3. An example of intra-pattern utility function is the following:

IUTp
= ip(P, Tp, {IU1, . . . IUr}) =

[
∑

i∈[1..r]

(IUi[1]× q(i, Tp)),
∑

i∈[1..r]

(IUi[2]× q(i, Tp)), . . . ,
∑

i∈[1..r]

(IUi[l]× q(i, Tp))].

Depending on the context of interest, the combination of the utilities across the single

facets can be carried out with functions different from the SUM. As an example, MAX,

MIN, or AVG operators can be applied across the same facet of the different items in the

pattern. Interestingly, if r = 1 it corresponds to the classical definition. �

Pattern utility functions. Now, given a pattern P occurring in a transaction Tp, the

corresponding occurrence utility vector OccUTp
is obtained by juxtaposing the item,

transaction, object, and container utility vectors:

OccUTp
= [IUTp

, TUTp
, OUTp

, CUTp
] =

[iu1, . . . , iul, tu1, . . . , tum, ou1, . . . , oun, cu1, . . . , cuo].

Here, for the sake of simplicity, we refer to OUTp
(resp., CUTp

) as the object (resp.,

container) utility vector of the object (resp., container) containing transaction Tp.

Given the set TP of transactions containing occurrences of the pattern P , the pattern

utility vector UP is obtained as the collection of all the occurrence utility vectors of P :

UP =
⋃

Tp∈TP

OccUTp
.

Example 4. (Running example) Let us continue the running example. Consider the

pattern P = {paper, reproducibility} and the set of transactions TP = {S2, S4} in which

it occurs. To proceed with the pattern utility computation, we first should compute its

intra-pattern utility by merging the item utility vectors into a unique item utility vector.

However, in the paper reviews use case, items have no facets. Hence, a simple intra-

pattern utility function which returns an empty list can be exploited, that is IUS2
=

IUS4
= []. The corresponding occurrence utility vector OccUS2

and OccUS4
can now be

derived as the juxtaposition of unique transaction, object and container utility vectors:

OccUS2
= [IUS2

, TUS2
, OUR2

, CUC1
] = [1, 0, 1, 0,−1,−1, 0, 0, 4, 3, 0],

OccUS4
= [IUS4

, TUS4
, OUR3

, CUC2
] = [0, 1,−1, 1, 1, 0, 1, 1, 9, 3, 1].

Then, the pattern utility vector UP consists of the occurrence utility vectors OccUS2
and

OccUS4
, that is:

UP = {OccUS2
, OccUS4

} = {[1, 0, 1, 0,−1,−1, 0, 0, 4, 3, 0], [0, 1,−1, 1, 1, 0, 1, 1, 9, 3, 1]}.
�
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Now, from UP we can virtually build a matrix where each row represents a utility

vector associated with an occurrence of P and each column represents a facet of P . The

utility u of the pattern P can be then obtained as an arbitrary combination of the values

in UP , using a function u(P ).

In order to formalize function u(P ), we distinguish between formulas that operate by

row (we call them horizontal first and we refer to them as fh), formulas that operate by

column (we call them vertical first and we refer them as fv), and formulas that operate

on the whole data at once (we call them mixed and we refer them as f).

Formally, utility of P can be classified in:

• Horizontal first ; it first combines utilities of the various facets in each occurrence

(by row) and then combines the values across all occurrences (by column): u(P ) =

fv(fh(UP ))

• Vertical first ; it first evaluates utilities on a facet basis across the occurrences

(by column) and then combines the obtained values across the facets (by row):

u(P ) = fh(fv(UP ))

• Mixed ; it combines the values in UP at once: u(P ) = f(UP )

Observe that u(P ) is a single number, whereas intermediate computations may provide

sets of values.

Both Horizontal first, Vertical first, and Mixed utility functions may be further classi-

fied in:

• inter-transaction utility: functions that combine item and transaction utilities;

• pattern-vs-object utility: functions that compute the utility of the pattern by corre-

lating one or more item or transaction utility facets with one or more object utility

facets;

• pattern-vs-container utility: functions that correlate one or more item or transac-

tion utility facets with one or more container utility facets.

The list of potentially interesting functions is virtually infinite. A non-exhaustive set

of functions for some of the classes introduced above is provided next. Their specific

semantics is strongly dependent on the application context.

• Horizontal first – inter-transaction:

— Filter & Sum: Filters one single facet first and then sums the obtained values1.

— Filter & Times: Filters one single facet first and then multiplies the obtained

values2.

— Coherence degree: returns a predefined value if (a subset of) facets show

coherent values and then computes the percentage of pattern occurrences

containing this value; an index of coherence can be the fact that all facets are

positive or all facets are negative.

• Horizontal first – pattern-vs-object/pattern-vs-container :

1 Observe that this is equivalent to the classical HUPM scenario.
2 Observe that, if the facet represents a probability, this can be used to compute a combined probability.
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— Disagreement degree: returns a predefined value if the value of an item/-

transaction facet disagrees with that of an object/container facet and then

computes the percentage of pattern occurrences containing this value.

• Vertical first – inter-transaction:

— Max & Sum: computes the maximum for each facet across transactions first

and then sums the obtained values. To understand the applicability of this

function, consider a context in which each facet is a rating of a certain aspect

of a transaction (e.g. shipping speed, reliability, etc.); this function makes it

possible to find the patterns with the highest overall ratings on all facets.

— Std & Max: computes the standard deviation of each facet across transactions

first and then takes the maximum value among facets.

• Vertical first – pattern-vs-object :

— Mixed Coherence degree: for each facet, computes the fraction of transactions

with positive (resp., negative) values, then filters on an item/transaction facet

and on an object facet and multiplies the corresponding fractions.

• Mixed pattern-vs-object / pattern-vs-container :

— Pearson’s Correlation (Pearson 1895): computes the correlation between one

of the item/transaction facets and one of the object/container facets. It can

be used to measure the agreement/disagreement about information at pat-

tern/transaction level and object/container level.

— Multiple Correlation (Lewis-Beck et al. 2003): computes the correlation be-

tween two or more item/transaction facets and one of the object/container

facets. It can be used to measure how well a given object/container facet can

be predicted using a linear function of a set of item/transaction facets.

Example 5. (Running example) Let us consider the pattern utility vector UP for

the pattern P = {paper, reproducibility} shown in Example 4. We now give examples for

some of the classes of utility functions introduced above.

We start by giving a simple example for Horizontal and Vertical first functions.

We consider an inter-transaction function involving Filter & Max. More in detail, let

fh = filter(·) and fv = max(·) be the Filter and Max functions, respectively. Then,

we have u(P ) = fv(fh(UP ))). Assume we want to focus on the rating facet of each

object utility vector; therefore, u(P ) consists in filtering the rating facet (by means of

fh) and then selecting the maximum value of such facet (by means of fv). In detail,

fh(UP ) = filter(UP ) = {[4], [9]}, where [4] (resp., [9]) indicates the rating facet of OccUS2

(resp., OccUS4
) represented as a singleton. Then, by applying fv across each occurrence,

we obtain u(P ) = fv(fh(UP )) = max(filter(UP )) = max({[4], [9]}) = 9. In this case, the

same result is obtained by applying these functions in a vertical first fashion, for example,

u(P ) = fh(fv(UP )).

Instead, if we consider a mixed pattern-vs-object utility function, an interesting exam-

ple is the computation of the Pearson correlation coefficient. Let us define f = rxy, where

rxy is the classic Pearson correlation coefficient. Also, suppose that x indicates the Clarity

aspect value present in the sentence and y indicates the rating facet of the review, across
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all occurrence utility vectors in UP . According to UP , we have x = [0, 1] and y = [4, 9],

and by applying the pattern-vs-object utility function f we obtain f(UP ) = rxy = 1.0,

indicating a perfect positive correlation between Clarity aspect and the rating facets for

the pattern P = {paper, reproducibility}. �

2.5 Pattern masks

As a final extension, we introduce pattern masks, that is, properties that patterns (resp.,

pattern occurrences) must satisfy in order to be considered valid patterns (resp., occur-

rences). Simple examples of pattern masks are given below. Clearly, other kinds of masks

can be defined, depending on the context of interest.

• Mask on pattern size: it constrains the number of items in a pattern into a given

range.

• Mask on pattern (external) properties: it constrains items in the pattern to satisfy

certain properties. As an example, if items are words from review sentences, each

word can be associated with a Part-of-Speech (POS) tag, and it can be interesting

to constrain each pattern to contain at least a noun, a verb, and an adjective.

2.6 Definition of extended high-utility patterns

In the classical problem, a high-utility pattern is detected disregarding its support on the

database focusing on its utility only. In the new setting we are proposing in this work, we

must consider that there are utility functions which may have low significance in presence

of few transactions supporting the pattern. As an example, in order to properly compute

the Pearson correlation at least two, but preferably more, data points are necessary.

As a consequence, in order to provide a framework as general as possible, our problem

formulation includes the definition of a minimum support for the pattern, in order to

detect high-utility patterns; obviously, this threshold can be set to 1, meaning that a

pattern should appear at least once, whenever a minimum support is not relevant.

Problem definition. Given a pattern P containing a set of items, and a pattern mask M ,

P is an extended high-utility pattern if P and its occurrences satisfy M , its utility u(P )

is greater than a utility threshold thu, and it occurs in at least thf transactions. The

problem of extended high-utility pattern mining is to discover all extended high-utility

patterns in a database D.

3 Design of the ASP approach

As previously pointed out, one of the main objectives of this work is to provide as much

flexibility as possible in the definition of what is a valid pattern. In what follows, we

provide an encoding as general as possible for the framework introduced in Section 2;

this can be specialized for specific settings, and, indeed, we also show how it can be

specialized for the paper reviews use case introduced as running example in Section 2.

It is important to point out again that coding complex formulae for pattern utility, such

as some of those described in Section 2, may in general not be easy (or even impossible)
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to achieve with a purely declarative approach; think, for instance, about the computation

of the standard deviation or the multiple correlation coefficient. Similar difficulties may

arise when it is necessary to handle real or negative numbers. To overcome this issue,

we resort to recent extensions of ASP systems, such as DLVHEX (Eiter et al. 2016;

2018), clingo (Gebser et al. 2019), and WASP (Dodaro and Ricca 2020), which allow

the integration of external computation sources, usually written in Python, within the

ASP program. The ASP standardization group has not yet released standard language

directives for such features; in order to present our ASP formalization in this section, we

refer to syntax and semantics of DLVHEX (Eiter et al. 2016), which is more intuitive. In

Section 4, we also show a complete implementation in WASP (Dodaro and Ricca 2020)

that exploits constraint propagators.

The general encoding is presented in Listing 1; it is structured in separate parts, in

such a way that the various aspects of the problem can be modeled, and changed, with

local modifications.

The first part (lines 1–9) recalls the expected schema for input facts to simplify the

reading of the code. Observe that attributes Position and Q for predicate item will be

needed only if item position within the transaction, and its internal utility are actually

needed for the problem at hand (see Section 2.3). Similarly, the number of facets for

item, transaction, object, and container utility vectors will be specific to the application

scenario; the corresponding predicates may be omitted if no facets are available for them.

Thresholds for pattern frequency (thf ) and utility (thu) must be provided as input as

well with facts occurrencesThreshold and utilityThreshold (line 11).

Rule prototype in line 13 allows items to be pre-filtered, according to users’ background

knowledge. Think for instance to items with a price lower than a certain threshold which

are certainly not relevant for the analysis. Such filters can be very application-specific,

and we therefore leave this part open to user specification. Predicate usefulItem is true

only for unfiltered items.

The second part of the formulation considers the generation of candidate patterns and

the verification of their minimum frequency. The chosen encoding generates one answer

set for each pattern; this simplifies both pattern representation and the application of

user-defined constraints to candidate patterns. As pointed out in Section 2.6, in the

classical HUPM context minimum support is not considered at all as a constraint on

pattern validity (only utility is actually considered); in this setting, all combinations of

items would be candidate patterns. However, we decided to keep the frequency constraint

in order to cope with specific application scenarios. To identify the set of candidate

patterns with a minimum support, we build upon the effective and elegant solution

already presented in Järvisalo (2011), which has been adapted to our context (lines 15-

18). Here, the predicate inCandidatePattern is true for an item i only if i is a useful

item and belongs to a frequent pattern. The predicate inSupport is true for a transaction

t if it supports all the items in the candidate pattern. The lack of support for some items

is determined by the conflictAt predicate. We also use the support predicate contains

to project the first two variables of item. Observe that minimum frequency is checked

directly in the choice rule (line 15).

The third part of the formulation (lines 20–21) generates the unique item utility vector

for the pattern occurrence; in particular, predicate patternItemUtilityVectors is true

for each item i in the candidate pattern supported by a transaction t, and collects the
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corresponding facets and internal utility. Predicate intraPatternUtilityVector then

instantiates the unique item utility vector for the corresponding transaction by the appli-

cation of the external function computeIntraPatternUtility. Observe that, generally,

this computation involves simple sum-product operations; in this case, it might be more

convenient to express the formula directly within the rule. Moreover, we point out that,

when items have no facets and internal utility, this part of the encoding can be omitted.

The fourth part of the formulation (lines 23–25) builds the occurrence utility vector

(line 23) and checks utility criteria on candidate patterns (line 25). Here, the different

database layers introduced by the framework are taken into account and the full power of

external functions is exploited. Observe that when using WASP constraint propagators,

the constraint expressed in line 25 is replaced by a propagator.

Finally, the last part of the formulation (lines 27–29) is devoted to express pattern

masks; this part is very application-specific, and we show a mask on pattern size just as

a simple example. Here, users’ background knowledge may play a relevant part. As an

example, if items are words and we know for each word its POS tag, a more elaborated

mask can be defined requiring that a pattern must contain at least a noun, a verb, and

an adjective.

Listing 1. A general ASP encoding for the e-HUPM problem.

1 %%% Input schema:
2 % container(ContainerId)
3 % object(ObjectId, ContainerId)
4 % transaction(Tid, ObjectId)
5 % item(Item, Tid, Position, Q)
6 % itemUtilityVector(Item, I1, ..., Il)
7 % transactionUtilityVector(Tid, T1, ..., Tm)
8 % objectUtilityVector(ObjectId, O1, ..., On)
9 % containerUtilityVector(ContainerId, C1, ..., Co)

10 %%% Parameters
11 occurrencesThreshold(...). utilityTreshold(...).
12 %%% Item pre-filtering
13 usefulItem(I):- item(I,_,_,_),....any condition on the items.
14 %%% Candidate pattern generation and check on minimum support
15 {inCandidatePattern(I)}:- usefulItem(I), #count{Tid : inSupport(Tid), contains(I,Tid)}=N, N >= Tho,

occurrencesThreshold(Tho).
16 inSupport(Tid):- transaction(Tid,_), #count{I : usefulItem(I), conflictAt(Tid,I)}=0.
17 conflictAt(Tid,I):- inCandidatePattern(I), transaction(Tid,_), not contains(I,Tid).
18 contains(I,Tid):- item(I,Tid,_,_).
19 %%% Intra-pattern Utility computation (needed only if items have utilities)
20 patternItemUtilityVectors(Tid,Item,I1,...,Il,Q):- inCandidatePattern(Item), itemUtilityVector(Item,I1

,...,Il), inSupport(Tid), item(Item,Tid,Position,Q).
21 intraPatternUtilityVector(Tid,I1,...,Il):- &computeIntraPatternUtility[patternItemUtilityVectors](Tid,

I1,...,Il).
22 %%% Pattern Utility computation
23 occurrenceUtilityVector(Tid,I1,...,Il,T1,...Tm,O1,...On,C1,...,Co):- inSupport(Tid),

intraPatternUtilityVector(Tid,I1,...,Il), transactionUtilityVector(Tid,T1,...,Tm), transaction(
Tid, ObjectId), objectUtilityVector(ObjectId,O1,...,On), object(ObjectId, ContainerId),
containerUtilityVector(ContainerId,C1,...,Co).

24 %%% The following constraint is implemented as a constraint propagator in WASP
25 :- &computeUtility[occurrenceUtilityVector](U), U < Thu, utilityTreshold(Thu).
26 %%% Pattern mask (e.g.) on size
27 minLength(...). maxLength(...).
28 :- #count{T : inCandidatePattern(T)} < L, minLength(L).
29 :- #count{T : inCandidatePattern(T)} > L, maxLength(L).

The general ASP encoding presented in Listing 1 can be specialized in different ways

depending on the application context and on the focus of the analysis. In what follows,

we show a complete formulation of the proposed approach for the paper reviews use case
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introduced as running example in Section 2; in particular, we show how the various parts

of the general program described above, which we call Blocks in the following to simplify

the presentation, can be modeled by different ASP code portions that can be combined

in many different ways. In our opinion, this makes evident the flexibility provided by

our hybrid solution combining ASP and Python, where the main ability of declarative

programming, which allows programmers to define the what and not the how, is fully

exploited in the definition and combination of the various Blocks, whereas the potential

of Python to switch between different complex utility functions is exploited by external

functions.

Figure 1 shows the proposed formulations, where the diverse Blocks are numbered in

order to simplify the presentation. In particular, Block 1 simply defines the schema of the

input dataset, along with expected input parameters. Observe that, for the paper reviews

use case, no utility is associated with items; consequently, there is no itemUtilityVector

and, thus, no intra-pattern utility computation is needed. For this reason, the proposed

formulation does not include a Block for intra-pattern utility computation.

As far as the pre-filtering part is concerned, Block 2a and Block 2b show two different

alternatives. In the code of Block 2a, only words associated with at least one positive or

negative sentiment value for the sentences they appear in are considered useful for the

analysis; Block 2b shows a pre-filtering that includes only words for which a disagreement

between Appropriateness and Decision exists. Obviously, many other pre-filtering rules

can be defined for the problem at hand.

Block 3a and Block 3b refer to the candidate pattern generation and occurrences

check part. In particular, Block 3a reproduces the code already described in the general

encoding, whereas Block 3b shows how easy it can be with ASP to switch from the

classical scenario to a very different problem, in this case sequence pattern mining. In

particular, in this formulation, the classical code is slightly modified in such a way that

the order of items within sentences becomes relevant, and an occurrence of an item in

a sentence is validated only if all items occur precisely in the same order. It is inter-

esting to observe that the switch of this Block alone makes it possible to tackle very

different pattern mining problems and that switching from a pattern mining problem to

another one with an imperative programming solution would require to rewrite long code

portions.

Pattern utility computation, coded in Block 4, is standard; in this case, the different

potential utility functions are coded in Python by the external function computeUtility.

Finally, Block 5a and Block 5b express two different ways of defining pattern masks.

Block 5a defines a simple mask on pattern size, whereas Block 5b implements a more

elaborated mask where, if we assume to know the POS tag of each word, it states that

if a pattern contains at least three words, these must be at least a noun, a verb, and an

adjective. Of course, again, one can imagine many other types of masks.

As a final consideration, it is noteworthy that even with a limited number of alterna-

tives for each block, a wide variety of final encodings can be generated. As an example,

the combination of Blocks 1-2a-3a-4-5a represents a full encoding; other possibilities are

Blocks 1-2b-3a-4-5b or Blocks 1-2a-3b-4-5a, and many more. Given a pool of alterna-

tive encodings for each Block, even those unfamiliar with ASP could put up their own

variants to provide maximum flexibility in data analysis.
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Fig. 1. Modular composition of ASP subprograms for the paper reviews use case introduced as
running example.

4 Application to ICU admission prediction for COVID-19 patients

In this section, we present a possible application of the proposed approach in a biomed-

ical context; in particular, we show how high-utility patterns derived from a structured

database can be exploited to compute correlations, and possibly make predictions, for

ICU admission of confirmed COVID-19 cases, based on patients’ blood results and vital

signs. It is worth pointing out that the main objective of this section is not to provide
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a final solution to the problem, but to show with a proof-of-concept that our e-HUPM

framework can actually help in relevant practical problems.

To this purpose, we exploit the COVID-19 dataset publicly available at https://

www.kaggle.com/S%C3%ADrio-Libanes/covid19. The dataset contains almost 2000

anonymized data for confirmed COVID-19 patients; each patient in the database un-

derwent several encounters. The dataset contains the following information: (i) patient

demographic information, (ii) patient previous grouped diseases, (iii) if the patient was

admitted to the ICU during the observation period (ICU = 1) or not (ICU=0), and, for

each encounter, (iv) 36 parameters for blood results, and (v) 6 parameters for vital signs.

With respect to our e-HUPM model, a patient is an object, having a single facet, namely

ICU; each visit is a transaction whose items are categorical data from (i) and (ii) and

whose 42 facets are numerical data from (iv) and (v). No facets and internal utility are

defined for items; there is no container layer for the dataset.

Listing 2. A full example of the ASP encoding for the ICU admission prediction for

COVID-19 patients.

1 %%% Input schema:
2 % object(PatientId)
3 % objectUtilityVector(PatientId, ICU)
4 % transaction(VisitId, PatientId)
5 % transactionUtilityVector(VisitId, ALBUMIN_MEAN, BE_ARTERIAL_MEAN, BE_VENOUS_MEAN, BIC_ARTERIAL_MEAN,

BIC_VENOUS_MEAN, BILLIRUBIN_MEAN, BLAST_MEAN, CALCIUM_MEAN, CREATININ_MEAN, FFA_MEAN, GGT_MEAN,
GLUCOSE_MEAN, HEMATOCRITE_MEAN, HEMOGLOBIN_MEAN, INR_MEAN, LACTATE_MEAN, LEUKOCYTES_MEAN,
LINFOCITOS_MEAN, NEUTROPHILES_MEAN, P02_ARTERIAL_MEAN, P02_VENOUS_MEAN, PC02_ARTERIAL_MEAN,
PC02_VENOUS_MEAN, PCR_MEAN, PH_ARTERIAL_MEAN, PH_VENOUS_MEAN, PLATELETS_MEAN, POTASSIUM_MEAN,
SAT02_ARTERIAL_MEAN, SAT02_VENOUS_MEAN, SODIUM_MEAN, TGO_MEAN, TGP_MEAN, TTPA_MEAN, UREA_MEAN,
DIMER_MEAN, BLOODPRESSURE_DIASTOLIC_MEAN, BLOODPRESSURE_SISTOLIC_MEAN, HEART_RATE_MEAN,
RESPIRATORY_RATE_MEAN, TEMPERATURE_MEAN, OXYGEN_SATURATION_MEAN)

6 % item(VisitId, Value)
7 %%% Parameters
8 occurrencesThreshold(...). utilityThreshold(...). maxCardItemset(...).
9 %%% Pre-filtering: all items are useful

10 usefulItem(I):- item(_,I).
11 %%% We compute the Pearson correlation between each target facet and ICU. Each run differs only for
12 %%% the projected facet and will detect patterns with a high correlation between that facet and ICU.
13 transactionUtilityVectorP(Tid,T):- transactionUtilityVector(Tid, _, _, _, _, _, T, _, _, _, _, _, _, _,

_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _).
14 %% Candidate pattern generation and check on minimum support
15 {inCandidatePattern(I)}:- usefulItem(I), #count{Tid: inSupport(Tid), contains(I,Tid)}=N, N>=Tho,

occurrencesThreshold(Tho).
16 inSupport(Tid):- transaction(Tid,_), #count{I: usefulItem(I), conflictAt(Tid,I)}=0.
17 conflictAt(Tid,I):- inCandidatePattern(I), transaction(Tid,_), not item(Tid,I).
18 %% The utility of the whole occurrence is the juxstaposition of all the required values
19 occurrenceUtilityVector(Tid,ICU,Target):- inSupport(Tid), transaction(Tid,PatientId),
20 objectUtilityVector(PatientId,ICU), transactionUtilityVectorP(Tid,Target).
21 %% The following is implemented as a constraint propagator in WASP and must be commented here
22 %:- &computeUtility[occurrenceUtilityVector](U), U < Thu, utilityThreshold(Thu).
23 %% size of each pattern is at most M
24 cardItemset(N):- #count{I : inCandidatePattern(I)} = N.
25 :- cardItemset(N), maxCardItemset(M), N > M.
26 :- cardItemset(N), N < 1.

To give a full example of application of our framework, Listing 2 reports the ASP pro-

gram specialized to this context, where WASP propagators are used to implement the

constraint in line 22. The Listing 3 shows an excerpt of the propagator implementation;

here, the most important thing to note is the simplicity with which the Pearson corre-

lation can be calculated (see line 13 of Listing 3). It is beyond the scope of this paper

to explain all the details of the implementation of propagators. The interested reader is
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Listing 3. The core Python function of the constraint propagator exploited in WASP.

1 def compute(answer_set):
2 global aspvars, threshold, icu_values, target_values
3 icu_values, target_values = [], []
4 for x in answer_set:
5 if x < 0: continue
6 if x not in aspvars: continue
7
8 (_, icu, target) = aspvars[x]
9 icu_values.append(icu)

10 target_values.append(target)
11
12 # Compute Pearson via scipy library
13 pearson_value = stats.pearsonr(icu_values, target_values)[0]
14
15 # Check if computed value is valid
16 sat = abs(pearson_value) >= threshold
17 return (pearson_value, not sat)

referred to (Dodaro and Ricca 2020) for the literature on propagators and to https://

www.mat.unical.it/~cauteruccio/tplp-ehupm/ for the complete implementation of

propagators for this problem.

The first objective of this analysis was to find patterns, derived from patient demo-

graphic information and patient disease groups, showing a significant Pearson’s correla-

tion between each of the 42 facets and ICU outcome. As an example, for the pattern:

(Gender:Male, AgePercentile:60, DiseaseGroup5:YES) we found a Pearson correlation

of −0.75 between Oxygen Saturation values and ICU; similarly, for the pattern (Gen-

der:Female, Immunocompromised:NO, DiseaseGroup5:YES, DiseaseGroup6:NO, Hyper-

tension:YES) we found a Pearson correlation of −0.82 between Hemoglobin values and

ICU. More generally, we found 590 (resp., 1422) patterns showing an absolute value of

the Pearson correlation greater than 0.5 between Oxygen Saturation (resp., Hemoglobin)

values and ICU occurring in at least 10 transactions in the dataset. Similar number of

patterns have been derived also for the other facets. Note that, to switch from one facet

to another, it was sufficient to change the attribute to be projected in line 13 of Listing 2.

As a preliminary analysis of obtained results, in light of exploiting them for ICU pre-

diction, we analyzed the fraction of transactions in the database supported by at least

one valid pattern, and the percentage of combinations of patients attributes covered by at

least one valid pattern. This last has been measured as the fraction of combinations that

can be extracted from available data which are also supported by at least one valid pat-

tern. Observe that, having a high fraction of covered transactions (resp., combinations)

might be important in order to improve the chances to have a personalized predictive

model for each upcoming unknown patient. However, setting very low minimum thresh-

olds just to increase the number of valid patterns may, in principle, be counterproductive

for their subsequent use in prediction tasks. It is then important to study these proper-

ties for a better understanding of the next steps of analysis. Results obtained from this

analysis are shown in Figure 2 for several values of minimum occurrence and minimum

correlation thresholds. From the analysis of this figure, we can observe that even a slight

increase of the minimum correlation has a strong impact on the fraction of transactions/-

combinations covered by valid patterns; an increase of the minimum occurrence, instead,

has a lower impact. Interestingly, too stringent thresholds end up to completely miss

all transactions/combinations in the dataset and, clearly, these should be avoided. As
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(a) (b)

Fig. 2. Percentage of transactions (a) and Percentage of combinations of patient attributes (b)
covered by valid patterns.

pointed out in Schober et al. (2018) a Pearson between 0.40 and 0.69 represents mod-

erate correlations and, as such, a correlation of 0.5 should not be neglected. Similarly,

correlations above 0.7 represent strong or very strong relationships; these might be con-

sidered very reliable but, as observed from this experiment, exploiting these values may

end up in discarding too much data.

At the end of the first phase, we have a set P = {〈pi, πj〉} of patterns pi for each facet

πj corresponding to a target parameter (as an example, Oxygen saturation, Hemoglobin,

etc.). Now, each 〈pi, πj〉 is characterized by a number νij of transactions supporting it

and a Pearson correlation γij . It is then possible to derive a linear regression model μij(·)
between πj and ICU for pi. Given the value vjk for the facet πj of a generic (possibly

unseen) transaction tk supported by 〈pi, πj〉, we can then apply μij(vjk) to estimate the

value of ICU. μij(vjk) is a value in the real interval [0, 1] and constitutes a building block

for the overall prediction process which is described next.

Given a generic unseen transaction tk, let first identify the set Ptk ⊆ P of patterns

in P contained also in tk. Observe that, in principle, Ptk might be void; in this case, no

prediction can be carried out. For each 〈pi, πj〉 ∈ Ptk and the corresponding value vjk
in tk let apply the regression model μij(vjk) previously constructed, in order to get an

estimation of ICU for the patient corresponding to tk based on vjk. Now, since there can

be more patterns in Ptk for tk, it is possible to produce a more accurate estimation by

combining the predictions obtained from all the patterns.

There are several ways in which we can combine the various predictions. Since each

〈pi, πj〉 is characterized by both a Pearson correlation γij and a number of transactions νij
supporting it, we can use both these values as weights in an average mean of all obtained

predictions. In fact, a very high correlation indicates a very good predictive capability;

however, if this correlation is not supported by many transactions, it might be unreliable

for unseen transactions. On the contrary, a high number of transactions supporting the

pattern indicates a good support for the prediction, but obtaining a high correlation from

several transactions is, in general, more complicated. By combining these two factors, we

can weigh each prediction in a more accurate way. In particular, the formula exploited

to estimate ICU for the patient corresponding to the transaction tk is:

ICUk =

∑
ij μij(vjk) · γij · νij∑

ij γij · νij
,
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Table 4. Accuracy (left) and missing rate (right)

Min. Occ. Pearson (absolute) Min. Occ. Pearson (absolute)

0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0

5 0.73 0.75 0.76 0.74 0.78 0.77 5 0.15 0.39 0.48 0.55 0.61 0.74
10 0.71 0.73 0.73 0.72 0.79 0.78 10 0.15 0.39 0.5 0.6 0.72 0.78
15 0.72 0.71 0.7 0.71 0.83 – 15 0.16 0.4 0.53 0.68 0.79 1.0
20 0.71 0.71 0.71 0.67 – – 20 0.17 0.41 0.6 0.75 1.0 1.0
25 0.71 0.7 0.71 0.7 – – 25 0.18 0.43 0.62 0.79 1.0 1.0

Observe that ICUk is a value in the real interval [0, 1]; in order to finalize the estimation,

we carry out a rounding up of its value.

In order to test the validity of the approach, we carried out a 5-fold cross-validation

where, in each run, 80% of tuples are used for extracting patterns and building the pre-

diction model, and 20% of tuples to compute predictions. A prediction is considered exact

if its value corresponds to the ICU value present in the database for the corresponding

patient. This allows us to measure the Accuracy of the approach as the fraction of exact

results vs the total ones. Table 4 (left) shows the average accuracy obtained among all

the runs varying the minimum allowed frequency and the Pearson correlation. Since a

transaction might not be supported by valid patterns, Table 4 (right) shows also the

missing rate, that is, the percentage of transactions with no predictions. We also com-

puted the variance for the obtained results on Accuracy, which ranges from a minimum

of 0.0015 to a maximum of 0.057.

From the analysis of this table, we can observe that the Accuracy is quite stable and

above 70% across the various combinations of parameters, with a slight increase as the

Pearson increases. However, looking at the missing rate, we can observe that increas-

ing values of the correlation significantly increases also the missing rate. If we observe

Figure 2, there are actually threshold values for which the missing rate is very high

(even 1, when no predictions are available); the Accuracy obtained for these configura-

tions, although higher than that of the others, is of less significance since these config-

urations only allow us to obtain predictions on a small set of data. Reasonable values

for the missing rate are obtained for a minimum absolute Pearson equal to 0.5, which

corresponds also to a satisfying Accuracy. The quite stable behavior of the Accuracy can

be motivated by the weighed formula we adopted for computing the predictions, which

is able to adapt either to a high number of supported patterns and transactions or to a

high Pearson with less support. Summarizing, it turns out that it is better to have a good

coverage with a moderate correlation than a very strong correlation with a low coverage.

5 Experimental evaluation

In this section, we show and discuss the results of several experiments we carried out

in order to assess the effectiveness of the proposed approach. We focus on the paper

reviews use case introduced as running example and we consider a quantitative analysis,
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(a) (b)

Fig. 3. Average running time (in seconds) for utility functions sum (a) and disagreement
degree (b).

aiming to characterize the applicability of the approach in terms of performances, and a

qualitative analysis, aiming to assess the quality of results.

The full dataset exploited in these experiments includes 814 papers, 1148 reviews, and

2230 annotated sentences, containing overall 15,124 distinct words. The complete dataset,

expressed in ASP format, is available at https://www.mat.unical.it/~cauteruccio/

tplp-ehupm/. Other properties are shown in Table 1. All the experiments have been

performed on a 2.3GHz MacBook computer (Intel Core i9) with 16 GB of memory. The

data preprocessing pipeline was implemented in Python 3.9 and exploited the spaCy

(https://spacy.io/) library. In order to run our ASP programs, we used clingo version

5.4.0 with the flag --mode=gringo as the grounder and WASP version 2.0 compiled via

clang (version 11.0.3) with Python 3.9 support as the solver.

5.1 Quantitative analysis

In a first series of experiments, we computed the average running times for two different

settings. The first one is a sort of a stress test: it involves all the facets provided by the

use case and computes their sum via an external function call; thus, all input items and

values are relevant for the computatio, and, consequently, a large number of patterns are

expected. The second one is more realistic and computes the disagreement degree between

one of the annotated sentiments and the decision about the corresponding paper, namely

the percentage of pattern occurrences showing a positive sentiment on originality and a

reject decision; in this case, given its simplicity, the utility function is directly encoded

with ASP rules. Results for running times are shown in Figure 3 for increasing number

of papers, pattern size, and occurrence threshold (thf ); each data point represents the

average running time computed for utility thresholds equal to [1, 5, 10, 15, 20, 25, 30] for

the sum and [15, 50, 75, 100] for the disagreement degree. To rescale the dataset, we

randomly selected the set of papers to be removed at each downsizing step, so that each

instance is a strict subset of its larger versions. This selection process has been carried

out once, and the same datasets have been used throughout the experiments.

First of all, from the analysis of the results, it is possible to observe that the choice

of the setting can significantly impact the performances. This is due to a combination

of factors, including the amount of input data relevant to the calculation, the number
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of patterns satisfying the thresholds, and the complexity of the utility function itself.

In more detail, looking at Figure 3(a), we can observe that increasing the number of

papers significantly increases execution time but, increasing the occurrence threshold

significantly reduces required time. Moreover, especially for the bigger datasets, a higher

occurrence threshold combined with a higher pattern size significantly reduces execution

time. This behavior can be mainly motivated by the portion of encoding for identifying

frequent patterns; in particular, checking the number of occurrences within the choice

rule, instead of using a standard constraint, makes rules more complex in general, but

allows the evaluator to cut the search space more easily for bigger occurrence thresholds

and, also, for larger patterns. In fact, it is worth pointing out that ground programs

resulted to be smaller for increasing occurrence thresholds. We also observed that (results

not shown due to space constraints) the utility threshold does not significantly impact

performances. Similar considerations can be drawn for the tests on disagreement degree

(Figure 3b). For these tests, it is worth observing the following differences with respect

the previous ones using the sum: (i) input relevant facts are significantly lower (only

words in sentences annotated with originality are useful); (ii) required time and memory

(see below) are significantly lower; (iii) the number of valid patterns is significantly lower

and, in this case, decreases with increasing utility thresholds. In particular, the maximum

number of extracted patterns is 2480 with the sum, and 95 with the disagreement degree.

In a second series of experiments we considered the impact of external function calls

in ASP. In particular, we consider two scenarios in which the utility function can be

both expressed directly in ASP and in Python. Before going on with the analysis, let us

emphasize once again that the constraints we are dealing with in this work to validate

the patterns may come in the form of potentially complex functions, which are difficult,

or even impossible, to express in ASP, and, as a result, external functions significantly

broaden the scope of applicability of the proposed approach. Moreover, we observe that

a deep analysis of when it is better to implement functions directly in ASP or in Python

is out of the scope of this paper. The interested reader can find an extensive discussion

on this aspect in Cuteri et al. (2017).

In the first experiment, we considered the sum function, as introduced above, with

the following parameters: pattern size 3, occurrence threshold 6, utility threshold 5. This

is the worst-case scenario for evaluating external functions, since ASP includes built-in

functions for computing the sum, and, in fact, results presented in Figure 4(a) show that

the impact of the external function calls may become consistent, especially when the

number of papers increases.

The second experiment considered the product function; in particular, for the purposes

of this experiment, we added a facet to each review representing a (fictitious) probability,

and we considered the combined probability as the utility function, that is, the product

of all the probabilities associated with pattern occurrences. Also in this case, we imple-

mented a version of the program using external functions and a version implementing

the product computation directly in ASP; it is worth observing that, in this case, no

built-in function like the sum is available in ASP for the product, and, thus, it must be

computed with the support of recursive rules (probabilities have been obviously scaled

to integers between 0 and 100). Parameters used in these tests are as follows: pattern

size 3, occurrence threshold 6, utility threshold 5. Results presented in Figure 4b clearly

show that, in this case, the version with external functions significantly outperforms the
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(a) (b)

Fig. 4. Average running time (log scale) for utility functions sum (a) and product (b) using
pure ASP or external functions.

(a) (b)

Fig. 5. Average memory usage (log scale) for utility functions sum (a) and product (b).
Horizontal white lines denote the boundary for the memory required by the grounder (bottom)

and solver (top).

one using ASP only, thus motivating the adoption of external sources of computation for

utility functions which are not straightforward to be expressed in ASP.

In order to show the impact of external functions on memory usage, we report in Figure

5 memory consumption for functions sum and product expressed directly in ASP or in

Python. From the analysis of this figure, it is possible to observe, again, that for the

sum function, the impact of external functions may become consistent. However, when

we turn to the product function, the amount of memory required by the version using

external functions is extremely lower. In both cases, the main difference is on the solver

part, whereas the grounder part requires similar amounts of memory.

5.2 Qualitative analysis

In this section, we describe the results of some experiments carried out to show if, and

how much, facets and utility functions introduced in Section 2 can help users in analyzing

input data from different points of view and at different abstraction levels.

In particular, we concentrate on the computation of coherence and disagreement de-

grees, introduced in Section 2.4, between the decision on a paper (Accept/Reject) and

one of the eight aspects used to label review sentences (Chakraborty et al. 2020). In

particular, the objective is to look for patterns (sets of words) characterizing with good

accuracy the relationship of interest and to qualitatively check if they are meaningful.
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Before going into the details of the analysis, in order to better show the properties of

our approach, consider that the paper review dataset contains 686 words with contrast-

ing values between a “sentiment” (on one of the aspects among Appropriateness, Clarity,

Originality, Empirical/Theoretical Soundness, Meaningful Comparison, Substance, Im-

pact of Dataset/Software/Ideas and Recommendation) and the Decision. Among them,

481 different words are in sentences with an “Originality” sentiment; this situation leads

to 929 patterns of size between 2 and 4 with at least 4 occurrences just related to “Origi-

nality.” As a consequence, any classical approach based only on pattern frequency would

be overwhelmed by a large amount of patterns.

Table 5 shows some of the obtained results. Here, given the sentiment label on a

sentence aspect X, the utility function measures the percentage of occurrences of the

pattern showing coherence/disagreement between the sentiment on X and the decision

on the paper, as specified in the first column. The second column of Table 5 reports the

total number of patterns obtained by the approach for each test, whereas the third and

fourth columns show an excerpt of the most relevant patterns along with their utilities.

Parameters exploited for these tests are as follows: Minimum frequency=4, Minimum

utility=70,3 pattern size between 2 and 4.4 It is worth pointing out that each run com-

pleted the computation in just few seconds, and switching between one test and the other

involved few clicks and minor modifications to the ASP program.

From the analysis of Table 5, we can draw the following observations: (i) The number

of valid patterns characterizing each setting is very low; this allows the user to concen-

trate on the most relevant ones. (ii) Patterns extracted in the different settings are quite

different; this indicates a good specificity of derived patterns. (iii) For some settings,

the number of derived patterns is 0; this means that the corresponding situation cannot

be characterized. As far as this last observation is concerned, consider the very interesting

situation analyzing Recommendation and Reject: in this case, no patterns characterize

a positive recommendation (which we recall is a derived sentiment from the sentences)

associated with a reject decision, whereas 84 patterns characterize the opposite situation,

namely negative recommendation and reject; this provides an interesting insight on the

appropriateness of derived patterns. We also carried out a similar analysis relating the

Rating facet, associated with the Review (which is an object in our framework), and

the Decision facet, associated with the Paper (which is a container in our framework).

Results are shown in the last two rows of Table 5; these confirm the analysis relating

recommendation and decision and show how easy is to switch the analysis also between

different levels of abstraction.

6 Related work

Considering its importance as a research topic in the data mining field, HUPM received

a huge interest both from academic community and industrial practitioners. HUPM finds

application both in classical contexts where (normal) itemset mining was born, such as

3 Observe that in this case, the utility value expresses a percentage, as a consequence, 70 should be read
as 70% of the occurrences of the pattern satisfy the condition.

4 Only for some specific cases we extended the size up to 6 in order to show more interesting patterns;
these are annotated with a “*.”
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Table 5. Qualitative analysis on coherence/disagreement degrees

Setting # tot Sample patterns Utility

Originality(positive)-Reject 7

Paper interesting approach 100
Paper interesting write 80
Simple nice idea 75
Intriguing idea 75
Idea proposed interesting 71

Originality(positive)-Accept 1 Original approach 75

Originality (negative)-Accept 6

Incremental paper 80
Easy conference paper 75
Easy follow interesting 75
Paper write easy read 75

Disagreement between Clarity and
Decision: Clarity(positive)-Reject
or Clarity(negative)-Accept

71

Easy paper overall 100
Easy conference paper 100
Easy follow interesting 85
Paper write easy read 85
Presentation generally easy
Follow interesting result∗ 80

Appropriateness(positive)-Accept 0

Appropriateness(negative)-Accept 2
Niche audience 75
Paper accessible 75

Impact of
Dataset/Software/Ideas(positive)-
Accept

20

Paper write clearly present 100
Dataset significant 100
Proposed method datasets baselines 75
Overall contribution 74

Recommendation(negative)-Reject 84

Paper reject 100
Accept conference need significant 75
Acceptance work need significant 75
Recommend acceptance conference
Need significant work∗ 75

Recommendation(positive)-Reject 0

Rating low (1–4)-Accept 0

Rating high (5–10)-Accept 173

Paper write clearly easy 100
Paper follow write clearly 100
Dataset new 100
Theoretical approach 100
Present clearly 75
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market analysis, and in novel ones such as biomedicine, mobile computing, etc. Suvarna

and Srinivas (2019). Thanks to its exhibited versatility, a huge volume of research studies

has been produced regarding HUPM and its variants. According to Semantic Scholar5,

in the last twenty years more than 8000 studies related to HUPM have been published.

In order to better characterize, the work related to our approach and to discern among

the plethora of presented studies, we divide the analysis of the related literature in

two parts. The former provides a bird’s-eye view of the general literature about HUPM,

focusing on variations of the utility measure; the latter focuses on some declarative-based

approaches to pattern mining.

It is worth pointing out that, to the best of our knowledge, no previous work ad-

dressed in a comprehensive way the various extensions introduced in the present paper;

additionally, our work is the first ASP-based solution to the e-HUPM problem.

6.1 Approaches for HUPM and its variants

As previously pointed out, HUPM is a general container for several high-utility-based

mining approaches (Fournier-Viger et al. 2019; Gan et al. 2019). The corresponding re-

search studies can be divided in several groups, depending on the aspect one is interested

to analyze, such as employed algorithms or pruning strategies (Krishnamoorthy 2017;

Yun et al. 2017; Wu et al. 2019; Yun et al. 2019; Sumalatha and Subramanyam 2020).

In our context, we mainly focus on research that studies utility measures and their vari-

ants (Yao et al. 2006; Shen et al. 2002; Fournier-Viger et al. 2014; Cagliero et al. 2014;

Fournier-Viger et al. 2020; Deng 2020).

One of the first works on unifying utility-based measures is presented in Yao et al.

(2006), where the authors introduce a unified utility framework in which a user-defined

function f(x, y) is exploited to define utilities. Here, the significance of an item is mea-

sured by two parts: one is the statistical significance of the item, measured by x, and

is an objective measure; the other is the semantic significance of the item, measured by

y, which is a subjective measure dependent on the user perception of utility. Moreover,

a weight to each transaction, called vertical weight, can be assigned. The authors show

that this generalization can assign semantic significance at different levels of granularity

(item, transaction, and cell level). The approach proposed in Yao et al. (2006) and our

own share some similarities, but the present work further extends the pattern mining

capabilities, as specified next. (i) First of all, Yao et al. (2006) attempts to provide dif-

ferent levels of abstraction for the identification of pattern utility; the present paper has

a similar goal but extends it not only to transactions but also to generic abstraction

layers, enabling the introduction of more advanced utility functions. (ii) Allowing f to

be a user-defined function extends the scope of application; however, only one property

at a time can be used to state the semantic significance of an item; in our approach, the

introduction of facets allows not only to consider several properties at the same time, but

also to combine them dynamically. (iii) The introduction of facets also on transactions,

objects, and containers allows not only analyses at different levels of granularity, as done

in Yao et al. (2006) but also the identification of patterns expressing correlations (and

possibly causality) between different properties, at different levels. (iv) Finally, we have

5 https://www.semanticscholar.org
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shown that beside classical sum and product operations on utility values, exploited in

Yao et al. (2006), more complex functions like Pearson’s correlation or Multiple correla-

tion, allowed by the availability of facets, broaden the scope of potential analyses.

An effort to define a general model, called Objective-Oriented Utility-Based Associa-

tion mining, in which mined association patterns are both statistically and semantically

related to a user’s given objective, is explained in Shen et al. (2002). Here, the database

is composed of a set of records structured in a predefined set of attributes, and an as-

sociation rule is enhanced with an objective and utility value. Thus, the approach aims

at deriving patterns from the records that both statistically and semantically support a

given objective, by taking into account minimum support, confidence, and utility. While

the scope of Shen et al. (2002) and our own are not completely overlapping, namely asso-

ciation rule mining vs high-utility pattern mining, our approach can embrace the concept

of objective-driven mining. Thus, with the adoption of suitable pattern masks, facets, and

utility functions, our proposal can be considered to some extent as an extension of the

concepts presented in Shen et al. (2002).

The authors in Deng (2020) define a novel measure called occupancy and formulate the

problem of mining high occupancy itemsets. The occupancy is defined as the sum of the

ratio between the cardinality of an itemset p and the cardinality of the transactions that

contain p. Then, a high occupancy itemset is an itemset whose occupancy is not below

a given threshold. Interestingly, the approach described in Deng (2020) can be seen as a

special case of our approach, where a horizontal first utility function class is applied.

It is also worth pointing out that different extensions of the HUPM problem are pre-

sented in the literature. Different aspects are considered, and each aspect aims at address-

ing the limitations of the classical problem (Fournier-Viger et al. 2019). As an example,

an HUPM algorithm may show a large number of patterns to the user if the minimum

utility threshold given in input is too low, thus it can be very hard for a user to an-

alyze and describe retrieved patterns. To this end, several concise representations for

high-utility patterns have been studied. Four main representations are closed high-utility

patterns, maximal patterns, generators of high-utility patterns, and maximal high-utility

patterns (Fournier-Viger et al. 2019); moreover, in Gan et al. (2019) the Kulc measure

has been adopted to extract non-redundant strongly correlated and profitable patterns.

In our approach, the number of retrieved patterns can be reduced by defining more strin-

gent utility functions; however, we can see our approach and the ones mentioned above

as orthogonal, since they do not focus on the definition of utility, but rather on the

representation and filtering of obtained results.

Other different aspects are studied in the literature, such as HUPM with negative

utility and HUPM with discount strategies (Fournier-Viger et al. 2019). These are all

covered by our framework, which can be seen as an extension of these special cases with

further potentialities.

In addition to the aforementioned approaches, it is worth noting that HUPM has been

employed in several different contexts, such as topic detection (Choi and Park 2019), rele-

vant information extraction (Belhadi et al. 2020), aspect-based sentiment analysis (Demir

et al. 2019), and mining in noisy databases (Baek et al. 2020). This variety of application

contexts for HUPM further motivates our framework which, thanks to its generality, can

accommodate very different settings, as it has been shown through the paper.
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Finally, there are also different pattern extraction methods, not related to HUPM,

which could be indirectly encompassed by our framework. An example is that of sub-

group discovery (Herrera et al. 2011; Atzmueller 2015). Briefly, subgroup discovery is a

method for knowledge discovery in databases whose aim is to identify relations between a

target variable and many explaining and independent variables, determined by a quality

function that can be flexibly defined (Atzmueller 2015). Intuitively, it means to discover

the subgroups of the population that are statistically most interesting and, therefore,

can be identified as a sort of pattern extraction technique. This task has been addressed

with several approaches, including those exploiting evolutionary algorithms (del Jesus

et al. 2007), complex network aspects (Škrlj et al. 2018), and inductive logic program-

ming (Černoch and Železný 2012). Although our notion of utility could encompass similar

quality measures as those used in subgroup discovery, the aim of our framework is different

from the task of subgroup discovery. Indeed, this last task could be further investigated

in a future work by considering the multi-level structure offered by our approach. The

application of our framework we presented in Section 4 differs from subgroup discovery

in terms of the purpose of the knowledge discovery task. The goal of classification in our

application is to generate a model for each class that contains rules representing class

characteristics regarding the descriptions of training examples. This model is used to pre-

dict the class of unknown objects. In contrast, subgroup discovery attempts to discover

interesting relations with respect to the property of interest (Helal 2016).

6.2 Declarative-based approaches for pattern mining

The usage of declarative systems to tackle combinatorial problems is a consolidated

approach which attracted a peculiar interest from researchers. The possibility of coupling

the power of a high-level declaration with an optimized solver allows users to specify how

patterns should be and not how they should be computed. There are different existing

approaches that blend together the expressiveness and readiness to use of a declarative

system within the problem of pattern mining (Järvisalo 2011; Gebser et al. 2016; Samet

et al. 2017; Paramonov et al. 2019; Guyet et al. 2014; 2016). The main objective of

this section is to show the growing interest in declarative-based approaches for pattern

mining as an alternative to dedicated algorithms, especially when the main focus is to

add expressiveness to the standard problem at hand. To the best of our knowledge there

is no ASP-based approach tackling the HUPM problem, even in its basic form; then,

with respect to this aspect, our approach moves a step forward in the application of ASP

with external functions in interesting data mining contexts.

The seminal work in Järvisalo (2011) exploits ASP in the task of finding all frequent

itemsets: each itemset is an answer set; thus, the enumeration of all answer sets cor-

responds to the enumeration of all frequent itemsets. Although both our approach and

the one in Järvisalo (2011) exploit ASP, the latter addresses only the standard frequent

itemset setting; in our extended HUPM setting, we also exploit the recent ASP language

extensions for the application of complex functions on sets of data inferred during the

evaluation of the program.

In Gebser et al. (2016), the context of sequence mining is addressed, and an ASP-based

mining approach is presented. Here, the focus is to express and incorporate knowledge

in the mining process. The authors consider frequent (closed or maximal) sequential
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patterns and complex preferences on patterns. Frequent patterns are mined following

similar encoding principles of Järvisalo (2011), whereas preference-based mining is ac-

complished by exploiting the asprin system (Brewka et al. 2015) which allows expressing

combinations of qualitative and quantitative preferences among answer sets. Rare se-

quential pattern mining is considered in (Samet et al. 2017).

A general and hybrid approach to pattern mining is presented in Paramonov et al.

(2019), where different dedicated mining systems are employed to detect frequent patterns

and ASP is used to filter the results. Here, the tasks considered are itemset, sequence,

and graph mining, where local (frequency, size, and cost) and global (condensed repre-

sentations such as maximal, closed, and skyline) constraints are combined in a generic

way. The declarative approach here is devoted to post-process the patterns in order to

select the valid ones.

Mining serial patterns, that is, frequent sequential patterns from a unique sequence of

itemsets, is introduced in Guyet et al. (2014), whereas sequential pattern mining with

two representations of embeddings (fill-gaps and skip-gaps) and several kinds of patterns

are considered in Guyet et al. (2016).

Other declarative approaches, not constrained to ASP and based, for example, on

constraint programming or SAT, are also discussed in the literature (Négrevergne et al.

2013; Guns et al. 2017; 2016). Itemset mining is considered in Négrevergne et al. (2013), in

which a novel algebra for programming pattern mining problems is introduced. It allows

for the generic combination of constraints on individual patterns with dominance relations

between patterns. Dominance relations are pairwise preferences between patterns, used

to express the idea that a pattern p1 is preferred over another pattern p2. Various settings

are described with combinations of constraints and dominance relations, including maxi-

mal and closed itemset mining, sky patterns, etc. Dominance programming offers a great

extensibility, although it is not as general as our approach. Furthermore, the context

considered here only aims at itemset mining. Itemset, sequence, and graph mining tasks

are also considered in a framework introduced in Guns et al. (2016), in which these pat-

tern types are studied under the lens of constraint-based mining (Mannila and Toivonen

1997). A declarative framework for constraint-based mining is presented in Guns et al.

(2017), where the objective is to bridging the methodological gap between data min-

ing and constraint programming by providing a framework to support constraint-based

pattern mining. In particular, the authors offer several contributions, spanning from a

novel library of functions and constraints in the MiniZinc language to support model-

ing itemset mining tasks, to the automatic composition of execution strategies involving

different solving methods. Indeed, the work in Guns et al. (2017) shares some common

similarities with our proposed approach. In particular, both the approaches provide a

general framework for high-utility mining, and they are based on declarative paradigms.

Our approach supports the various extensions to HUPM introduced in Section 2, which

are not supported by Guns et al. (2017). Nevertheless, Guns et al. (2017) also deals with

multiple databases, which is a feature not currently supported by our approach.

An interesting task studied in the literature is the discovery of skyline patterns, or

“skypatterns” (Soulet et al. 2011; Ugarte et al. 2017). Skypatterns draw their definition

from the economics and multi-criteria decision-making worlds, in which they are com-

monly called Pareto efficiency or optimality queries. Intuitively, given a multidimensional

space where a preference is defined for each dimension, a point a dominates another point
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b if a is better than b in at least one dimension, and a is not worse than b on every other

dimension. Given a set of patterns, the skyline set contains patterns that are not dom-

inated by any other pattern (Ugarte et al. 2017). Skypattern mining provides an easy

expression of preferences over patterns by combining several measures on patterns. An

approach for skypattern mining is presented in Ugarte et al. (2017). Here, the authors

address the discovery of skypatterns by proposing a unified methodology based on the

following contributions, namely (i) a condensed representation of patterns, (ii) a dynamic

method based on constraint programming that allows a continuous refinement of the sky-

line constraints, and (iii) the notion of particular local extrema in the search space of

the problem. The work in Ugarte et al. (2017) shares few similarities with ours; actually,

the two approaches can be considered complementary.

7 Conclusion

In this paper, we introduced a general framework for HUPM with several extensions

that significantly broaden the applicability of HUPM even in non-classical contexts. We

provided an ASP-based computation method, which exploits the most recent extensions

of ASP, and we have shown that this solution allows for a reasonable and versatile

implementation. A real use case on paper reviews has been employed as a fil-rouge to

analyze the different aspects of the proposed framework; in particular, we have shown

that the introduction of facets and suitable advanced utility functions can both reduce

the amount of relevant patterns and provide deep insights on the data, thus advancing

the state-of-the-art on the interesting topic of high-utility pattern mining. An application

to a biomedical context has also been presented and tested, which showed how the novel

pattern mining framework can be suitably exploited to design effective prediction models

on biomedical data.

The presented work is just a first step in this new direction of utility-based analyses

and several future research directions are now open. First of all, it will be interesting

to apply the new features of the framework to a wide spectrum of contexts, such as

biomedical data analysis, IoT data analysis, and fraud detection. A classification of the

computational properties of the various extended utility functions will be also useful

to devise ad-hoc algorithms. In particular, we plan to develop dedicated and efficient

algorithms for specific settings of interest, in order to provide fast computational methods

for extended high-utility patterns. Another interesting line of future research regards a

deeper study of the application of our e-HUPM to prediction tasks in various contexts.
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discovery. In Proc. of the 6th International Workshop on New Frontiers in Mining Complex
Patterns (NFMCP), Skopje, Macedonia. Springer International Publishing, 182–196.

https://doi.org/10.1017/S1471068423000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000066


Extended High-Utility Pattern Mining with ASP 343
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