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Basal perturbations under ice streams: form drag and
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ABSTRACT. Classical sliding theories consider ice sliding over obstacles which are
much shorter than the thickness of overlying ice. Here we present a theory which considers
“form drag” generated under ice streams by large obstacles such as subglacial bedforms,
which may have lengths comparable to ice thickness. We also investigate how perturbations
at the surface of an ice stream can be generated by such bedforms, and develop a mathe-
matical framework for separating the effects of such local (kilometre-scale) variations in

ice flow from the bulk flow of the ice stream.
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Ing. 1. Geometry of ice-flow problem.

1. INTRODUCTION

Traditionally, analytical studies of glacier and ice-sheet flow
have considered length scales in the downstream direction
which are either much shorter or longer than the thickness
of ice. The former corresponds to classical models of basal
sliding (e.g. Nye, 1969, and particularly Fowler, 1979, 1981),
while the latter leads to the shallow-ice approximation (e.g.
Hutter, 1983). A consistent model which deals with ice flow
over basal undulations whose wavelengths are comparable
with ice thickness is, however, desirable as it could elucidate
how large obstacles such as drumlins and other glacial bed-
forms generate “form drag”

Here we present a two-dimensional model for rapid ice
flow over such large-wavelength obstacles (i.e. of lengths
comparable to ice thickness). We restrict ourselves to the

* Present address: Department of Earth and Ocean Sciences,
University of British Columbia, 6339 Stores Road, Vancouver,
British Columbia V6T 1Z4, Canada.

https://doi.org/10.3189/172756502781831269 Published online by Cambridge University Press

case where these obstacles play a significant role in the force
balance of the ice flow, analogous to classical basal sliding.
Given a stress tensor o and a bed z = H(z) with normal n
and tangent t (cf. Fig. 1), the force exerted by a section of bed
on the body of ice 1s

—/ on|,_pds = —/n -on|,_gnds —/t -on|,_gtds,

(1)
where the integral is taken over the section of bed in
question and ds denotes an element of arc of the bed. In
classical hard-bed sliding, local basal shear stress
t-on|,_; is usually assumed to be negligible due to the
presence of a continuous regelation film. A thin weak layer
of deforming sediment (e.g. Engelhardt and Kamb, 1998)
under an ice stream could have a similar effect; moreover,
it might suppress small-scale roughness generated by small
obstacles such as clasts, as these would be sheared along
with the till matrix. It is, however, conceivable that suffi-
ciently large obstacles such as drumlins may contribute to
force balance in the downstream direction through the first
term on the righthand side above, which we have referred to
as “form drag” The theory constructed in sections 2—5
assumes that form drag is significant, and the scalings intro-
duced in section 4 reflect this. Consequently, our theory is
an extension of classical basal sliding theory to finite ice
depth. We do not, however, ignore the possibility of small-
scale roughness or local basal shear stress due to sediment
deformation, but merely assume that basal “friction” due to
these terms does not dominate over the effect of large-scale
bed topography in determining flow velocities. This will be
the case for a given bed topography if basal “friction” is suf-
ficiently small, or, for a given local sliding law, if bed topog-
raphy has sufficient amplitude. An analogous approach was
previously taken in classical sliding theory by Morland
(1976b) and Fowler (1981).

Certain restrictions on mean bed and surface slope (cf. sec-
tions 4 and 5) do, however, have to be applied to our theory;
essentially the mean surface slope of the ice body has to be
much smaller than the local bed roughness slope, which in
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Fig. 2. Problem considered by Gudmundsson and others (1998).

turn is small compared with unity. This would obviously
apply to drumlin-type basal topography under an ice stream;
consequently most of the subsequent discussion refers to ice
streams. While there is no unambiguous evidence that drum-
lins or other bedforms exist under present-day ice streams,
geological evidence suggests that rapid sliding did occur over
drumlinized terrain, for instance in the Puget Sound area
(U.S.A) during the last Ice Age (e.g. Brown and others, 1987).

Morland (1976a) was the first author to try to include the
notion of finite ice depth in a theory of basal sliding. However,
his solution of the flow equations does rely on a half-space
(infinite depth) geometry, and he does not deal with perturb-
ations caused at the glacier surface by bumps on the bed.
Moreover, the ice-flow geometry considered by Morland is
an inclined slab, whereas we consider a general ice-stream
geometry and show explicitly how to separate the local flow
problem over basal topography from the problem of the bulk
flow of the ice stream; this may be seen as analogous to the
asymptotic matching procedure of Fowler (1979, 1981), which
relates the local basal sliding problem to the problem of bulk
glacier flow. In the present case, however, the separation of
the two flow problems is considerably more involved since
they cannot be separated geometrically into a boundary layer
and an outer flow. Instead, a more complicated multiple-
scales approach must be used.

The assumption of significant form drag sets this analysis
apart from those of Gudmundsson and others (1998), who
studied the effect of basal perturbations on ice-stream sur-
faces, of Morland (2000), who considered basal undulations
under ice sheets, and those of other authors who have consid-
ered the effect of basal perturbations on finite-depth ice flow
(e.g. Hutter and others, 1981; Hutter, 1983; Rech, 1987). All of
these authors consider perturbations to a basic shearing flow,
where form drag is a higher-order correction, whereas our
analysis assumes that form drag is of leading order. Indeed,
our model may be applied to the case where there is no
small-scale roughness and hence no “sliding law” in the clas-
sical sense, whereas Gudmundsson and others (1998) and
Morland (2000) require a sliding law to be prescribed. How-
ever, as both Gudmundsson and others (1998) and the pres-
ent paper consider rapid ice flow over basal topography,
some of the results obtained are similar. As we point out in
section 3, the two models basically differ in assumptions
about the size of basal obstacles and of basal shear stresses.

A two-dimensional model, by its very nature, has to
neglect lateral shear (e.g. Whillans and Van der Veen, 1997).
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However, as lateral shear is unlikely to vary over distances
comparable with ice thickness (since ice streams are much
wider than thick), this neglect is tantamount to ignoring a
constant term in the local force balance, or equivalently, to
overestimating the driving stress.

2. MODEL

The geometry of the problem is illustrated in Figure 1. We
consider the flow of Newtonian viscous ice over a prescribed
bed z = H(z), while z = D(x,t) denotes the upper surface
of the ice. Given viscosity 77, density p and acceleration due
to gravity ¢, and denoting the velocity field by u = (u, w),
we obtain the usual slow-flow equations

nViu—Vp—pgk =0, (2)
V-u=0, (3)

where k is the z-unit vector. At the surface z = D, we pre-
scribe vanishing shear and normal stress,

S —
L+ (5

(- ()Gt 2 (e-50)] -

(4)

on 6w (OD\*0u 0D (0w Ou
e (82 )
1+ (%) lﬁz Or) Ox Ox \Oxr Oz
(5)
while the evolution of D(z,t) is governed by a kinematic
boundary condition (where accumulation is ignored)
oD oD
o T
At the base of the ice stream z = H, we suppose that there
may be an applied shear stress 7, (up, ) which is a function

w onz=2D. (6)

of basal sliding velocity w1, and position z,

s () ) ) 5 -5

= Tb(ub,x), (7)

- (1 . (‘2%)) " ®)

T, may arise if there is some microscale roughness or if there
is a thin deforming sediment layer with sufficient shear
strength. For a bed with no small-scale resistance, we simply
put 7, = 0. Lastly, we have a kinematic boundary condition
analogous to Equation (5) where basal melt is ignored,

OH
W= U onz=H. ©)

3. GUDMUNDSSON’S MODEL

Gudmundsson and others (1998) assume that both z = H
and z = D are straight, parallel lines inclined at some angle
« to the horizontal, and then perturb them slightly (see Fig.
2; in fact, it is convenient to realign the coordinate system
with these straight lines). A linearization of the equations
in the previous section (with a particular choice of sliding
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Fig. 3. Scales for the ice-stream flow problem.

law 7,) is then performed on the basis that the perturbations
introduced are small.

A crucial point, however, is that small geometrical per-
turbations may in fact introduce O(1) or even large perturba-
tions into the stress field when sliding is rapid. To understand
this, consider a bed perturbation of size h and wavelength D
(scales for bed bump height and ice thickness, respectively)
in Equation (8). Vertical velocity is then perturbed by an
amount w ~ uph/D by such a bump. If this perturbation is
of O(1) compared with the unperturbed shearing velocity in
the ice ug, then a linearization of boundary condition (7)
may fail, depending on the form of 7, in Equation (8). It is
easy to see that, if sliding is rapid in the sense that u,/us >
1, w ~ ug occurs for fairly subdued bumps, namely, when
h/D ~ ug/uy. Gudmundsson and others (1998) estimate
up, /us at around 5000 for a typical ice stream, so w ~ ug cor-
responds to h ~ 0.2 m when D = 1000 m. If w is large com-
pared with us—and the previous argument indicates that
this may in fact be the case when h is still quite small — then
we may see terms in Equation (7) become important which
are neglected, regardless of the choice of 71,, in Gudmundsson
and others’ linearization. These terms include the “normal
stress” effects which lead to form drag in classical basal sliding
theory, and the rest of this paper is concerned with the situ-
ation where they are important.

4. NON-DIMENSIONALIZATION

We define the following scales (see Fig. 3): [D] for the mean
thickness of the ice stream (and also for the mean variation
inbed elevation over the length of the ice stream), [L] for the
length of the ice stream, [U] for a typical basal sliding
velocity and [u] for typical internal deformation velocities
(note that [U] and [u] are distinct and may be asymptoti-
cally different). Moreover, we suppose that there are bumps
of wavelength ~ [D] and amplitude [h] on the bed, and cor-
responding perturbations of height [d] to the ice-stream sur-
face. [7] will denote a typical deviatoric stress, while [7g] is a
scale for the driving stress, distinct from [7]. Note that,
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because we scale the change in bed elevation H over the
length of the ice stream L with [D], these scalings would
not apply to a steep glacier geometry.

As in shallow-ice theory, the mean surface slope of the
ice stream is assumed to be small,

ei%<<1. (10)

There are then two important asymptotically different hori-
zontal length scales, [D] and [L]. We are mostly interested in
the local flow problem on the short length scale [D], but the
driving stress arises only because there is a mean decrease in
surface elevation in the downstream direction over the
length of the ice stream. One cannot therefore ignore vari-
ations on the long scale entirely, and this suggests multiply
scaled horizontal coordinates and associated time variables

= [L]X* = [D]a*, (11)
_ [ _ (D)
=T =T (12)

(x*,t*) and (X*,T*) are, of course, not independent, as
(X*,T*) = e(a*,t*). In the limit € < 1 one can, however,
treat them as independent in the context of a multiple-scales
expansion (e.g. Holmes, 1995). The “inner” variables (z*, t*)
can be thought of as describing local variations, whereas the
“outer” ones (X*,T*) describe the bulk behaviour of the ice
stream. The appropriate transformation of derivatives is then

0 1 0 0
%‘ﬁ(%“ﬁ)’ (13)

o [Ul[o 0

I N ) 14

7 1ol (o7 <o) Y
In his account of classical sliding, Fowler (1981) separated
bed elevation into a smoothed bed and a local roughness

component. Following his example, we define a smoothed
bed elevation as a running average:

Ly
D (0) = 5= [ HE@rd, 1)

where [D] < Ly < [L] so that the smoothed bed thus
defined depends only on the outer variable X*. Implicit in
this definition is the assumption that basal topography
occurs on asymptotically distinct length scales [D] and [L]
with insignificant topography of intermediate wavelengths,
which makes the smoothing above unique (cf. also Fowler,
1981). In practice, one might choose for Ly the geometric
mean of [D] and [L], Ly = ([D] [L])1/2 ~20 km for a typical
ice stream. It is expedient to apply a similar smoothing pro-
cedure to surface elevation and velocity, thus

1 Ly
[D|D*(X*, ¢, T") = ——

T oL _LMD(“&t)dﬁ, (16)

Ly
[OU(X*,t5,T") =

= fM _LMU(.T + 5, t)|z:H df . (17)
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These decompositions allow the following dimensionless
variables to be defined in addition to Equations (11) and (12):

u= i[U}U*(X*,t*,T*)—&-ke[U]( * gﬁé —(2"—H") gﬁé)

+ [u]u*(2*, 25, t*, X*, T), (19)
H = [D|H*(X™) + [h)h*(z*, X*), (20)
D = [DID*(X*,¢*,T*) + [d]d" («*, t*, X*, T") , (21)
T = [Ta] T, up, = [Ulug, (22)
p = pglD)(D" — =) = 2lrle/v e+ [rlp", (23)

0X*
where i and k are the 2- and 2-unit vectors, respectively. The
decompositions of u and p introduced here may seem over-
elaborate at first sight; they do, however, lead to some con-
venient simplifications later.

For a given ice-stream geometry, one can estimate the
thickness and length scales [D] and [L] and the roughness
scale [h]. It remains to define the other scales in terms of
these. Clearly, the driving stress is

[7a] = pglDle. (24)
If the aspect ratio of a typical local bed bump is defined as
. M
V== (25)
(D]

then the assumption that form drag in Equation (1) is a sig-
nificant term in force balance suggests that (cf. Fowler, 1981)

) = 7 (26)

v

If basal bumps are shallow with v < 1, as will be assumed,
then [7] > [74] and hence deformational velocities will be
much greater than any shearing velocities due to the driving
stress (ug defined in section 3)". This explains why both com-
ponents of the local “deformational” part of the velocity field
are scaled with [u] in Equation (19), and Equation (9) suggests

we put
[u]
= 27
But [7] is a typical deviatoric stress, and so we have
nlu
[7] = % . (28)
Combining Equations (26-28) gives us [U] and [u]:
_ [nl(D] _ [nl(D]
W= = @)

Note that this derivation assumes that [U] is determined pri-
marily by form drag, and not by the sliding law 7,(up, ). In
other words, the scaled basal shear stress 777 ~ 7,([U], z)/[74]
must be O(1) (or small) for all z and the value of [U] calcu-
lated here.

In a more realistic model, one might use a Glen’s law

! “Shearing velocity” is here used to refer to the velocity
which arises if the ice stream flows in simple shear, with
the driving stress supported locally at the base and no
bed bumps present, while “deformational velocities” refers
to non-laminar velocities introduced by the presence of
bed topography.
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rheology € = A7" with an exponent n rather than a fixed
7, and replace Equation (28) by [r] = A’l/"([u}/[D])l/n,

from which one obtains

n
) = A0
Using [14] = 10* Pa, [D] =1km,n =3, A =10 **s 'Pa * and
[h] = 50 m (as a representative drumlin height scale), one
obtains [U] &~ 5kma ', which is clearly about an order of
magnitude too large for the Siple Coast ice streams (which
have low driving stresses of ~10* Pa), suggesting that glacial
bedforms are unlikely to generate significant form drag.

C =2 )

However, as drumlins usually have steep upstream faces,
and the estimate (27) is based on approximating the local
bed slope by v, the value of ¥ = 0.05 may in fact under-
estimate the effect of bedforms. This is significant because
[U] in Equation (30) depends strongly on v; with the values
above but v = 0.1 instead of 0.05, we find [U] ~ 315ma .
Moreover, we find in section 7 that even a conservative esti-
mate of v can give rise to realistic sliding velocities.

It remains to fix [d], the scale for surface perturbations.
Two mechanisms affect how large surface perturbations will
be. Firstly, advection in Equation (6) suggests

[d[U]
Dl [ = [d=vD] (31)
and, secondly, hydrostatic pressure changes in Equation (5)
would lead to
= = W=

v
For a consistent model, one should choose the smaller choice
of [d] above. For the present we choose Equation (31), and
consider later in section 5.2 the rescaling required when
e/lv L v.

5. MULTIPLE-SCALES EXPANSION

The scaled variables defined in the previous section are sub-
stituted in the model in section 2, and we omit the asterisks
for convenience. All dependent variables other than H, D
and U are assumed to depend on both inner and outer vari-
ables, which we treat as independent. In order that ordering
in a multiple-scales expansion be preserved uniformly with
respect to the inner variables, dependent variables must be
bounded functions of the inner variables,  and ¢ in our case.
Furthermore, the averaging procedures (15-17) now yield

1 "
AEECE/_R h(z, X)dz = 0, (33)
1 R
égl;cﬁ[Rd(z,t,X,T) dz =0, (34)

1 R
Jm 1 U@t X Ty =0, (35)
The dimensionless model contains two small parameters, v
and e. We shall assume that € < v < 1, and construct a
leading-order model on this basis. The assumption that
€ K v is clearly realistic for most glacial bedforms; more-
over, it ensures that deviatoric stresses [7] = pg[D]e/v are
much smaller than hydrostatic pressures pg[D]. If this were
not the case, one would expect widespread cavitation even
in the absence of pressurized subglacial water.

As the boundaries of the ice-flow domain are
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z=H +vhand z = D + vdand v < 1, the boundary con-
ditions are expanded in Taylor series about z = H and
z =D under the assumption that the flow field is suffi-
ciently smooth to allow expansion to the required order.
This approach can also be found in Nye (1969) and Morland
(19764, b), and allows the problem to be considered on the
simpler domain H < z < D.

5.1. Expansion and simplification

To the error indicated, the scaled field equations become

Viu - Vp — iug—)’i =0(&/v), (36)
Ou Ow

while boundary conditions (4) and (5) at the surface are

@_Fa_w_F d @4_82_10 +2% @_%
oz ox " 022 Ox0z Ox \ 0z Ox

= O(e, %) onz=D, (38)
2
p—28—wzy—d+0(y) onz=D. (39)
0z €

In Equation (6) u|,_p, 4 and w|,_p_,, are expanded inTaylor
series to some order n about z = D

la_D + @ + U@ 4+ z": deT—l 87._1’“%
vot Ot Or = (r—1)02"10r
(0D, DY e
v \oT ox) — rl 0z
e OH ou
+;<U6_X_ (D_H)a—X)
+ O(e, ") onz=D, (40)

and at the base:
@_Fa_w_F h @4_82_1” +2% @_@
oz ox " 022 Ox0z Or \ 0z Ox
= vm, + O(e, V*) onz=H, (41)

= (U, z,X) + O(v) onz=H. (42)

In Equation (9), we expand in a similar manner to Equation
(40) above,

vt i V'h" 0"w

oh N VR 9 uoh
or  “— (r—1)!0"10x

+O(e, ). (43)

Equations (40) and (43) are simplified by introducing an
averaging operator as

R

1
() =Jimop | fetzXDde ()

for any f for which (f) is well defined. Note that (F') = F for
any F independent of z (essentially the smoothed quantities
U, D and H), and from Equations (33) and (34), (d) = (h) =0.

Morcover, if f is bounded with respect to z, then

of\ _ o Ul
<a> = Jim SR =0, (45)

where [f]fzg = f(b) — f(a) in the usual notation. Armed
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with these properties of (-), we are now ready to manipulate
Equations (40) and (43). Now, from Equation (43)

n

0+ 55

r=1

oh N v /o, Oh ntl
_<U8gr:>+z(r—l)'<6zrlh 8{E>+O(V ,6)

r=1

onz=H. (46)

By integration by parts,
7 ar—luhr_l Oh\ V" 8”"%%
(r—11\0z1 or/)  rl\oz1 Oz

:”_T lim 7[%”:*— <h" O > . (7

0710z

The first term on the righthand side vanishes by Equation
(45). Therefore, by Equation (37)

7 o tu . 0Oh v/ 0w
(r—1)! <62T—1 h %> Tl <h 8zr> ' (48)

Substituting Equation (48) in Equation (46) and using the
properties of (-) listed above yields

(w) = 0", ) = O(e)

if, formally, an integer n exists such that 2" S, and the
expansions in Equations (40) and (43) can be carried out to

on z=H, (49)

this order.
Applying () to both sides of Equation (37) and using
Equation (45) yields
O{w)
0z
and so (w) = O(e) for all z.

In an anologous manner to the derivation of Equation

=0, (50)

(49), applying (-) to both sides of Equation (40) and manipu-

lating yields
oD oD o(D—-H)U\
o +e<—+—aX > =0(ev),  (51)

which leads to the conclusion that D depends only on the
outer time variable T to O(e), so D = D(X, T) to O(e); this
is hardly surprising since one would expect the mean thick-
ness of the ice stream to change on the convective time-scale
associated with its length (and not its thickness). Moreover,
if we define U as an average in time analogous to the spatial
average (-), then Equation (51) reduces to the familiar plug-
flow mass conservation equation for D,

oD O(D— H)U
—+———"—=0().
T X )
Equation (51) substituted back in Equation (40) yields the
kinematic boundary condition

@+Ua—i=w+0(y)

5% tU> onz=D.  (52)

5.2. Leading-order model

Dependent variables are expanded as u=uy+ O(v),
d = dy + O(v), etc. This yields the following leading-order
(to an O(v) error) model.
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From Equations (36) and (37),
Viuy — Vpy =0, (53)

V-uy=0, (54)

on the domain H < z < Dy, which is a semi-infinite strip with
respect to the inner coordinates, as H and D only depend on
the outer ones, X and T, to leading order. Note that, to leading
order, we have a non-shearing flow; this is again analogous to
classical sliding with shallow bed slopes (e.g. Fowler, 1986), and
arises because [7] > [rq).

From Equations (38) and (39), boundary conditions are

8U() 8w0
b} =D
pe +— p =0 on z 0, (55)
0w VD (56)
Do 0z o = Lo,
and from Equation (52)
ad ad
(%0 Uhg.’ 0—wy onz=Dy, (57)
while from Equations (41) and (43) one obtains
8U0 8w0
!} - H
% +— pe =0 on z , (58)
oh
wy = Uy — onz=H. (59)
oz

Note that, because the flow is non-shearing and [7] > [r4],
there is zero basal shear stress at leading order in Equation
(58); 7, in Equation (38) is a O(v) correction. We should also
comment at this point about the O(%/¢) term in Equations
(39) and (56); its retention as a possible O(1) term is justified
since, by virtue of € < v, we have v?/e > v. Hence the
O(v?/€) term is much greater than the O(v) error in the
leading-order model. We wish to retain the term explicitly
because, as will be seen in the next section, it is responsible
for the relaxation of surface perturbations to their steady-
state shape. There remains the possibility that v?/e > 1, in
which case a rescaling becomes necessary. This rescaling,
d*™* = (V?/€)d*, introduces no new terms into the leading-
order model, and the error remains of O(v). The rescaling
converts Equations (56) and (57), respectively, into (again
dropping asterisks)

ow
Po—?a—;:do onz= D, (60)

od od
2(&0 ano):wo onz=Dj. (61)

One may then wish to ignore the O(e/1?) terms on the lefi-
hand side in Equation (61). This is a singular perturbation, as
it ignores the time derivative in d, and given initial condi-
tions then require a boundary layer in £. When such a bound-
ary layer is taken into account, the behaviour of the original
leading-order model and its rescaled leading-order counter-
part then differs by a (small) term of (¢/1*)Uyddy/dz, and
one may therefore persevere with the original leading-order
model even when 12 /€ > 1.

Given Dy and H (which are constant with respect to the
inner variables x and ), Equations (53—59) almost constitute
a closed set of equations (given appropriate initial condi-
tions); it remains to fix the sliding velocity Uy (independent
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of the inner spatial variable x, but dependent on time %),
which is in fact the object of our study. Simple considerations
of momentum conservation suggest that one should expect,
by analogy with Nye (1969) and Fowler (1981), a leading-
order relation of the form

U X)), (62)

where the term on the left is the mean driving stress, and the
terms on the right are the mean component of normal stress
in the upstream direction and the mean basal shear stress,
respectively. It can, in fact, be shown in a rather convoluted
manner, by considering O(v) terms in Equations (36-38),
(41) and (42) in the multiple-scales expansion, that Equation
(62) is indeed correct. This equation finally determines Uy.
Equation (62) relates mean driving stress to mean sliding
velocity; this is very different from shallow-ice theory where
local driving stress determines local sliding velocity. This may
be understood as an extreme example of the effect of longi-
tudinal stresses considered in, for example, Kamb and
Echelmeyer (1986). Since the ice is stiff here in the sense that
deformational velocities [u] are much less than sliding
velocities [U], longitudinal stresses arise which ensure that
the sliding velocity is locally constant in space to leading
order. In particular, if 7, # 0, a sliding velocity indepen-
dent of position requires basal shear stress to be concen-
trated where the bed is stickier (i.e. where 7, is greater).

6. SOLUTION OF THE LOCAL FLOW PROBLEM

One of the main benefits of the results of the previous section
is that the free boundary problem for the ice-stream surface
D is reduced to a fixed boundary problem on the “inner”
scale; the surface perturbation dy appears as a variable in
the boundary conditions of the ice-flow problem, but does
not affect the position of the boundary z = Dy at leading
order. The domain of the leading-order “inner” ice-flow
problem is the strip H < z < D,.

We will now concern ourselves exclusively with the inner
problem at leading order, and therefore omit the subscripts o
as well as the outer variables (X, T'). Furthermore, since Dy
and H are independent of the inner variables, an appropriate
choice of origin and of the scales [D] and [L] ensures that the
following hold for any given fixed (X, T'):

0Dy
Dy =1, X 1.
The domain of the problem is then 0 < z <1, and the driving
— H)(0Dy/0X) =1.

A partial solution of the inner problem can be derived in
Fourier transform space. 1o facilitate matters, we assume that
the bed is periodic with period a and define the Fourier trans-
form of a periodic function f as

H=0,

stress is — (Do

f’n(z, t) = /Oa f(z, z,t) exp(—ik,z)/adx;

2nm
kn =
a

nez.

Note that n here denotes an integer index and not the expo-
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Fig. 4. Form-drag enhancement for 1* < € V> > €, com-
pared with the assumption of infinite depth. Shown here is
the function f(k,) defined in Equation (67).

nent in Glen’s law. The evolution of perturbations d on the
ice-stream surface is described by

0 v sinh? k,, .
kaU . dTL

<8t t T € 2k, (sinh k,, cosh k,, + kn)>
_ kycoshk, +sinhk,
" sinhk, cosh k, + k,

ikyUh, , (63)

while momentum conservation (Equation (49), which deter-
mines U(t) at any time t) is expressed as

z“: sinh? k,, — k2 20
o Fa k, + cosh k, sinh k, '
sinh k,, + k), cosh k, .
+ Z o k,, + cosh k, sinh k,, (d"h )+ {n(U,2)),

(64)
where * denotes complex conjugation and & stands for
imaginary part.

The evolution equation (63) for d is not dissimilar to some
of Gudmundsson and others’ (1998) results. The first two
terms on the lefthand side are growth and advection-type
terms, while the third leads to the decay of surface perturba-
tions due to increased hydrostatic pressure. The term on the
righthand side is a source term which represents how well
basal perturbations are “transmitted” to the surface. A notable
departure from Gudmundsson’s results is that the presence of
small-scale roughness 73, does not affect surface evolution at
leading order in our model, though it will be important at
higher order. Moreover, Equation (63) is not a linear equation
as U depends on the d, through Equation (64). A simple ana-
lytical solution of the form presented in Gudmundsson and
others (1998) is therefore not available.

For a bed which can be represented by a truncated Fourier
series, it is not difficult to solve Equations (63) and (64)
numerically for appropriate initial conditions on d (cf. sec-
tion 7). Here we focus on qualitative features of Equation
(64). In particular, approximate versions of Equation (64)
which depend only on the hy, can be derived in the case of
2> eand 1V’ < e

When 1?2 < € (small bed roughness or large driving
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stress), one simply ignores the O(1?/€) term in Equation
(64) and obtains

e sinh? k, — k2 )
h,|2U . 65
Z "k, + cosh k,, sinh k,, (U + () (65)

In the case 12 > ¢ (large bed roughness or small driving
stress) one rescales d** = (v /€)d* (cf. section 5.2). Ignoring
the advection and growth terms of O(e/1?) in the rescaled
version of Equation (63) gives dy, in terms of fy; substituting
this in Equation (64) yields

s k, hk, hk,
1=y g B I OB ey (66)
n=1

sinh? k,

Ignoring the friction term (7},), both of these are of the form

i ko) | PU (67)

n=1

Classical (infinite-depth) sliding theory predicts f(k,) =1
(e.g. Fowler, 1986, equation (2.38)). Thus f(k,
enhancement of basal drag due to surface effects compared
,) for the two
cases considered above. We see that f(k,) — 1 for large k),
as required. However, at small &, (i.e. large wavelengths,
A = 27/k,) we see that form drag is suppressed for higher
driving stresses or lower bed roughnesses compared with

) measures the

with the classical result. Figure 4 shows f(k

the classical result, whereas form drag is enhanced for smal-
ler driving stresses or large bed roughnesses by the forma-
tion of a standing wave at the ice-stream surface. These
results are also confirmed by direct numerical simulation
of Equations (63) and (64).

Note that 1/ f(k,) is essentially Gudmundsson’s (1997)
“sliding function” s evaluated for a Glen’s law exponent
n = latsmall bed slope (¢ =0 in his notation) but at finite
“thinness parameter” (§ in his paper, here simply 1/k,),
while Gudmundsson dealt only with the case 6 < 1. Our
results suggest a major discrepancy with Gudmundsson’s
equation (36), which suggests s should be independent of
“thinness” ¢ or k, here, when bed roughness is small. More-
over, the different behaviour in the limits 2 /¢ — 0, oo sug-
gests that s should also depend on ice surface slope for finite 6.

7. NUMERICAL SOLUTION

We deliberately chose the simplest possible rheology for ice
in section 2 in order to simplify our model derivation. How-
ever, a typical ice stream is polythermal, and temperature
variations with depth will affect its rheology (Paterson,
1994). This, in turn, 1s likely to affect both form drag and sur-
face perturbations caused by large obstacles.

The simplest assumption one can make is that viscosity
increases exponentially with height above the bed,
1 ~ exp(kz) (Gudmundsson and others, 1998), which can
be justified theoretically if temperature varies linearly with
depth and the dependence of viscosity on temperature is
described by a Frank—Kamenetskii approximation (e.g
Fowler, 1997, p.184).
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Fig. 5. The function Fy (ky,, k) at various values of k. Note that
Ey determines how effectively a given Fourier mode will decay
in Equation (75). Clearly F decreases with k. Decay of surface
perturbations is suppressed by stiffer ice near the surface.
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1_
0.8f

Analytical result k = 0
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Fig. 6. The function F5(k,, k) at various values of . Note
that Fy controls how well basal perturbations are “trans-
mutted” to the surface; with increasing K the band of effec-
twely transmitted wavelengths becomes narrower and shifted
towards larger wavelengths A = 27/ k.

The appropriately modified “inner” problem becomes

a—u—i— kVw + V2u) exp(kz) —Vp=0 onze (0,1),
2

V-u=0 onze€(0,1),

ou  Ow

£+%_0 onz=20,

w:U% onz=20,

ou  Ow

% o 0 onz=1,

2
p—2exp/£%:—d onz=1,
0z
%il—f—U%—w onz=1,

while Equation (49) still holds.
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Fig. 7. The function Gy (ky, k) at various values of K. Note
that G determines how form drag is enhanced compared with
the classical (infinite-depth) result in the first momentum
balance term in Equation (76). G develops a pronounced
peak at ky, = 2 for large k. One may ascribe this to flow over
bumps of this wavenumber involving more deformation of the
upper, stiffer ice, leading to increased resistance.
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Fig. 8. The function Go(ky,, k) at various values of k.

A partial solution in Fourier transform space is again
possible, with analogues to Equations (63) and (64):

0 2 - N
(E + ikjnU + V_Fl(km Ii)) dn = iFQ(kn; '%)Uhn 5 (75)
€

A2 G (o, £)|Rn|*U

hNgE

1=

Il
_

n

[V}

14

2 Gk, K)S(dnhl) + (1)

NgE

+ (76)

€

i
L

where the various functions F' and G have to be calculated
numerically (cf. Appendix). Figures 5-8 show numerical
calculations of the functions F' and G for various values of k.
Reasonable estimates for k are kK &~ 36, using (cf. Paterson,
1994, p. 86)

1 oc exp(Q/RT) ~ exp[Q/RTy — Q(T — Ty)/ RT;],

with R =83Jmol 'K ', Q =07-14 x10° Jmol ', T) =270 K
and a temperature difference between surface and base of the
ice stream of T — Ty =~ —25 K.

Equations (75) and (76) are solved numerically for a
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Fig. 9. Stmulation of the evolution of surface perturbations
caused by the bedform shown in (e) (extended periodically ).
(b) shows the evolving surface at 120 day intervals for k = 6,
corresponding to an activation energy Q = 14 x 10° F mol
and a temperature gradient of about 25 K. (¢) shows surface
evolution at 24 day intervals for k = 3, corresponding to an
activation energy () = 710" F mol " and a temperature
gradient of about 25 K. (d) shows surface evolution at
12 day intervals for k = 0, corresponding to the isothermal
case. Note the different y-axis scales in the different panels.
(a) shows the normal stress distribution (minus hydrostatic
contribution) at the end of the simulation shown in (b).

given bed and value of &, subject to the initial condition
d=0 and under the assumption 7, = 0. For ease of
interpretation, our results are re-dimensionalized. In order
to do so (cf. Equation (29)), the ice viscosity 7 has to be esti-
mated at the base of the ice stream, which is tantamount to
estimating the effect of the non-linearity of the rheology of
ice on our results. Given a bed roughness estimate v, viscos-
ity is estimated using Glen’s law as

n= A" = AT (77)

with A =6 x10 **s 'Pa ? and n = 3. Since 7 above depends
strongly on v, this is a crude way of proceeding, and one
should therefore regard our results as entirely qualitative.
The bed chosen for our simulations is shown in Figure 9e,
where ice flow here is from left to right. The chosen profile has
the steep upstream side typical of a drumlin. The bed is
extended periodically, with period a = 2000m, while ice
thickness is put at 1000m and the driving stress at [7q] =
10* Pa, corresponding to € 210 °. The profile has a maximum
height differential of 50 m, so we estimate v = 0.05. This yields
an approximate viscosity of ) = 4.2 x 10" Pas~ 1.3 bara.
The results of the simulations are shown in Figures 9
and 10. For all three values of K used, the surface perturba-
tions d eventually form a standing wave above the bed
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Fig. 10. Evolution of the sliding velocity during the simula-
tions shown in Fig. 9. (a) corresponds to the case k =6, (b)
tox =3and (¢) to k& = 0. Note the different x- and y-axis
scales in the different panels.

bump, and consequently the sliding velocity approaches a
constant at large times. The time taken to approach this
steady state depends on &; the larger x, the more slowly the
steady state is attained. This may be attributed to the fact
that the function F (k,, x) decreases with  (Fig. 5). Inspec-
tion of Equation (75) shows that F} controls the “decay” of
surface perturbations.

The final sliding velocity is considerably smaller for large
& than for small k, which indicates that the upper parts of
the ice stream, which are stiffer for larger x, impede sliding.
Furthermore, despite a large estimate for [U] (cf. section 4),
realistic values of sliding velocities can be produced.

The size of the standing wave also decreases with x. This
may be attributed to the fact that the function Fy(k,, %),
which controls how well particular wavelengths are trans-
mitted to the surface, decreases with & for k, > 7 (corres-
ponding to wavelengths smaller than two ice thicknesses;
cf. Fig. 6). This reduces the size of surface perturbations in
the present case, where we have chosen a bedform wave-
length of two ice thicknesses.

8. DISCUSSION

Our results suggest that long-wavelength (~1km) bedforms
of sufficient amplitude may be able to limit the sliding
velocity of ice streams, particularly if there is a significant
temperature gradient in the ice, leading to high viscosities
in the near-surface parts of the ice stream.

This conclusion 1s, however, not entirely robust; the
main difficulty to resolve is the effect of the non-linearity of
ice rheology — our estimate of [U] in Equation (30) is highly
sensitive to v. Moreover, we have entirely ignored the possi-
bility of cavitation here. Given the typically high drainage
pressures under an ice stream, one may suspect that cavita-
tion in the lee of large bedforms is a very real possibility.
Figure 9a shows the normal stress distribution (minus
hydrostatic pressure) over the bed at the end of the simula-
tion shown in Figure 9b. As expected, normal stress is lowest
in the lee of the bedform. A corollary of this is that care
needs to be exercised in interpreting observations of water
levels in boreholes (e.g. Engelhardt and Kamb, 1997) in
order to determine basal effective pressures, as deviatoric
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normal stresses due to flow over basal undulations may
affect normal stress and hence basal effective pressure. This
effect has previously been considered, albeit in a crude way
and in a different context, by Booth and Hallet (1993).

In agreement with Gudmundsson and others’ (1998)
results, our analysis shows that basal perturbations of wave-
lengths comparable to ice thickness cause a surface expres-
sion at the top of the ice stream. How well a given
wavelength is “transmitted” to the surface does, however,
depend on the temperature gradient in the ice (and hence
on k; cf. Fig. 6). For relatively high temperature gradients
we may expect to see only weak surface expressions caused
by basal bumps of wavelengths of 1-2 ice thicknesses (cf.
Fig. 9), while longer wavelengths, which are less efficient at
causing form drag, are transmitted more strongly (cf. Fig. 6).

The work presented here also indicates how ice dynam-
ics on length scales comparable to ice thickness can be sepa-
rated in a mathematically consistent way from large-scale
ice dynamics, and it is conceivable that the multiple-scales
approach used here could be useful in other circumstances
where a consideration of local (kilometre-scale) effects is
important. This is not limited to the case of significant form
drag, and could be useful, for instance, in tracer studies if
there are significant bed undulations on a kilometre scale
generating a non-laminar velocity field.
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APPENDIX

CALCULATION OF FUNCTIONS Fi, F», G1, G

Equation (69) is satisfied by introducing a stream function 1 as

D
T \8z )’

Fourier-mode solutions of Equations (68) and (69) then take
the form

¥ = Aexp(ikxz +mz),
where substituting 1 in Equation (68) yields a quartic for m,
m* 4 26m® + (k% — 2*)m? — 2xk*m + K*(k* + k%) =0,
which has four distinct roots my, ms, ms and my when k #

0 (in fact, these roots form complex conjugate pairs). A gen-
eral Fourier-mode solution

4
P = Z Ajexp(ikr +mjz)
j=1
is substituted in the boundary conditions (70-73); the
solution of the set of linear algebraic equations in the A;
which results is used to calculate the F' and G functions by
substituting in Equations (74) and (49).
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