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Let {pn} be a positive sequence. The Norlund transformation (N, pn) maps
the sequence {sn} into the sequence {tn} by means of the equation

1 "
tn = — Z Pn-A, (1)

Pnk = O
n

where Pn = £ pk.
The transformation (JV, p^) maps a sequence {JB} into the sequence {«„} by

means of the equation
1 "

"n = — E (2)
A matrix method is said to be regular if it is limit preserving for convergent

sequences. Necessary and sufficient conditions for the regularity of (1) and (2)
are, respectively,/^ = o(Pn) and J°n-» + oo.

Let A and B denote two regular matrix methods, and An(x) = I,kankxk, the
nth transform of a sequence x, We say that B is stronger than A if

An{x)^l implies Bn{x)-+l, I finite. (3)

If (3) continues to hold for / = ± oo, we say that B is totally stronger than
A (written B t.s. A).

The purposes of this paper are to extend the theorems of [8] to total com-
parison, and to establish additional properties between the two methods of
summability.

For completeness we quote the theorems from [8].

Theorem II. Suppose that {/>„} is positive non-increasing. Then in order
that (N, pn) should include (N, pn), it is necessary and sufficient that infn pn >0 .

[Note. Necessity is not stated by Ishiguro in his main theorem, but is given,
by his corollary.]

Theorem 12. If{pn} is non-decreasing, and pn = o(Pn), then (N,pn) includes
(N,Pn).

Let {/>„}, {qn} be positive sequences such that (N, pn) and (N, qn) are regular.
We shall first establish conditions for (N, qn) to be totally stronger than (JV, />„).
Let A = (ank), B = (bnk) be defined by ank = pk/Pn, k £ n, ank = 0, k>n,
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Kk = Qn-klQm k^n, bnk = 0, k>n, vn = Zkbnksk, and «„ as in (2). Then,
from (2), sn = /»~1(i>»«--J1)--i«»-i), P-x = 0. and

y <ln-k

" * = <> a ,
J "f

Pk Pk-H )Q

Therefore 5 = DA, where

ank —

dnn=^fl dnk=0,k>n.
PnQn

From Hurwitz [7], D will be totally regular if and only if there exists an
integer k0 such that dnk ^ 0 for all k>k0; i.e.,

Pk Pk+l

(Note that the regularity of (N, qn) guarantees that limn dnk = 0 for each k.)
Observing that n — k may be any positive integer we can formalize these remarks
as

Lemma 1. Let {/>„}, {qn} be positive sequences satisfying (i) /*„->•+ 00, (ii)
<?„ = o(Qn). Then (N, qn) t.s. (N,pn) if and only if

Pk+i > a = m a x f4m=l\ k > /Co> (5)
Pk m S 1 V 1m )

Theorem 1. Let {pn} be a real positive sequence satisfying Pn-> + 00 and
Pn = o(Pn). Then (N, pn) t.s. (N,pn) if and only ifpn + 1 ^ pnfor all n.

Proof. Consider Lemma 1 for qn = pn. If pn + 1 ^ pn for all n, then a ^ 1,
and (5) is satisfied.

To show the converse, suppose there exists an integer n for which pn+r <pn.
Then a>\, and the conditionpk+1/pk g£ a violatespn = o(Pn).

Theorem 1 includes Theorem 12 mentioned above, and corrects and
strengthens the statement of Theorem 1 of [14].

An alternate proof of the sufficiency of Theorem 1 is the following.
Let rn = 1 for all n. Then (N, rn) = (N, rn) = (C, 1). Using the proof of

[6, Theorem 20, p. 67] or [4, Theorem 2, p. 136], (N,pn) t.s. (C, 1). Using a
result of [12], (C, 1) t.s. (N,pn). Since t.s. is transitive, (N,pn) t.s. (N,pn).

Theorem 2. Let {/>„} be a non-increasing positive sequence. Then {N, />„) t.s.
(N, pn) if and only if Pn-> 00 as n-*ao.
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Proof. Suppose (N, pn) t.s. (N, pn). Since {pn} is non-increasing, pB = o(Pn)
and (N, pn) is regular. Also the sequence {/>„} is positive. Therefore (N, pn) is
totally regular. It then follows (see, e.g. [15, Theorem 2.2, p. 398]) that (N,pn)
must be totally regular, hence regular. Thus, we must hzvePn-*co as n~>co.

To show that the condition is sufficient, we shall make use of the following
lemma.

Lemma 2. Let {/»„} be a non-increasing positive sequence such that Pn-+ oo as
«->oo. Write

p(z) = £ pnz\ q(z) = -L = f qnz"
n = 0 p(Z) n = 0

(l/p(z) is clearly regular in some neighbourhood of the origin and thus can be
expanded in a power series),

\ — Z n = 0 ft = 0

Qn = o(n).

The method of proof is suggested by examining a paper of Krishnaiah
[9], particularly equation (4) on page 316. For \z\ < 1 ,

n = 1

where px = limn pn. If we write z = re19,

n = 1

1n = 1

Thus | (1 -z)p(z) |^ (1—r)p( f ) . Since Pn-> oo, p(r)-> oo as /•-> 1 - . Hence

uniformly in arg z a s r = | z | - + l — . Since

where Fn denotes a circle of radius 1— n~l, centre the origin, the conclusion
follows.

n

Using the notation of Lemma 2, and (1), we may write sn = £ Qn-k^kh-
k = 0
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Substituting in (2), we have

1 " '
«- - T Z P, I ir-fA

Pnr = O k = 0

n
= V R t
~ kL,QPnkk,

where
pk »

The theorem will be proved provided we can show that the matrix (/?„*) is
totally regular. We first appeal to the following

(6)

n = Z ankuk {the matrix C = (anfc) not neces-
k = 0

Lemma K [10, p. 488]. Let tn =

sarily regular), with ann 7̂  O./br a// n. Denote the inverse transformation, which
n

exists, byun= £ A*'*- ^ f°r al1 n> ann >0, ank g 0 ( 0 g f c < « ) , then fink ̂  0
* = 0

for all n, k.
The matrix corresponding to (N,pn) C^.A)"1. which is given by (4) with

Qn = Pn> satisfies the conditions of Lemma K.
n n

Moreover, Y I Pnk\ = Y Pnk = 1- Therefore B~1=(fnk) has finite
k = 0 fc = 0

norm, and it only remains to show that

limn

We may write

= 0 for each k; i.e., £ VAr-k = o(Pn).
r = k

kPn- (7)
r = k r = ft

From Lemma 2 (k being fixed), for each e>0 there exists a natural number
r0 such that | Qr-k \ ^ e(r—k) for r>r0. The sum of those terms on the right
of (7) for which r g r0 is fixed; since Pn—»oo, this sum is o(Pn). Thus, for all «
sufficiently large,

r = k
"Z

' = r o + l

Therefore

lim sup —
n-»oo Pn

Z A9r-*
r = k

and since £ is arbitrary, the conclusion follows.
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Two regular matrix methods A and B are said to be equivalent if A is stronger
than B and B is stronger than A. Combining Theorems 2 and II we have trie
following

Corollary 1. If {pn} is non-increasing and pn ^ <x>0, n = 0, 1, 2, ..., then
(N, pn) and (JV, pn) are equivalent.

A method B is said to be strictly stronger than A if B is stronger than A,
but there is a sequence x for which \imnBn(x) exists and limn/4n(x) does not.
For triangles (that is, infinite matrices with all elements zero above the main
diagonal, and all main diagonal elements non-zero) it is well known that trie
condition B is strictly stronger than A is equivalent to (i) BA ~1 is regular, and
(ii) AB~l has infinite norm.

Corollary 2. Let {pn} be a positive non-decreasing sequence with pn = o(Pn).
Then, ifsupnpn = +oo, (N,pn) is strictly stronger than (N,pn).

Proof. Note that, from the hypotheses on {/>„}, Pn ^ (n + \)p0 and hence

With A = (j>n-JPn), B = (pk/Pn), and C = AB~\ then cm = Po/pn.

II C"1 || ^ supn | l/cnn | = supn \pjpo | = +co,

and (N,pn) is strictly stronger than (N,pn).

Corollary 3. Let {/>„} be a positive non-decreasing sequence with pn-*c, where
c <2p0. Then (N, pn) and (N, pn) are equivalent.

Proof. Note that the hypotheses on {pa} not only ensure that Pn-* + oo, as
in the proof of Corollary 2, but also that pn = o(Pn).

We shall need the following result from [2], which also appears in [13].
Theorem A. Let C denote a regular triangle. If

l iminfn{|C n n |- X |cn, |}>A>0,

then C is equivalent to convergence.

If we let C be as defined in Corollary 2, then C is regular, because (N, pn) is
stronger than (N,pn). From [8, p. 122],

*<" Pn \ Pn/ Pn
and the result follows since c<2p0.

The condition on c in Corollary 3 is the best possible. For, let p0 = 1,
pn = c>l for n>0. Then, with the notation used in the proof of Lemma 2,
p(z) = ( l+(c-l)z) /( l -z) , giving us g(z) = [( l-zMz)]"1

so that Qn = ( - l)"(c-1)". For k ^ 1, (6) becomes

Pnk — L Qr-k — Un-k
Fn ' = * Pn

(cn+l)
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Using (8) one can demonstrate that the transformation is not regular when
c ^ 2.

Two matrices A and B are said to be totally equivalent if and only if A t.s. B
and B t.s. A. Lorch [12] has shown that (N,qn) t.s. (N,pn) if and only if
<Jn+i/<ln ^Pn+i/Pa for almost all n. Therefore, if (N,pn), (N,qn) are totally
equivalent, there exists an integer m such that

Pm _ Pm+l _ Pm+2 _
— • • • j

Q.m Qm+1 Qm+2

i.e.,pk = cqk for all n>m, and c = pjqm.
Formalizing these remarks we have

Theorem 3. Let {/?„}, {qn} be positive sequences, with Pn-> + oo, Qn-> + co.
Then (N,pn) and (JV, qn) are totally equivalent if and only if pn = cqnfor almost
all n, and some constant c.

Theorem 4. The methods {N, pn) and {N, pn) are identical if and only if
pn = const, for all n.

Proof. By hypothesis pn-kIPn = PklPn> which implies pn_k = pk for
0 ^ k ^ n; i.e.,pk = p0 for all k>0. The converse is trivial.

Ullrich [16] showed that the only Norlund matrices which are also Hausdorff
matrices are the Cesaro matrices. Agnew re-proved this result in [1]. It is of
interest to note which matrices of the form (N, pn) are also Hausdorff matrices.

Theorem 5. The only (N,pn) matrices that are also Hausdorff matrices are
those ofthe form pn = Ofor n>0 or pn = T(n+a)/r(n+l)T(a), a>0.

Proof I. Let A denote the matrix corresponding to a (N,pn) method.
Assume also that A is a Hausdorff matrix generated by a sequence pi. Then

a = = » a = ^

We may write pn-JPn in the form (p^JP^JiP^JPJ = n^^l-^). We
then have fin-ii^-tO = "(Mn-i-V-J, or

( n - l K _ i = ( n - | i 1 1 _ 1 K . (9)

Let fi0 = c. Then, from (9), (1 — ̂ 0)^1 = 0, and either fit = 0 or n0 = I.
If/ij = 0, then^n = 0 for all n>\, and the sequence is p0 = fi0 = c,pn = nn=0,
n>0. If Hi 7̂  0, then we must have fi0 = 1. fil can then be arbitrary. Let
(i, = a / 0. For all n> 1, from (9)

_

or

« —(n—l)a ( l - a
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where a = a/(l — a). We cannot have a = 1, for then, from (10), we would
have /in = 1 for all n, giving rise to the identity matrix. But it is impossible to
generate the identity matrix with a (N, pn) method.

A straightforward calculation will verify that the sequence {pn} corresponding
to (10) ispn = r(n+a)/r(«+l)r(a), hence the restriction that a>0.

Proof II. Associated with any triangular transformation

u= £ «„*** (ID
k = 0

n

is the " reverse " transformation un = Y an n-kSk, formed by reversing the
* = o '

order of the elements on each row of the matrix corresponding to (11). Using
the elementary properties of the forward difference operator A, defined by
Aun = un — un+1, it is easy to show that the reverse of any Hausdorff method
{H, n) is a Hausdorff method (H, X), where Xn = A"^o. Since the reverse of a
(JV, pn) method is (N, pn), it follows that a matrix is both (N, pn) and Hausdorff
if and only if the matrix of the reverse transformation is both Norlund and
Hausdorff. The result of Theorem 5 can then be deduced directly from the
results of [1] and [16].

An analogous result relating Hausdorff matrices and generalized Norlund
methods (N, p, q) (see [3] for the definition of (N, p, a)) appears in [11].

The following theorem appears in [14], where T'c denotes the Hausdorff
matrix generated by fin = c/(n+c).

Theorem R. Let {/?„} be a sequence of positive numbers such that

(k+c)pk>(k+l)pk+u c>0,

for almost all k. Then (N, pn) t.s. r'c, but not conversely.

In light of Theorem 5 we observe that T'c is a (N, pn) method with pn as
described in the discussion following equation (10). The theorem then follows
immediately from the result of [12] quoted earlier.

For completeness we point out that Dikshit [5] has established a number of
theorems comparing the relative strengths of the (N, pn) and (JV, qn) methods for
both ordinary and absolute summability. His principal result is the following.
Let qn>0, pn ^ 0, po>0, 0n-> + oo, pm = o(Pn). Then (N,pn) includes (JV, qn)
if and only if

£ \\(Pn-kQklqk)\=O(Pn),p.1=0.
k = 0

However, he does not consider questions of total inclusion, and so there is no
overlap in content with this paper.
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