
CONSTRUCTION OF CERTAIN SEMI-SIMPLE GROUPS* 

RIMHAK REE 

Introduction. In (3), Chevalley constructed, for every field K and every 
semi-simple Lie algebra g over the complex number field, a group GK{§) by 
using a system of root vectors Xr which satisfies a certain condition (more 
precisely, (1.2) in Section 1). The main point of Chevalley's construction lies 
in the fact that the above-mentioned root vectors furnish a basis of g such 
that, for every root r, exp(t ad Xr) is represented by a matrix (Atj{t)) whose 
entries Aij(t) are polynomials in t with integral coefficients. 

The purpose of this paper is to extend the above construction to an arbitrary 
faithful g-module V, including Chevalley's as the special case V = g, and to 
study the groups GK(V) thus obtained. Our construction is based on Theorem 
1.6, which assures the existence of a necessary basis for V. The group GK(V) 
has all the properties of the Chevalley groups GK($) (see Section 3 for a list 
of these properties) except that GK(V) has, in general, a finite centre. There 
is a natural homomorphism GK ( V) —» GK (g) whose kernel is the centre of 
GK(V). If 12 is a universal domain containing K, then Gn(V) is a semi-simple 
algebraic group of type g and, conversely, any semi-simple algebraic group of 
type g is isomorphic to a group of the form GQ(V). The group GK(V) turns out 
to be the set of all rational points in GQ(V) over K. 

Throughout the paper, Z, Q, and C denote, respectively, the ring of integers, 
the field of rational numbers, and the field of complex numbers. 

1. Regular basis of a g-module. Let g be a semi-simple Lie algebra over 
the complex number field C, and ï) a Cartan subalgebra of g. Chevalley (3) 
proved that one can choose a system of root vectors (Xr) with respect to 1) 
satisfying the following condition: 

(1.1) For each root r, set Hr = [Xr, X-r], Then 

[Hr, Xr] = 2Xr, [Ffr, X—r] = —2X_r. 

Moreover, whenever r, s, r + s are roots, we have [XT,XS] = ± {p + l)Xr+s, 
where p is the greatest integer i > 0 such that s — ir is a root. 

Received March 20, 1963. 
*The referee has drawn the author's attention to the communication to the Séminaire 

Bourbaki by C. Chevalley (March 1961, No. 219), "Certains schémas de groupes semi-simples," 
of which the author was unaware at the time of writing the manuscript. It appears that there 
is a great deal of overlapping between the above paper of Chevalley and the present one. The 
author has consequently decided to remove all the proofs from Section 5 where the overlapping 
is the heaviest. The contents of the present paper, in their present form, will be the basis of a 
subsequent paper on integral points of the group G. 
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A system of root vectors satisfying (1.1) will be called regular. We shall fix 
such a root system throughout this paper, and denote by gz [t)z] the additive 
group generated by the X / s and the i2"r's [the Hr's]. Then (1.1) shows that 
gz is a Lie subring of g and that the following holds. 

(1.2) For any root r and any integer k > 0, (&!)_1(ad Xr)
k maps gz into 

itself (writing operators on the right, did X is defined by F (ad X) = [Y, X]). 

A ^-module is a finite-dimensional vector space V over C on which g acts on 
the right as linear transformations such that 

v[X, Y] = {vX)Y - (vY)X for all v G V and X, Y G g. 

A g-module F is said to be faithful if for any X 7e- 0 in g there is v G F such 
that vX 9^ 0. A g-module F is irreducible if F and 0 are the only g-submodules 
of F. It is known that any g-module is completely reducible, i.e. a direct sum 
of irreducible modules. A linear function M (if) on f) is called a weight for f) 
in the g-module F if there is an element v ^ 0 in F such that vH = M(H)v 
for all H G Ï). The element z; is called a weight vector of weight M. We shall 
make use of the following theorem (6, p. 112). 

(1.3) For any root r, set g(r) = f) © CXr © CX_r. 77z<?n g(r) is a subalgebra 
of g, and any ^-module V is completely reducible as a g(r)-module. Any irre­
ducible g(r)-submodule of V has a basis (v0, V\, . . . , z/m) swdfc / t o 

vt H = (M - ir) (H)vt (0 < i < w), 

z ' J r = (i + l)vi+1, vmXT = 0 (0 < i < w — 1), 

v0 X-r = 0, ViX^r = (m — i + l)^*-i (1 < i < m), 

where M is a weight and m = M(Hr). Moreover, if v G F is a weight vector 
of any weight such that vX_r = 0, £/zew z> generates an irreducible ^T)-submodule 
of V. 

As a corollary to (1.3) we obtain the following. 

(1.4) For any ^-module V and any root r, Xr acts on V as a nilpotent linear 
transformation. 

(1.5) DEFINITION. Let V be a ^-module. For X G g denote by p{X) the linear 
transformation of V obtained by the action of X on V. A basis (vi, v2, . . . , vn) 
will be called regular if every vt is a weight vector, and if for any root r and any 
integer k > 0, (k\)~1p(Xr)

Jc maps Vz = Zvi © . . . © Zvn into itself. 

The following theorem is basic in this work. 

(1.6) THEOREM. Every ^-module has a regular basis. 

For the proof of (1.6) we shall first prove some lemmas. 

(1.7) LEMMA. If (ui, u2, . . . , um) and (vh v2, . . . , vn) are regular bases for 
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the ^-modules U and V, respectively, then (u\ ® V\, ii\ ® v2, . . . , um ® vn) is 
a regular basis for the ^-module U ® V. 

Proof. Recall t h a t the action of g on U ® V is defined by 

(u ® v)X = (uX) ® v + u ® (vX). 

From this it follows t h a t ut ® v3- are all weight vectors in U ® V. By repeated 
application of the above formula we obtain 

(k\)~Hui ® Vj)Xk = £ , + _ , ( O x ! ) " 1 ^ ^ ) ® ((v\)-ivjX>). 

Sett ing X = Xr we obtain the lemma. 

(1.8) LEMMA. Let V be a ^-module with a regular basis (v\, v2, . . . , v„). If 
u G V is a weight vector and a linear combination of V\, . . . ,vn with rational 
coefficients, then the §-submodule U generated by u has a regular basis. 

Proof. Clearly U is spanned by elements of the form 
uXTXXT2...XTv {v = 0 , 1 , 2 , . . . ) , 

where the rt are roots of g. Any of the above elements which is not zero can 
easily be seen to be a weight vector, and is a linear combination of Vi, . . . , vn 

with rational coefficients. For any weight M, denote by £/M the subspace 
spanned by weight vectors of weight M which are contained in U. Let Vz 
= Zfli © . . . 0 Zvn. Then C/M P\ Vz is a finitely generated free abelian group, 
and contains a basis of £/M. For each weight M, choose a basis of £/M ^ Vz, 
and let (tii, u2, . . . , um) be the union of these bases, where M runs over all 
the weights of V. Since U is the direct sum of the subspaces UM, it follows t h a t 
(ui, . . . , Um) is a basis for U. Clearly, each u{ is a weight vector. Consider 
11' = (k])~lui Xr

k. Since ut G Vz, the regulari ty of the basis (yu . . . , vn) 
implies u' G Vz- If u' 7e- 0, then uf is clearly a weight vector. Hence u' G £7M 
for some weight M. Thus , u' G UM ^ Vz- Since (ui, . . . , uw) contains a basis 
of Uu 1^ Vz, it follows t h a t u' is a linear combination of ii\, u2j . . . , um 

with integral coefficients. This proves t h a t the basis (uu u2, . . . , ww) is regular. 

Throughou t the rest of this section, we shall fix a usual lexicographic ordering 
of the addit ive group generated by weights, so t h a t we can talk abou t the 
highest weights, fundamental weights, etc. Recall t h a t the highest weight of 
an irreducible Q-module is a dominan t integral form on f), i.e. a linear function 
on f) which takes non-negative integral values on each Hr, and t h a t for every 
dominant integral form on Ï) there exists an irreducible g-module which has 
the given integral form as the highest weight. Moreover, this correspondence 
between the dominan t integral forms on t) and the irreducible g-modules is 
one-to-one. T h e irreducible Q-module which has the given dominan t integral 
form M is generated by a weight vector belonging to M. 

(1.9) LEMMA. Let U, V be irreducible ^-modules with the highest weight M, À 
respectively. If both U and V have regular bases, then the irreducible ^-module 
which has M + A as the highest weight has a regular basis. 
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Proof. Let (u1} u2, . . . , um) and (v\, v2, . . . , vn) be regular bases for U and F, 
respectively. Let M* and At be the weight of Ui and ^ respectively. Then 
M = Miy A = A^ for some i,j. Now the irreducible g-module W which has 
M + A as the highest weight is a submodule of U ® V generated by ut ® Vj. 
By (1.7), (ui ® vu . . . j um ® vn) is a regular basis for U ® V. Then from 
(1.8) it follows t ha t W has a regular basis. 

We are now ready to prove (1.6). For brevity, we shall make the following 
definition. A g-module U will be said to be regularly derived from the m-fold 
tensor product of the g-module F if F has a regular basis (vi, z>2, . . . , vn) such 
t h a t U is generated by a linear combination with rational coefficients of the 
elements 

vH ® vi2 ® . . . ® vim. 

Thus , U is a g-submodule of the m-fold tensor product of V, and has a regular 
basis by (1.7) and (1.8). 

In view of the complete reducibility of g-modules, it suffices to prove (1.6) 
for V irreducible. Then, by (1.9), one can assume tha t the highest weight for 
F i s a fundamental dominant integral form. Then , if g = X) 8* *s the decomposi­
tion of g as a direct sum of simple Lie algebras, Fg* = 0 for all bu t only one i. 
This implies t ha t we can assume t h a t g is simple. Now let III, n 2 , . . . , II z 
be the fundamental weights of g in the notation of E. Car tan (2, p. 367). 
Denote by Vi the irreducible g-module whose highest weight is n^. We shall 
follow Car tan (2, pp. 386-398), considering each type of g separately. 

(i) g = (Ai), l > 1. Vi is the vector space which represents g as the Lie 
algebra of all (/ + 1) X (/ + 1) matrices of trace 0. The basis used for this 
representation is easily seen to be regular with a suitable identification of the 
root vectors Xr (7). Vm, 2 < m < /, is the space of all skew-symmetric tensors 
(or m-vectors) in the m-fold tensor product of Vu and is easily seen to be 
regularly derived from Vu 

(ii) g = (Bi), I > 2. F2 is the (21 + l)-dimensional vector space which 
represents g as the Lie algebra of the orthogonal group corresponding to the 
quadra t ic form J2o xi x-i- The basis of F 2 used for this representation is easily 
seen to be regular with a suitable identification of the root vectors Xr (7). 
Vm, 3 < m < /, is the space of (m — 1)-vectors of F2 , and is regularly derived 
from the (m — l)-fold tensor product of F2 . V\ is the space of spin representa­
tion. The basis given in (2, p. 388) is easily seen to be regular with a suitable 
identification of the Xr. 

(iii) g = (Ci), / > 3. V± is the 2/-dimensional vector space which represents 
g as the Lie algebra of the symplectic group; the basis used is regular (7). 
Vm, 2 < m < /, is again the space of m-vectors of V\, and is regularly derived 
from the w-fold tensor product of Vu 

(iv) g = (Di), I > 4. Vi and F 2 are the spin representations of g; the 
formulas given in (2, p . 392) show clearly t h a t these modules have regular 
bases. F 3 is the 2/-dimensional vector space which represents g as the Lie 
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algebra of the orthogonal group corresponding to the quadratic form 
£ { Xf x_|. Vm, 4 < m < /, is the space of (m — 2)-vectors of F3, and is 
regularly derived from the (m — 2)-fold tensor product of Vz. 

(v) g = (Et). Vi is 27-dimensional ; the basis given in (2, p. 273) is easily 
seen to be regular. V2 is g itself, giving the adjoint representation, and has a 
regular basis by (1.2). F3 is the dual g-module of Vu i.e. the space of all linear 
functions on Vu The action of g on Vz is defined by (JX)(y) = —f(vX), 
where v € Vu / G Vz-, X Ç g. It is immediate from the definition that the dual 
basis of a regular basis is regular. V± is regularly derived from the 2-fold 
tensor product of Vu and F5 is the dual of Vi. Finally, 76 is derived from the 
3-fold tensor product of Vu 

(vi) g = (£7). Vi is g itself, giving the adjoint representation, and has a 
regular basis by (1.2). V2 is 56-dimensional, and the basis given by Cartan 
(2, p. 273) turns out to be regular, if one identifies the root vectors Xr suitably. 
Vz and F6 are regularly derived from the 3-fold tensor product of V2. F4 is 
regularly derived from the 2-fold tensor product of V2. F5 and Vi are, respec­
tively, regularly derived from the 2- and 3-fold tensor products of Vu 

(vii) g = (Es). Vi is g itself, giving the adjoint representation, and has a 
regular basis by (1.2). V2, . . . , Vs are, respectively, regularly derived from the 
2-, 2-, 4-, 3-, 4-, 4-, 5-fold tensor products of Fx; cf. (2, p. 396). 

(viii) g = (F4). Vi is 26-dimensional (cf. 2, p. 275). If one changes the 
basis elements y and z of Cartan by u = 2z, v = y + s, then one sees easily 
that (#, v, xz-, xa3T5) is a regular basis under a suitable identification of the 
root vectors Xr. V2 and Vz are both regularly derived from the 2-fold tensor 
product of Vu and V\ from the 4-fold tensor product of V\. 

(ix) g = (G2). Fi is 7-dimensional, and can be obtained from the repre­
sentation of g as the derivation algebra of the Cayley algebra. The basis given 
by Cartan (2, p. 276) becomes regular if a suitable identification of the root 
vectors is made. V2 is g itself, giving the adjoint representation. By (1.2), it 
has a regular basis. 

This completes the proof of (1.6). 

Remark. In the above proof we relied heavily on Cartan's results. The extent 
of this reliance would be much lessened if one could prove, by an argument 
common to all types, the following: if F is a g-module whose weights generate 
the additive group generated by all weights, then any irreducible g-module 
can be derived, for some integer m > 0, from the m-fold tensor product of V. 
At any rate, a direct proof of (1.6) is desirable. 

2. Notations and remarks. We shall fix some notations which will be 
used in the rest of this paper. As in Section 1, g will denote a semi-simple Lie 
algebra, and f) a fixed Cartan subalgebra of g. Hereafter, weights, roots, root 
vectors will all mean those taken with respect to £}. Also, we fix a regular 
system (XT) of root vectors of g. W will denote the Weyl group, and wT the 
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reflection a t tached to the root r. P will denote the addit ive group generated 
by all the weights, and P(g) the subgroup of P generated by the roots. 

We shall denote by F a faithful g-module, and by P{V) the subgroup of P 
generated by the weights in F We shall fix a regular basis (vi, V<L, . . . , vn) 
of V as follows: if V is irreducible, let (vly . . . , vn) be any regular basis of V; 
if F i s not irreducible, take a regular basis for each irreducible const i tuent , and 
let (t/i, . . . , vn) be the union of these regular bases. We shall denote by M, 
the weight of v{. By definition, P(V) is generated by Mi, M2, . . . , Mn. The 
representation of g obtained from V by using the basis (vi, . . . , vn) will be 
denoted by pv or p. 

For a field K, K* will denote the multiplicative group of K, X(V, K) the 
multiplicative group of all homomorphisms %• P(V)^>K*y and X'(V, K) 
the group of all x G X ( F, i£) which can be extended to a homomorphism 
P —>K*. For any root r and 2 Ç i£*, Xr,2,y will denote the element in Xf(V, K) 
defined by Xr,z,v(M) = z

M{Hr\ where M Ç P(V). When there is no danger of 
confusion, we shall frequently write Xr,z for Xr,z,v-

From the regularity of the basis (vi, . . . , vn) it is immediate tha t , for every 
root r, exp(tp(Xr)) is a matr ix (Aij(t)) whose entries A ^(/) are all polynomials 
in / with integral coefficients. Hence, for any field K and t G K, the matr ix 
(A tj(t)) with entries in K is well defined. We shall denote this matr ix by 
%r,K(t', F) , or simply by xr(t) when there is no danger of confusion. For 
X G X ( F , K), the diagonal matrix with x(Mi), x(M2), . • . , x(Mw) on the 
diagonal will be denoted by h{x, V) or h(x)> Now we shall define the following 
groups: 

%T,K(V): the group generated by xTtK(t\ F) , where t G K. 
VLK(V): the group generated by 3Êr,x(F), where r runs over all the positive 

roots (when an ordering of the roots is given). 
23x(F): the group generated by THT,K{V), where r runs over all the negative 

roots. 
GR ( F) : the group generated by U* ( F) and 25* ( F) . 
$K(V): the group {A(x, V)\x € ^ ( F , i ^ ) } . 

§ ^ ( F ) : the group {A(x> TOI x € ^ ( F , ^ ) } . 
^ x ( F ) : the group generated by GK'(V) and &K(V). 
VLW,K(V): the group generated by ï r , ^ ( F ) , where r runs over all positive 

roots such t ha t w(r) < 0 (ze; G W). 
VLf

r,K(V): the group generated by Xr,K(V), where r runs over all positive 
roots such t ha t w(r) > 0. 

Also we shall define the following elements: 

UT,K(V): the element xTfK(l; V)x-TtK(—l; V)xTtK(l; V). 
œ(w, F ) : the element œri,K(V) œr2,K(V) . . . œrm,K(V) with wriwT2 . . . wTm 

= w. For given w G W such an element is not unique, bu t one 
will be fixed; « ( 1 , F) = 1. 
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When there is no danger of confusion, K or F or both will be dropped from 
the above symbols. 

In the rest of this section, we shall collect some information which will be 
needed later on. 

(2.1) P(fl) C P ( 7 ) C P . 

Proof. The second inclusion is clear. To prove the first, let r be any given 
root, let g(r) be as in (1.3), and regard F as a g(r)-module. Since VXT 9e 0, 
by (1.3) it can be seen easily that V contains a weight vector v such that 
vXr 9e 0. If M is the weight of v, then vXr is a weight vector of weight M — r. 
Hence r £ P{V). Since r is arbitrary, this proves the first inclusion. 

(2.2) If V is an irreducible ^-module, then for any two weights Mi, M2 in V, 
Mi - M2 6 P( f l). 

Proof. Since V is irreducible, for any non-zero element v G V, F is generated 
by the elements of the form 

VXT1 Xr2 . . . XTm. 

If v is a weight vector of weight M, the above element, when it is not zero, is 
a weight vector of weight M — (r± + . . . + rm). From this, (2.2) follows 
easily. 

(2.3) If M is a weight in the g-module V, then for any w £ W, w(M) is also 
a weight in V. 

This follows easily from (1.3). 

(2.4) X'(V,K) is generated by the elements XT,K,V-

Proof. Let aly a2, . • . ,at be a system of fundamental roots. Then there 
exists a basis (III, ÏI2, . . . , IIZ) of P such that Ut(Haj) = bi5 (Kronecker 
delta). Let x € X'(V, K), and x(H^) = zt. Then it can easily be verified that 
X = I I Xai,Zi,V-

3. Basic properties of GK{V). We shall list some basic properties of the 
group GK(V). The proofs will be given in the next section. 

(3.1) If r and s are linearly independent roots, then 

XT,K\t)Xs,K(U)XryK\ t) = XS)K{U) ilij XiT+jS,K\L ij;r,stlU3) 

(note that we have omitted the symbol V in the above). Here the product is 
taken over all couples (i, j) of integers > 0 such that ir + js is a root, the couples 
being arranged such that the roots ir + js form an increasing sequence relative 
to an order of P for which r and s become positive. The coefficients Cij;r,s are 
integers independent of K, V, t, and u. 
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(3.2) For any root r, there exists a homomorphism <j>r\ SL(2;K) —> GK(V) 
such that 

<i>\t J) = x-rAt\ v), «r(J ty = xr,K(t; v) (t G K). 

(3.3) For any root r and z G K*, we have 

*<k 1-) = *<x": v)-
(3.4) For any root r and % £ X(V,K), we have 

Hx; V)xTtK(t; V)h(X; V)~' = xr,K(x(r)t; V) (t G K). 

(3.5) For any w G W and % G X(V, K), we have 

u(w, V)h(x; VMw, v)-1 - ft(x'; V), 
where x! is defined by x'(M) = x(^_ 1(M)), where M G P ( F ) . 

(3.6) For any roots r, s we have 

<ûr,K(V)x8,K(t; V)œr,K(V)-1 = xWr(s)tK(r]r,st; V), 

where t]TyS are certain constants ± 1 which are independent of V, K, and t. 

(3.7) For any roots ru r2, • . . , rm such that 

wri wr2 . . . wTm = 1, 
we have 

/or 5(?w^ homomorphism x' P —> { =*= 1 ! which is independent of V and K. 

(3.8) Every element x in UK(V) can be written in one and only one way in the 
form ITr xTtK(tr; V), where the product is taken over all positive roots in increasing 
order, and where tr G K. 

(3.9) Every element in GK(V) [in GK'(V)] can be written in one and only 
one way in the form xhœ(w, v)xi, where x G VtK(V); h G &K(V) [h G S&K (V)]\ 

wew;x,e IL,K(V). 

(3.10) If Vi, V2 are faithful ^-modules such that P(V2) Ç P(Vi), then there 
exists a homomorphism <t>:GK(Vi) —> GK(V2) such that 

<KxTtK(t; V,)) = xr>K(t; V2)y 0(A(X; 70) = h(x\P(V2); V2) 

for all roots r and all x £ X(V, K), where x\P(V2) denotes the restriction of x 
to P(V2). 

The image of <£ is the subgroup of GK{V2) consisting of the elements 
xh(x\ V2)œ(w)xu where x, w, and x± are as in (3.9) (replacing V by V2), and 
where x runs over all elements in X(V2j K) which can be extended to a homo­
morphism P(Vi) —» K*. The kernel of </> consists of all h(x\ Vi) G &K(VI) such 
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that x\P(V%) — 1> ana is contained in the centre of GK(Vi). The restriction of 
<t> to GK(VI) is an epimorphism <t>':GK'(Vi) —> GK'(V2). The kernel of 4>f consists 
of all A(x; Vi) in e* ' (F i ) such that X |P(F 2) = 1. 

(3.11) The groups GK(V) and GK
r(V) are determined uniquely {up to iso­

morphisms) by K and the ^-module V, and are independent of the regular basis 
of V used to define them. 

(3.12) The centre of GK(V) [of GK'(V)] consists of all h{X\ V) in §K(V) 
[in $J?K'(V)] such that xW = 1 for all roots r, and is isomorphic to 

Hom(P(V)/P(g),K*). 

If V is irreducible, then the centre of GK(V) [of GK
f(V)] consists of all matrices 

in GK(V) [in GK'(V)] of the form zl, where I is the identity matrix and z 6 K*. 

4. Proofs of (3.1)-(3.12). 

(4.1) Proof of (3.1). If K = C, then the identity given in (3.1) is clearly 
equivalent to a set of polynomial relations (with polynomials of integral co­
efficients) among the coefficients of the polynomials A i3(t) appearing as 
entries of xr,c(t; V). Hence, if (3.1) is true for K = C, then it is true for any 
field K. Now we shall prove (3.1) assuming K = G. 

Let X —> p (X) be the representation of g obtained from V. Then it can be 
seen easily that 

(4.1.1) p(XxT,c(t;ti) = xr,c(t- V)p(X)xr,c(t; F ) " 1 

holds true for all X 6 Q, t Ç C, and all roots r. It follows from this that for 
any element x Ç Gc'fe) there exists an element x' Ç Gc (V) such that p(Xx') 
= xp(X)x~l for all X G Q. Moreover, the faithfulness of the g-module V 
implies that x' is uniquely determined by x. Also, it can be seen easily that 
the map x —> xr gives an epimorphism <J>\GQ (V) —> Gc'(ô). It is known (3, 
p. 19) that for any two roots r, s there is a structure of ordered group on P 
such that r and s are positive. We shall fix such a structure on P, and prove 
that the restriction of <f> to Uc(K) is an isomorphism. Suppose that x Ç Uc(K)> 
(t>(x) = 1. Then x commutes with all p(X), X 6 g. Then the complete reduci-
bility implies that x is a diagonal matrix. Now, number the basis elements 
fli» z>2, . . . , vn of V such that Mi > M2 > . . . > Mn. Then it is immediate from 
the definition that, for any root r > 0, xr,c(t] V) is a superdiagonal matrix 
with l's on the diagonal. Hence the same holds true for x. Then x = 1, since 
x is diagonal. Thus, the restriction of é to Uc(K) is a n isomorphism, and the 
proof of (3.1) is reduced to the case V — g. But (3.1) is known (3, p. 36) 
for V = Q. Thus (3.1) is proved. 

(4.2) Proof of (3.2) and (3.3). Let &r) be as in (1.3), and decompose V as 
a direct sum of irreducible $(r)-modules V\. Then, by (1.3), each V\ has a 
basis (wot Ui, . . . , um) such that 
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ukH = (M - kr) (H)uh (0 < k < m; H G £)), 
(4.2.1) uk Xr = (* + l)Wfc+1> «m X r = 0 (0 < k < m - 1), 

^o X-r = 0, Wfc X_ r = (m — k + l)uk-i (1 < k < m), 

where M is a weight in F, and m = M(Hr). From this it follows that 
m 

ukxT,c(t',V) = ^T Ci,kt
l-kuu 

(4.2.2) i=k 

k 

ukX-rtC(t;V) = ] £ Cm-i,m-ktlc~iuu 

for 0 < & < m, where C*,* denotes the binomial coefficient (*). Now consider 
the space V\ = Gm[S, T] of all homogeneous polynomials of degree m in the 
indeterminates S, T with coefficients in C, and let V be the direct sum of the 
Fx '. Let the group GL(2; C) act on V by the rule: for F(S, T) G Vx' and 

-C'a (4.2.3) f = ^ ^ 6 G L ( 2 ; C ) 

set (Ff)(5, r ) = F(aS + bT, cS + dT) 6 Vx'. 
Let <j>: F—> 17' be the linear map denned as follows: on each V\, set uk 4> 

= C,„lt.5'"-A' r* € Vx'. Then one can verify from (4.2.2) that 

(»*)(j j ) = («*-r.c(<; 7))*, (»*)(j y = («xr.c(*; V))4> 

holds for all z; G F and t G C. Hence, for any f G SL(2; C) there exists 
# G Gc(F) such that 

(4.2.4) (»0)f = (iw)« 

for all Î; Ç F. Since 0 is an isomorphism, it follows that, for any given 
f G 5L(2;C), the element x G Gc(F) satisfying (4.2.4) is unique. It can be 
seen from (4.2.4) that the map f —> x is a homomorphism <f>r\SL{2 ; C) 
—» Gc ( F) such that 

(4.2.5) 4>Tyt fj = x_r,c(*; F), * r ( j ^ = xr,c(t', F). 

Now we shall show that for any z G C* we have 

(4.2.6) ^ (d iagfes - 1 ) ) = A(Xr„; F). 

For the proof of this it suffices to show that 

(4.2.7) »0r(diag(s, s"1)) = s A ( i ^ 

holds for any weight vector v of weight A. Since F is the direct sum of the F\, 
it suffices to prove (4.2.7) for v = uk G F\. Since f = diag(s, z~l) induces 
the transformation 5 —> zS, T —> z~lT in F\ ' = Cm[5, T], we have 
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By (4.2.1), the weight of uk is M - kr, and (M - kr)(Hr) = m - 2k. Hence 
(t;0)f = (zHHr)v)(j). By (4.2.4) we have (i;0)f = (fl0r(f))*. Then, since 0 is 
an isomorphism, we have v<pr(Ç) = zA{Hr)v. Thus, (4.2.6) is proved. 

It is clear that the element f given in (4.2.3) is represented in each V\, and 
hence in V also, by a matrix whose entries are polynomials in a, b, c} and d 
with coefficients in C. From this and (4.2.4) it follows that there exist n2 

polynomials Fij(X, F, Z, U) in C[X, Y, Z, U] where n = dim F, such that 
the matrix 

f\Z u) = ^Fu{X,Y,Z,U)) 

satisfies the following two conditions: 

whenever a, b, c, and d are complex numbers satisfying ad — be = 1. 
Now we shall show that there exist 2n2 polynomials Ptj{Xy F, Z), Qn(Z, U) 

in Z[X, F, Z, f/] such that 

(4.2.10) Ftj(X, Y,Z,X~i(YZ + 1)) = X^PtJ(X9 Y,Z), 

(4.2.11) F„(0, - Z - 1 , Z, C/) = Z - Q„(Z, [/). 

To prove this, let /, s, and z ̂  0 be arbitrary complex numbers. Applying the 
homomorphism 4>r to 

A 0 \ / s 0 \(l s\ = (z zs \ 
\t 1/ \0 s " 7 \0 1/ \tz tzs + a"1/ ' 

\ - l 0/ \ 0 -sTYM) 1/ \z *s / ' 

and using (4.2.5), (4.2.6), and (4.2.9), one sees easily that Pij(z, zs, tz) and 
Qa(z, zs) are inZ[z, 5, £]. From this it follows that Ptj{X, F, Z) and Qij(Z, U) 
are inZ[X, F, Z, £/]. 

Now let i£ be the given field. For a, b, c, d in K such that ad — be = 1, 
define Fij(a, b, c,d) (z K as follows: if a 7e 0, set Ffj(a, b, c, d) = a-7* Pij(a, b} c) ; 
if a = 0, set 7^(0, — c~\ £, d) = c~n Qij(c, d). We shall prove that the mapping 

V d) ~* (FiM,byc,d)) 

is a homomorphism 4>TtK:SL(2; K)-^ GK(V). Let 
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be in SL(2;K). We shall prove that 

(4 .2 .12) * r ^ ( f ) * r . X ( n = « r ^ C f f O -

First consider the case where none of a, a!, a" is 0. From (4.2.8) we have the 
identity 

£ x-npik(x, y, z)X'~npkj(x\ r, zo = x"^pti{X", Y", Z"), 

where 

(X F> 

[/ = X-^YZ + 1), £/" = X'-*(Y'Z' + 1). 

A / X ' Y'\ (X" Y"\ 
j)\Z' U'J \Z" U"J ' 

Substituting X = a, Y = b, . . . , Z' = c' in the above, we obtain (4.2.12). 
The cases where some of a, a', a" are 0 can be treated similarly. From the 
definition, (4.2.5), and (4.2.9), we have 

Hence <£r,*(f) € GK(V) for all f G SL(2;K). Also, from the definition and 
(4.2.6), we obtain 

0r,*(diag(z, 2"1)) = Mxr,2; V) 

for any 0 G K*. Thus (3.2) and (3.3) are proved. 
As a corollary to (3.3), we obtain 

(4.4) «rJC(7) = * r ( _ J J 

(4.5) Proof of (3.4). Let (z/i, . . . , vn) be the regular basis used to define 
xr,K(t\ V)> and let M{ be the weight of vt. Let xr,K(t; V) = {Atj(t)). If r > 0, 
then from the definition of xTtK(t) we have, for r > 0, 

(4.5.1) 4*,(*) = 0 if M^ < M„ or M* = Mjf i ^ j , or if M< > M, and 
Mi — My is not an integral multiple of r\ A ij(t) = aijtvi where atj is an integer, 
if Mz — Mj = vr with an integer v. 

From this it follows that for any x G X ( F , i£) and any i,j, we have 
x (M î )^ o (0x(M / ) " 1 = Aij{x{r)i). From this, (3.4) follows immediately. 

(4.6) LEMMA. For any weight vector v (z V of weight A and for any root r, 
vur,c(V) is a weight vector of weight wr(A). 

Proof. We shall use the notation introduced at the beginning of (4.2). 
Clearly, it suffices to .prove the case v = uk 6 V\. Set 

- (-? J) f = l " 1 6 SL(2;C). 
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Then, by (4.4), we have cor,c(F) = 0 r(f). Then 'Ç induces the transformation 
S-> T, T-+ -S in Vx

f = CTO[5, r ] . Hence 

Mr = (% )̂f = cw,* rm- *(-sy = (-i)fc^_,0. 
By (4.2.4) we have (^) f = (»*r(f))*. Hence i^ r(f) = (- l )*t tm_ t . But, by 
(4.2.1), the weight of uk is M — kr = A. We have 

wr(A) = wr(M - jfer) = M - kr - (M - kr)(Hr)r 

= M — kr — (m — 2k)r = M — (m — fe)r. 

Hence, the weight of vur,K(V) is wr(A). 

(4.7) Proof of (3.5). It suffices to prove the case K = C, since co(ze>, F) is 
a matrix with integral entries. Let (vi, . . . , vn) be the regular basis of F, and 
Mt the weight of z .̂ By repeated application of (4.6) it follows that vt œ(w, V) 
is a weight vector of weight w~1(Mi). Hence, 

(vtœ(w, V))h(X; V) = xiw-^MiVvtœiw, F), 

from which one obtains (3.5). 

(4.8) Proof of (3.6). It suffices to discuss the case K = C. Let p be the 
representation of g obtained from V. Then, by (4.1.1), we have 

0)T,c{V)p(tX s)^r,c(V)~1 = p{tXs Wr,c(Q)) = P (Vr, s tX Wr (s)) , 

where 7]r<s = dbl; see (3, p. 31) or (8, p. 439). Taking the exponential of both 
sides, we get (3.6). 

The formulae 

( 4 9 ) GK(V) = %K(V)$K(V)VLK(V)®K{V), 

GK'(V) = %K(V)&K'(V)\1K(V)%K(V) 

can be proved in exactly the same way as Lemma 3 of (3, p. 48). We omit 
the proof. 

(4.10) Proof of (3.7). Since UT,K(V) is a matrix with integral entries, it 
suffices to prove (3.7) for the case K = C. Let 4>:Gc (V) -»G c ' (g) be the 
homomorphism considered in (4.1). Then clearly we have, for 

W = Uri,c(V)u)T2,c(V) . . . 0>rm,c(V), 

(4.10.1) 0(co) = wri,cte)cor2)C(Q) • • • corwiG(g). 

The right-hand side of (4.10.1) is equal to /z(x;g), where % £ X(g, C) such 
that xW = ± 1 for all roots (3, p. 37). Since wr,c(g) G GQ'CÔ), where Q 
denotes the field of rational numbers, for all roots r, it follows that A(xîô) 
G £Q'(Ô)> and hence &(x;9) £ €>Q'(8) (3, P- 49). In other words, x can be 
extended to a homomorphism P —» 0*- Hence, &(x; F) G $ o ' ( F ) c a n be 
defined. We shall show that #(Mxî F)) = A(x; ô). 

By (2.4), h(x'i F) can be written as a product of elements of the form 
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h(xr,z\ V), where z G 0*- Applying the homomorphism <f>r:SL(2\ C) —» Gc(V) 
to 

Vo s-7 = L-1-! îAo I / V B - I i / \o i / • 
and using (3.3), we obtain 

Hxr*; V) = s-r.cOr-1 - 1; F)xr,G(l; F)x_riG(s - 1; T)*, ,^-*-1; F) 

Applying <j> to the above, we obtain <j>{h(xr,z', V)) = h(xr,z', 8). Hence, 
0(A(x; K)) == Mxî9)> a s desired. Now, we have 0(A(x; F)co-1) = l. In view 
of (4.1.1.) this implies that A(x; F)co_1 commutes with all p(X), X G g. Hence, 
in each irreducible constituent Fa of F, h(x', F)co-1 is a scalar multiple zl 
of the identity matrix / . Since zl G Gc(Va), we have det(s/) = 1. Thus, 
z is a root of unity. On the other hand, since the regular basis (vi, . . . , vn) 
is assumed to be the union of regular bases of F«'s, both h(x\ V) and œ are 
represented on Va by matrices with rational entries. Hence z is rational. 
Since z is a root of unity, z = ± 1 . Thus we have shown that h(x; V)œ~1 is 
a diagonal matrix with d=l on the diagonal. We already know that x(r) = ± 1 
for all roots r. Hence for any M G P we have x(M)w = ± 1 , where m 
= [jP:P(g)]. Hence x(M) = dbl, since x(M) is rational. Then, from the 
above it follows that co is a diagonal matrix with ± 1 on the diagonal. By 
(4.9) we can write œ = yh(x', V)xy', where y, y' G 3SQ(F) , X G U Q ( F ) , 

h(x'; V) G $Q'(V). Then 

(4.10.2) y-l<ay> = A(x'; V)x. 

Now number the basis elements vi, . . . , vn such that Mi > . . . > Mn. Then 
(4.5.1) shows that y~l, y' are subdiagonal matrices with 1 on the diagonal, 
and that x is a superdiagonal matrix with 1 on the diagonal. Since both co 
and h(x; V) are diagonal, (4.10.2) implies that co = h(x'; V). This shows, 
since co is a diagonal matrix with dbl on the diagonal, that x'(M) = dbl for 
all M G P(V). Then x'(M) = ± 1 for all M G P , since X'(M) is rational and 
x ' (M)m = ± 1 . 

In order to show that the homomorphism x'-P ~> {±1} can be taken inde­
pendently of V, write co(F) for the element co considered above. Now fix a 
faithful g-module V0 and a homomorphism xo:P —* {±1} such that P(F 0 ) 
= P and co(Fo) = h(xo', Vo). Let F ' = 7 0 F0. Then, from what we have 
proved above there exists yf\P —> {±1} such that co(F') = &(x'î V'). Clearly, 
the matrix co(F') is a direct sum of the matrices co(F) and co(F0), and h(x'; V) 
is a direct sum of the matrices h(x'\P(V); V) and h(x'\P(V0); Vo). Hence, 
we have HX'\P(V); V) = h(X; V) and h(x'\P(V0); V0) = A(xo; V0). Then 
X = x'\P(V) and xo = x'\P(Vo) = x'« Hence, x = Xo|P(F) with Xo inde­
pendent of V. Thus (3.7) is proved. 

(4.11) Proof of (3.8). The part that any element in VIK(V) can be written 
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in the form stated in (3.8) can be proved in the same way as Lemma 6 of 

(3, p . 39). W e shall prove only the uniqueness par t . 

(4.11.1) LEMMA. Let V be a faithful ^-module, and (vi, . . . ,vn) a basis of V 
consisting of weight vectors. Then, for any root r, there exists an i such that v t X _ r 

= 0, VtXr J* 0. 

In order to prove this, let Q(r) be as in (1.3), and regard F as a g ( r )-module. 
Then F is a direct sum of irreducible g ( r )-modules V\. Assume r > 0. Let 
Ax be the highest weight of V\, and A the highest among Ax for which V\ XT ̂  0. 
We shall show t h a t for any weight vector v of weight A, we have vX-T = 0. 
T o prove this, one can clearly assume tha t v G V\ for some A. Then A < A\. 
If A = A\, then vX-r = 0, since otherwise vX-r would be a weight vector of 
weight Ax + r contained in V\. Assume A < Ar. Then (1.3) shows tha t there 
exists v' £ V\ such t ha t v'XT = v. In particular, V\ Xr 9e 0. This contradicts 
the assumption on A. 

Now let A = Ax and v Ç V\, a weight vector of weight A. Then V\ XT ^ 0, 
and (1.3) shows t ha t vXr ̂  0. Since (vi, . . . , vn) is a basis of V consisting of 
weight vectors, v is a linear combination ^atVi of z//s of weight A. Since 
vXr = ^ ai(viXr) ^ 0, it follows t h a t ViXr ^ 0 for some vt of weight A. 
But , as shown above, vtX-r = 0. This proves (4.11.1) for the case r > 0. 
T h e case r < 0 can be treated similarly. 

(4.11.2) LEMMA. Let m be a positive integer, and p a prime. Then m\ is not 
divisible by pm. 

I t is well known t h a t if pe is the highest power of p which divides m, then 

e = [m/p] + [m/p?-] + . . . , 

where [a] denotes the greatest integer < a. Hence 

e < Hx>*nip~l = m/(p — 1) < m. 

(4.11.3) LEMMA. Let xTtc(t; V) = (Atj(t)). Then the greatest common divisor 
d of the integers which can appear as the coefficient of t in some Ai3{t), i 9^ j , 
is 1. 

Suppose t h a t (4.11.3) is false. Then there is a prime p which divides d. 
Set ViX^r = YtjCijVj, 1 < i < n. Then , if c^ ^ 0, ctj appears as the co­
efficient of Aij(t) = Cijt. Hence, p divides all ci}. This implies t ha t if F z 

= 7JV\ + . . . + Zvn, then 

(*) (Vz)Xr QpVz. 

By (4.11.1) there exists a vt such t h a t 

VtX-T = 0, ViXr^O. 
Set 

uo = vu uk = (^! ) _ 1 UQXT* (k = 1,2, . . . ) . 
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Since Xr acts on F as a nilpotent linear transformation by (1.4), there exists 
an integer m > 0 such tha t um ^ 0, um+i = 0. Since u\ = UQ Xr ^ 0, we have 
m > 1, and 

tto*r,c(lï V) = ^o + wi + • • . + um. 

By the regularity of the basis (vi, . . . , vn) it follows tha t z^ G Fz for 0 < fe 
< w. Also, from (*) and the definition of uk we have (k\)p~k uk = uk £ Fz. 
Set um = Y< CiVu um

f = X Ci i>u where cu c/ £ Z. Then (ml)p~m Cj = c / 
for 1 < j < ». By (4.11.2) it follows tha t c, = 0 (mod p) for 1 < 7 < n. 
In other words, 

(**) um e pVz. 

On account of u0 X _ r = 0, it can be seen easily tha t 

Uj X-r = (m — j + l ) ^ _ i for 1 < j < m. 

Hence, 

Ww X_ r ,c( l ; F) = UQ + UX + . . . + Um. 

Since x _ r , c ( l ; V) is a matrix with integral entries, it maps Vz into itself. 
Then (**) and the above implies t ha t 

(***) u0 + ui + . . . + um G pVz. 

Now, one sees from the definition tha t uk is a weight vector of weight Mz — fer. 
Hence, uk is a linear combination of ZJ/S of weight Mz — fer. Therefore, (***) 
implies t h a t uk Ç £ F z for 0 < fe < m. In particular, z/* = #0 G £ F z . This is 
a contradiction. Thus , (4.11.3) is proved. 

(4.11.4) LEMMA. xr,K(t; V). = 1 implies t = 0. 

Suppose t h a t xr>K(t; V) = 1 for some J ̂  0. In view of (4.5.1) this implies 
t h a t if Aij(T), i ?* j , is of degree 1, then its coefficient of T is divisible by p, 
where p is the characteristic of K. But this is impossible by (4.11.3). 

(4.11.5) LEMMA. / / 0 < t\ < r2 < . . . < rm is an increasing sequence of 
positive roots and if 

Xn,K(ti\ V)xr2,KQ2; V) . . . xrm,K{tm; V) = 1, 

then t\ = t2 = . . . = tm = 0. 

Clearly it suffices to prove (4.11.5) under the assumption tha t K is algebraic­
ally closed. We shall proceed by induction on the smallest root r\. If rx is the 
greatest positive root, then m = 1 and (4.11.4) can be applied. Let r be a 
positive root and assume tha t (4.11.5) is proved for rx > r. Suppose t h a t 
t\ = r. Take any x in X{V, K) such tha t x(ri) — 1- Then by (3.4) we have 

(*) (Ft XriAtù V))(U xri,K{x{rt)tu V))-1 = 1. 
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By (3.1) it can be seen easily that the left-hand side of the above equation 
can be written in the form 

XnAh - X(f2)t2\ V) I l XS,K(US) V). 
S>T2 

Hence by the assumption of the induction we have t2 — x(r2)h = 0. Similarly, 
from (*) we obtain tt — x(r'dh — 0 for all i > 1. Suppose that tt 9* 0 for 
some i. Then for any % ê X(V, K) such that x(fi) = 1 we have x(ri) = 1-
It can be seen easily that this cannot happen for two positive roots rx and rt 

unless t\ = Yi when K is algebraically closed. Hence, tt = 0 for all i > 1. 
Then we are in the case m = 1, and (4.11.4) can be applied. This proves 
(4.11.5). 

Now we shall prove the uniqueness part of (3.8). Suppose 

Uxri,K(h\ V) = II *,,,*(*/; 7), 

where the products on both sides run over positive roots rx < r2 < • . • < rm 

in this order. Then, by (3.1), 

xri.K(ti - h'] V) I l xStK{us\K) = 1. 
s>ri 

Hence, by (4.11.5), we have t\ = t\. Now, proceeding by induction, we get 
tt = t/ for all i. Thus, the uniqueness part of (3.8) is proved. 

(4.12) Proof of (3.9). A certain procedure of putting a given element in 
GK{V) into the form specified in (3.9) can be found in (3, pp. 38-40). As was 
pointed out in (8, p. 437), the properties (3.1)-(3.8) are sufficient to carry 
out this procedure. The uniqueness part of (3.9) can be proved in exactly the 
same way as the corresponding theorem in (3, p. 42, Theorem 2). We omit the 
details. 

(4.13) Proofs of (3.10) and (3.11). Clearly V = Vi 0 V2 is a faithful 
g-module. Take the union of regular bases of Vi and V2 as the regular basis 
of V. For z G GK(V), define <t>i{z) to be the restriction of z to Vt. Then it is 
clear that 

4>t(xrtK(f; V)) = xr,K(t; Vt), 0<(ft(x; V)) = h(x\P(Vt); Vt) 

and that 4>i is a homomorphism GK(V) —> GK(VX). Then we have 0j(co(w, V)) 
= w(w, Vt). Since P(V) = P ( 7 i ) + P(F 2 ) and since P(F 2 ) C P ( 7 j ) by 
our assumption, P(V) = P(Vi). Hence <f>x is onto. Let z be in the kernel of 
</>i. By (3.9), z can be written as z = xh(x', V)œ(w, V)xf, where x Ç VLK(V), 
x' 6 U„ |X(7)- Then 

1 = *i(s) = *i(x)*(x |P(7i) ; FOco^, F i )* !^ ' ) . 

Hence, by the uniqueness part of (3.9), we have 

*!(*) = 1, A ( x l W i ) ; 7,) = 1, o,(W, Vr) = 1, 0i(x') = 1, 
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and consequently x = x' = 1, w = 1, x l^(^ i ) ^ 1- Then x = 1» since P(Vi) 
= P(V), as shown above. Hence, z = 1, and <£i is an isomorphism. It can be 
seen easily that <j> = <£2 o ^f"1 is the desired homomorphism GK(Vi) —» GK{V2J. 
The statement about the image and the kernel of <j> is also clear from the above. 
Note that if x\P(V2) = 1, then, by (2.1), xW = 1 for all roots r, and hence 
by (3.4) h(x\ Vi) must be in the centre of GK(Vi). The statement about the 
restriction <j>f of <£ to GK'(Vi) follows easily from the above. 

By setting Vx = V2 in (3.10), we obtain (3.11). 

(4.14) Proof of (3.12). Let z be in the centre of GK(V). By (3.9), z = 
xhù)(w,V)x', where x Ç ttK(V), x' £ UW,K(V), h £ &K(V). Then z = x'xhu(wyV). 
Hence, by the uniqueness part of (3.9), we have x' = 1. Suppose that w ^ 1. 
Then there exists a root r > 0 such that w(r) < 0. We have 

#r,2s:(l; F)xAco(w, F) = xha)(w, V)xTtK{\\ V). 

This contradicts the uniqueness part of (3.9). Hence, w = 1, and s = x&. 
Suppose that x 9e 1, and write 

# = ^ri,7c(^lî F ) . . . Xrni)K(tm; F ) , 

where 0 < f\ < . . . < rm, and t.,-^0 for all i. 
Suppose that no rt is a fundamental root. Then for any fundamental root a 

we have 0 < wa{r^) < rt for all 2. Choose a such that wa(fi) < f\. Then by 
(3.6) and (3.1) we have 

z' = ua,K(V)zua,K{V)-1 = *â l lX(tti; F) . . . xSk,K(uk; V)h', 

where h' (E &K(V), 0 < SI < s2 < . . . < sk, si < r1} and no ut is 0. Then 
z — zf contradicts the uniqueness part of (3.9). Hence, some r* is a funda­
mental root. 

We may assume that rY = a is fundamental. Then wa(rl) > 0 for 2 < i < m. 
Hence z' = œa,K(V)zœa,K(V)~1 is of the form x_af2r(±Jr, F)zi, where 21 
€ U* (F )£*(F) . Since z7 = 2 and 2 6 U x ( F ) ^ ( F ) , it follows that X-a,K(zLh) 
is in UK(V)!QK(V). If the basis elements v\, . . . , z>w are numbered such that 
Mi > . . . > Mw, then x_a>jfi:(=h/i) is a subdiagonal matrix with 1 on the 
diagonal, while UK(V)!QK(V) consists of superdiagonal matrices. Hence, we 
must have x.-aiK(zLti) = 1, ti = 0. This is a contradiction. Hence, x = 1, and 
2 = h(xm, F). Since 2 commutes with xTlK(l; F), we have, by (3.4), xW = 1 
for all roots r. Conversely, if xW = 1 for all roots r, then clearly h(x\ V) 
belongs to the centre of GK(V). Since xW = 1 for all roots r if and only 
if x\P(V) = I, it follows that the centre of GK(V) is isomorphic to 
Hom(P(F) /P( ô ) , i£*) . 

If F is irreducible, and if h(x\ V) 1S m the centre of GK(V), then by (2.2) 
and the above we have x(Mi) = x(M2) = . . . = x(Mw). Hence, h(x; V) is 
of the form x(Mi)J, where I is the identity matrix. 

The statement about the centre of GK'(V) can be proved similarly. 
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5. Algebraic group theoretical aspects. In this section, we shall only 
state some theorems on the algebraic group theoretical aspects of the group 
GK(V). For the proofs, see Chevalley's paper cited in the footnote on the first 
page of this paper. 

Let 12 be a universal domain over the given field K, and simply write 3Er(l
7), 

U(V), « ( F ) , G(V), £ ( F ) for J f i 0 (F ) , Ua(V), SBa(F), Ga(V), $a(V), 
respectively. 

(5.1) The groups £ r (F) , U(F), « ( F ) , £ ( F ) , Vl(V)§(V), %(V)$(V) and 
G(V) are connected algebraic groups defined over the prime field. The groups 
%r,K(V), l\K(V), . . . , GK(V) are the sets of rational points over K of ïr(V), 
U ( F ) , . . . ,G(F) , respectively. 

(5.2) The group G(V) is semi-simple; § ( F ) is a maximal torus, and 
\\{V)§(V) is a Borel subgroup of G(V). 

(5.3) Let Vu V2 be faithful g-modules such that P(V2) QP(Vi). Then 
the homomorphism <£:G(Fi) —> G(F2) given in (3.10) is an isogeny defined 
over the prime field. 

(5.4) Every connected semi-simple algebraic group G is isomorphic (as an 
algebraic group) to an algebraic group of the form G(V). 
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