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Let {p,} be a positive sequence. The Norlund transformation (N, p,) maps
the sequence {s,} into the sequence {z,} by means of the equation

lIM:

1
— —1Ss 1
P pnkk ¢y

t, =

where P, = ) p;.
k=0

The transformation (N, p,) maps a sequence {s,} into the sequence {u,} by
means of the equation

u, % ; PiSi- ¢))
A matrix method is said to be regular if it is limit preserving for convergent
sequences. Necessary and sufficient conditions for the regularity of (1) and (2)
are, respectively, p, = o(P,) and P,— + 0.
Let A and B denote two regular matrix methods, and 4,(x) = Z.a,.x,, the
nth transform of a sequence x, We say that B is stronger than A4 if

A,(x)—! implies B,(x)—1, I finite. 3
If (3) continues to hold for / = + oo, we say that B is totally stronger than
A (written B t.s. A).

The purposes of this paper are to extend the theorems of [8] to total com-

parison, and to establish additional properties between the two methods of
summability.

For completeness we quote the theorems from [8].

Theorem I1. Suppose that {p,} is positive non-increasing. Then in order
that (N, p,) should include (N, p,), it is necessary and sufficient that inf, p,>0.

[Note. Necessity is not stated by Ishiguro in his main theorem, but is given
by his corollary.]

Theorem 12. If {p,} is non-decreasing, and p, = o(P,), then (N, p,) includes
(N, py)-

Let {p,}, {4.} be positive sequences such that (N, p,) and (N, g,) are regular.
We shall first establish conditions for (¥, g,) to be totally stronger than (N, p,)-
Let A = (a,), B = (b,) be defined by a, = p/P,, k <n, a, =0, k>n,
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bnk = qn—k/Qm k é n, bnk = 05 k>na Uy = Ekbnkska and u, as in (2) Then:
from (2)’ Sp = pn—l(Pnun_Pn—lun— 1)? P—l = Oa and

v, = i dn-k (Pkuk—Pk—luk—l>

k=0 Qn Px
n—1
— _1_ Z (qn—k _ qn—k—-l) Pkuk+ qOPnun. (4)
Onk=0\ Py Dk+1 Prn

Therefore B = DA, where

dnk = (qn—k _ qn—k—l) f_lg’ k<n;

Dy Pr+1 / @n
d, =2P 4 0 ks
j X8

From Hurwitz [7], D will be totally regular if and only if there exists an
integer k, such that d,, = 0 for all k> k,; i.e.,

G-t _ n=k=1 > Ofor all n>k>k,.
Py Pr+1
(Note that the regularity of (&, g,) guarantees that lim, d,; = O for each k.)
Observing that n—k may be any positive integer we can formalize these remarks
as

Lemma 1. Let {p,}, {g,} be positive sequences satisfying (i) P,— + oo, (ii)
4 = o(Qy). Then (N,gq,) t.s. (N, p,) if and only if

Pet1 5 ;5 — max (‘i";‘) k = ke (5)

Pr mz1\ qm

Theorem 1. Let {p,} be a real positive sequence satisfying P,—+oo and
P, = o(P,). Then (N, p,) t.s. (N, p,) if and only if p,,, = p, for all n.

Proof. Consider Lemma 1 forg, = p,. Ifp,,; = p,foralin, thena £ 1,
and (5) is satisfied.

To show the converse, suppose there exists an integer n for which p, ., <p,.
Then a> 1, and the condition p, ;. ;/p, = a violates p, = o(P,).

Theorem 1 includes Theorem I2 mentioned above, and corrects and
strengthens the statement of Theorem 1 of [14].

An alternate proof of the sufficiency of Theorem 1 is the following.

Let r, =1 for all n. Then (N, r,) = (N, r,) = (C, 1). Using the proof of
[6, Theorem 20, p. 67] or [4, Theorem 2, p. 136], (N, p,) t.s. (C, 1). Using a
result of [12], (C, 1) t.s. (N, p,). Since t.s. is transitive, (N, p,) t.s. (N, p,).

Theorem 2. Let {p,} be a non-increasing positive sequence. Then (N, p,) t.s.
(N, p,) if and only if P,— o0 as n—co.
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Proof. Suppose (N, p,) t.s. (N, p,). Since {p,} is non-increasing, p, = o(P,,)
and (N, p,) is regular. Also the sequence {p,} is positive. Therefore (¥, p,) is
totally regular. It then follows (see, e.g. [15, Theorem 2.2, p. 398]) that (N, p,,)
must be totally regular, hence regular. Thus, we must have P,— o0 as n— co.

To show that the condition is sufficient, we shall make use of the following
lemma.

Lemma 2. Let {p,} be a non-increasing positive sequence such that P,—co as
n—co. Write

— T n — _1__ = o n
p(Z) - n;o Pnz’, q(Z) - p(Z) ";0 q,.2

(1/p(2) is clearly regular in some neighbourhood of the origin and thus can be
expanded in a power series),

Q(Z) = _q_(z—) = Z an"’ Where Qn = Z qk‘
1—z a<o kK=o
Then Q, = o(n).
The method of proof is suggested by examining a paper of Krishnaiah
[91, particularly equation (4) on page 316. For |z| <1,

(1-2)p(z) = il Poe1 = 21— 2"+ Doy

n=

where p,, = lim, p,. If we write z = re®,

A-p@) = . (a1 =11 cos n)+ s

2 Y (Pa-r—P)A=) 4Py

n=1

= (1—r)p(r).
Thus | 1-2)p(z) | = (1~r)p(r). Since P,— 0, p(r)— 0 as r—1~. Hence

|0(2) | = o(l—i—r)

uniformly in argzasr =|z|—> 1 —. Since

0. L[ 22,

N »
2ni Jp, 2"t

where T, denotes a circle of radius 1 —n~", centre the origin, the conclusion
follows.

n
Using the notation of Lemma 2, and (1), we may write s, = ), q,,_kPktk'.'
k=0
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Substituting in (2), we have

where
; Dvq,- k* (6)

The theorem will be proved provided we can show that the matrix (8,;) is
totally regular. We first appeal to the following

Lemma K [10, p. 488). Lert, = Z": AUy (the matrix C = (o) not neces-
sarily regular), with o, # 0 for all n.k =Doenote the inverse transformation, which
exists, by u, = k—io Butie If, foralln, a,,>0,0, <00 < k<n), then B, = 0
for all n, k.

The matrix corresponding to (N, p,) (N, p,)~*, which is given by (4) with
q, = D,, satisfies the conditions of Lemma K.

Moreover, Y |Bul= 3 Bu=1. Therefore B~! =(B,) has finite
k=0 k=0

norm, and it only remains to show that

lim, B, = O for each k; i.e,

r

™=

PGr—x= O(Pn)'

It

k
We may write
n 1

Zk Ddr—r = :lgk Qr—k(pr_pr+ 1)+Qn—kpn' (7)

From Lemma 2 (k being fixed), for each ¢>0 there exists a natural number
ro such that | Q,_, | < e(r—k) for r>r,. The sum of those terms on the right
of (7) for which r £ r, is fixed; since P,— o0, this sum is o(P,). Thus, for all n
sufficiently large,

n n—1
Zk DGr—k é 8{ Z+1 (r_k)(Pr—pr+1)+(n_k)pn} +0(Pn)
r= r=rg
= E{PH—PI'()'I‘I +(ro+ l—k)pro+ 1} +0(Pn)
= ¢eP,+ o(P,).
Therefore
lim sup i’ Z P9,k | <&
n-w nlr=k

and since ¢ is arbitrary, the conclusion follows.
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Two regular matrix methods 4 and B are said to be equivalent if A is stronger
than B and B is stronger than 4. Combining Theorems 2 and I1 we have the
following

Corollary 1. If {p,} is non-increasing and p, 2 ¢>0,n=0,1,2, ..., then
(N, p,) and (N, p,) are equivalent.

A method B is said to be strictly stronger than A if B is stronger than A,
but there is a sequence x for which lim,B,(x) exists and lim,A4,(x) does not.
For triangles (that is, infinite matrices with all elements zero above the main
diagonal, and all main diagonal elements non-zero) it is well known that the
condition B is strictly stronger than 4 is equivalent to (i) BA~' is regular, and
(ii) AB~1! has infinite norm.

Corollary 2. Let {p,} be a positive non-decreasing sequence with p, = o(P,).
Then, if sup,p, = + o0, (N, p,) is strictly stronger than (N, p,).
Proof. Note that, from the hypotheses on {p,}, P, = (n+1)p, and hence
P,— +o0.
With 4 = (pn-—k/Pn): B = (pk/Pn)9 and C = AB_I’ then Con = pO/pn'
IC™" Il Z sup, | 1/cu | = sup, | pulpo | = +oo,
and (N, p,) is strictly stronger than (N, p,).

Corollary 3. Let {p,} be a positive non-decreasing sequence with p,—c, where
c<2po,. Then (N, p,) and (N, p,) are equivalent.

Proof. Note that the hypotheses on {p,} not only ensure that P,— + co, as
in the proof of Corollary 2, but also that p, = o(P,).
We shall need the following result from [2], which also appears in [13].

Theorem A. Let C denote a regular triangle. If
liminf, {| ¢, |— > | cm [}>2>0,
k<n
then C is equivalent to convergence.

If we let C be as defined in Corollary 2, then C is regular, because (¥, p,) is
stronger than (N, p,). From [8, p. 122],

2
el 5 leal =B (1-22) 20y
k<n p, Pn Pn
and the result follows since c<2p,.

The condition on ¢ in Corollary 3 is the best possible. For, let p, = 1,
D, = ¢>1 for n>0. Then, with the notation used in the proof of Lemma 2,
p(2) = (1+(c—1D2)/(1-2), giving us Q(z) = [(1-2)p()]™" = 1/(1+(c—1)2),
so that @, = (—1)(c—1)". For k = 1, (6) becomes

= C_Pk - _cP,
nk P, r;k qr-k P, Qn—x

_ (= D" *e(ck+1)(c—1)""*
(cn+1) )

(¥
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Using (8) one can demonstrate that the transformation is not regular when
c=2.

Two matrices 4 and B are said to be totally equivalent if and only if A t.s. B
and B t.s. A. Lorch [12] has shown that (N,q,) t.s. (N, p,) if and only if
Gu+1/Gn S Pns1/Pn for almost all n. Therefore, if (N, p,), (N, g,) are totally
equivalent, there exists an integer m such that

Pm _ Pm+1 _ Pm+a _

ey

dm dm+1 Im+2

i.e., p, = cq, for all n>m, and ¢ = p,/q,,-
Formalizing these remarks we have

Theorem 3. Let {p,}, {q,} be positive sequences, with P,— + o0, Q,— + 0.
Then (N, p,) and (N, q,) are totally equivalent if and only if p, = cq, for almost
all n, and some constant c.

Theorem 4. The methods (N, p,) and (N, p,) are identical if and only if
P, = const. for all n.

Proof. By hypothesis p,_./P, = pi/P,, which implies p,_, = p, for
0=k =Zn; ie., p, = poforall k>0. The converse is trivial.

Ullrich [16] showed that the only N6rlund matrices which are also Hausdorff
matrices are the Cesaro matrices. Agnew re-proved this result in [1]. It is of
interest to note which matrices of the form (N, p,) are also Hausdorff matrices.

Theorem 5, The only (N, p,) matrices that are also Hausdorff matrices are
those of the form p, = 0 for n>0 or p, = T(n+a)/T(n+1)I'(a@), a>0.

Proof 1. Let A4 denote the matrix corresponding to a (N, p,) method.
Assume also that 4 is a Hausdorff matrix generated by a sequence u. Then

Pn Pn-1
Oun = 7= = Uns Qp, n— =—=71A"_ = MUy 1 — Hp)-
p, ~ Hw Gnn-1= Tp Hn-1 = My 1 — i)

We may write p,-,/P, in the form (p,— 1/Pp- 1 )(Pu-1/P) = p,— (1—p,). We
then have ﬂn—l(l —ﬂn) = n(ﬂn—l —#n)’ or

(n_ 1)/"11—1 = (n _I‘ln—l)“n' (9)
Let gy = c¢. Then, from (9), (1—po)u; = 0, and either y;, = 0 or u, = 1.
If u; = O, then g, = Oforalln>1, and the sequenceispy = yo = ¢, p, = p,=0,

n>0. If p, # 0, then we must have yo = 1. y, can then be arbitrary. Let
u; = a # 0. Foralln>1, from (9)

— (n_ 1)#71—1
n—li,

Hn

or
o a a

n—(n—1)a - (1-o)n+a - n+a

o= (10)
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where a = af(1—«). We cannot have a = 1, for then, from (10), we would
have u, = 1 for all n, giving rise to the identity matrix. But it is impossible to
generate the identity matrix with a (N, p,) method.

A straightforward calculation will verify that the sequence {p,} corresponding
to (10) is p, = I'(n+a)/T(n+1)T(a), hence the restriction that a>0.

Proof II. Associated with any triangular transformation

tn = Z OlukSk (11)
k=0

n
is the “ reverse ” transformation u, = ). o, ,;S, formed by reversing the
k=0

order of the elements on each row of the matrix corresponding to (11). Using
the elementary properties of the forward difference operator A, defined by
Au, = u,—u,.,, it is easy to show that the reverse of any Hausdorff method
(H, p) is a Hausdorff method (H, 1), where A, = A"u,. Since the reverse of a
(N, p,) method is (N, p,), it follows that a matrix is both (N, p,) and Hausdorff
if and only if the matrix of the reverse transformation is both Noérlund and
Hausdorff. The result of Theorem 5 can then be deduced directly from the
results of [1] and [16].

An analogous result relating Hausdorff matrices and generalized Norlund
methods (N, p, q) (see [3] for the definition of (¥, p, q)) appears in [11].

The following theorem appears in [14], where T, denotes the Hausdorff
matrix generated by p, = ¢/(n+c).

Theorem R. Let {p,} be a sequence of positive numbers such that

(k+)p>(k+Dpiy s, >0,
for almost all k. Then (N, p,) t.s. T, but not conversely.

In light of Theorem 5 we observe that T, is a (N, p,) method with p, as
described in the discussion following equation (10). The theorem then follows
immediately from the result of [12] quoted earlier.

For completeness we point out that Dikshit [5] has established a number of
theorems comparing the relative strengths of the (N, p,) and (N, ¢,) methods for
both ordinary and absolute summability. His principal result is the following.
Let ¢,>0, p, 2 0, po>0, 0, +0, p, = o(P,). Then (¥, p,) includes (N, g,)

if and only if
kzo I Ak(pn—ka/qk)i =0(P,), p-1=0.

However, he does not consider questions of total inclusion, and so there is no
overlap in content with this paper.

https://doi.org/10.1017/50013091500012487 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500012487

116 BRIAN KUTTNER AND B. E. RHOADES

REFERENCES

(1) R. P. AGNEw, A genesis for Cesaro methods, Bull. Amer. Math. Soc. 51, (1945),
90-94.

(2) R. P. Agnew, Equivalence of methods for evaluation of sequences, Proc. Amer.
Math. Soc. 3 (1952), 550-556.

(3) D. BorweEIN, On products of sequences, Journal London Math. Soc. 33 (1958),
352-357.

(4) SoBHA DEBI, Some results on total inclusion for Nérlund summability, Bull.
Calcutta Math. Soc. 47 (1955), 135-141.

(5) G. D. Dxsarr, On inclusion relations between Riesz and Nérlund means,
Indian Journal of Math. 7 (1965), 73-81.

(6) G. H. HarDY, Divergent Series (Oxford, 1949).

(7) W. A. Hurwirz, Some properties of methods of evaluation of divergent
sequences, Proc. London Math. Soc. (2), 26 (1927), 231-248.

(8) Kazuo IsHiGURO, The relation between (IN,p,) and (N,p,) summability, Proc.
Japan. Acad. 41 (1965), 120-122.

(9) P. V. KrisuNAIAH, On Kakeya’s theorem, Journal London Math. Soc. 30
(1955), 314-319.

(10) B. KutTNER, The problem of “total translativity”” for Hoélder summability,
Journal London Math. Soc. 29 (1954), 486-491.

(11) B. KUTTNER, Note on the generalised Norlund transformation, Journal
London Math. Soc. 42 (1967), 235-238.

(12) Lee LorcH, Supplement to a theorem of Cesaro, Scripta Mathematica 23
(1957), 163-165.

(13) R. RaDo, Some elementary Tauberian theorems (I), Quart. J. Math. 9, (1938),
274-282,

(14) B. E. RHOADES, On the total inclusion for Nérlund methods of summability,
Bull. Calcutta Math. Soc. 52 (1960), 123-125.

(15) B. E. RuoapnEes, Hausdorff summability methods, Trans. Amer. Math. Soc.
101 (1961), 396-425.

(16) E. UrLricH, Zur Korrespondenz zwier Klassen von Limitierungsverfahren,
Math. Zeit. 25 (1926), 382-387.

DEPARTMENT OF PURE MATHEMATICS,
UNIVERSITY OF BIRMINGHAM
ENGLAND

DEPARTMENT OF MATHEMATICS
INDIANA UNIVERSITY
BLOOMINGTON, INDIANA, U.S.A.

https://doi.org/10.1017/50013091500012487 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500012487

