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On Partitions into Powers of Primes and
Their Difference Functions

Roger Woodford

Abstract. In this paper, we extend the approach first outlined by Hardy and Ramanujan for calculating

the asymptotic formulae for the number of partitions into r-th powers of primes, p
P(r) (n), to include

their difference functions. In doing so, we rectify an oversight of said authors, namely that the first

difference function is perforce positive for all values of n, and include the magnitude of the error term.

1 Introduction

For a given subset Λ ⊆ N and n ∈ N, we denote the number of partitions of n into

elements from Λ by pΛ(n). That is, pΛ(n) is the number of solutions to the equation

a1λ1 + · · · + amλm = n,

where each λi ∈ Λ, λi > λi+1, and each ai ∈ N. We set pΛ(0) = 1, corresponding to

the empty partition, and we assume that pΛ(n) = 0, for n < 0.

The k-th difference function of pΛ(n) is defined inductively as follows:

p(0)
Λ

(n) = pΛ(n);

p(k)
Λ

(n) = p(k−1)
Λ

(n) − p(k−1)
Λ

(n − 1), for k ≥ 1.

It is easily established that the generating functions for p(k)
Λ

(n) can be expressed in

the following form:

∞
∑

n=0

p(k)
Λ

(n)xn
= (1 − x)k

∏

λ∈Λ

(1 − xλ)−1.

Convergence is absolute when |x| < 1.

Products and sums with index p are taken over the set of primes, which we denote

by P. We write the set of r-th powers of primes as P
(r).

The purpose of this paper is to prove the following asymptotic formula:

log p(k−1)
P(r) (n) = (r + 1)

[

Γ

( 1

r
+ 2
)

ζ
( 1

r
+ 1
)] r/(r+1)

n1/(r+1)(log n)−r/(r+1)

×
(

1 + Oǫ

(

√

(log log n)1+ǫ

log n

))

, as n → ∞,
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466 R. Woodford

for fixed k, r ≥ 1. The asymptotic, for k = 1, without the error term was first given

by Hardy and Ramanujan [5]. However, they did not provide a rigorous proof of this

fact, and, as has been observed, they assumed that for a given r, p(1)
P(r) (n) ≥ 0 for all n.

This is readily seen to be false for r as low as 2, n = 5. Bateman and Erdős [2] showed,

however, that if Λ is a set such that the removal of any k elements leaves a set with

greatest common divisor 1, then limn→∞ p(k)
Λ

(n) = ∞. Hence, for any r ≥ 1, k ≥ 0,

limn→∞ p(k)
P(r) (n) = ∞. We shall use this fact to rectify the dilemma. The theorem is

of the Tauberian type: we shall first prove estimates for the generating functions, and

then use them to yield information about the coefficients.

We shall use the following version of the prime number theorem:

π(x) = Li(x) + E(x),

where

E(x) = Oδ

( x

logδ x

)

, for all δ ≥ 2.

2 Asymptotic Formula for the Generating Function

In the following argument, s is assumed to be a small positive quantity approaching 0.

Define φ(s) =
∑

p e−spr

.

Lemma 2.1 As s → 0+,

φ(s) =

∫ ∞

2

e−sur

log u
du + Oδ

( s−1/r

logδ (1/s)

)

,

for any δ ≥ 2.

Proof Using Riemann–Stieltjes integration, we have

φ(s) =

∫ ∞

2−
e−sur

dπ(u)

=

∫ ∞

2−
e−sur

d(Li(u) + E(u))

=

∫ ∞

2

e−sur

log u
du +

∫ ∞

2−
e−sur

dE(u).

(2.1)

Let C = C(s) = log−δ (1/s). Note that as s → 0+, s = o(C(s)). Assume that
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2rs < C. Integration by parts gives
∫ ∞

2−
e−sur

dE(u) = rs

∫ ∞

2

ur−1e−sur

E(u)du + O(1)

≪δ rs

∫ ∞

2

ure−sur

logδ u
du + O(1)

≪δ rδ
∫ ∞

2rs

( t

s

) 1/r e−t

logδ (t/s)
dt + O(1), via the substitution t = sur

= Cs−1/r

∫ ∞

2rs

t1/re−t

(

log t
log (1/s)

+ 1
) δ

dt + O(1)

= Cs−1/r
[

∫ C

2rs

t1/re−t

(

log t
log (1/s)

+ 1
) δ

dt +

∫ ∞

C

t1/re−t

(

log t
log (1/s)

+ 1
) δ

dt
]

+ O(1).

(2.2)

Now,

∫ C

2rs

t1/re−t

( log t
log (1/s)

+ 1
) δ

dt ≪
∫ C

2rs

t1/re−t

( log (2rs)
log (1/s)

+ 1
) δ

dt

=

∫ C

2rs

t1/re−t

( r log 2
log (1/s)

) δ
dt

≪δ logδ (1/s)

∫ C

2rs

t1/re−t dt

≪δ C logδ (1/s) = 1.

On the other hand for C ≤ t < ∞, we have that log t/ log (1/s) + 1 is minimized

when t = C, so that
∫ ∞

C

t1/re−t

(

log t
log (1/s)

+ 1
) δ

dt ≪
∫ ∞

C

t1/re−t

( −δ log log (1/s)
log (1/s)

+ 1
) δ

dt

≪δ

∫ ∞

0

t1/re−t dt ≪δ 1.

Hence by (2.2),

∫ ∞

2−
e−sur

dE(u) ≪δ Cs−1/r,

which together with (2.1) completes the proof.

Lemma 2.2 As s → 0+,
∫ ∞

2

e−sur

log u
du = rΓ

( 1

r
+ 1
)

s−1/r(log (1/s))−1 + O
( s−1/r log log (1/s)

log2 (1/s)

)

.
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Proof Making the substitution t = sur into the integral gives

(2.3)

∫ ∞

2

e−sur

log u
du = s−1/r

∫ ∞

2rs

t1/r−1e−t

log (1/s)
dt = s−1/r(log (1/s))−1(I1 + I2 + I3),

where

I1 =

∫ 1/ log2r (1/s)

2rs

t1/r−1e−t

1 +
log t

log (1/s)

dt,

I2 =

∫ log2 (1/s)

1/ log2r (1/s)

t1/r−1e−t

1 + log t
log (1/s)

dt,

I3 =

∫ ∞

log2 (1/s)

t1/r−1e−t

1 +
log t

log (1/s)

dt.

We will consider each of these integrals individually.

For t ∈ [2rs, 1/ log2r (1/s)], log t/ log (1/s) is closest to −1 when t = 2rs. Hence

I1 ≪
∫ 1/ log2r (1/s)

2rs

t1/r−1e−t

1 +
log 2rs

log (1/s)

dt,

≪ log (1/s)

∫ 1/ log2r (1/s)

2rs

t1/r−1e−t dt

≪ log (1/s)

∫ 1/ log2r (1/s)

0

t1/r−1dt

≪ 1

log (1/s)
.

(2.4)

Now we consider I2. For t ∈ [1/ log2r (1/s), log2 (1/s)], we have

1

1 +
log t

log (1/s)

= 1 + O
( log log (1/s)

log (1/s)

)

,

and so using integration by parts,

I2 =

∫ log2 (1/s)

1/ log2r (1/s)

t1/r−1e−t dt + O
( log log (1/s)

log (1/s)

)

=r
[

t1/re−t
] log2 (1/s)

1/ log2r (1/s)
+ r

∫ ∞

0

t1/re−tdt + O
(

∫ 1/ log2r (1/s)

0

t1/re−t dt
)

+ O
(

∫ ∞

log2 (1/s)

t1/re−tdt
)

+ O
( log log (1/s)

log (1/s)

)

.
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But
∫ ∞

0

t1/re−t dt = Γ

( 1

r
+ 1
)

,

and all the remaining terms are O(log log (1/s)/ log (1/s)), so

(2.5) I2 = rΓ
( 1

r
+ 1
)

+ O
( log log (1/s)

log (1/s)

)

.

Finally,

(2.6) I3 ≪ 1

log (1/s)

∫ ∞

log2 (1/s)

t1/r−1e−t dt ≪ 1

log (1/s)
.

The proof is completed by combining (2.3), (2.4), (2.5), and (2.6).

The previous two lemmas yield the following.

Corollary 2.3 As s → 0+,

φ(s) = rΓ
( 1

r
+ 1
)

s−1/r
(

log (1/s)
)−1

+ O
( s−1/r log log (1/s)

log2 (1/s)

)

.

Let k ∈ N, and define

f (s) =

∞
∑

n=0

p(k)
P(r) (n)e−ns

= (1 − e−s)k
∏

p

(1 − e−spr

)−1.

That is, f (s) is the generating function in e−s of the k-th difference function of

pP(r) (n). Taking logarithms we have

log f (s) = k log (1 − e−s) −
∑

p

log (1 − e−spr

)

= k log (1 − e−s) +
∑

p

∞
∑

j=1

e− jspr

j

= k log (1 − e−s) +

∞
∑

j=1

1

j

∑

p

e− jspr

= k log (1 − e−s) +

∞
∑

j=1

φ( js)

j
.

(2.7)

We wish to use our approximations for φ(s) to evaluate the sum
∑∞

j=1
φ( js)

j
. To

do this we break up the sum into two parts. Let N = (1/s)/(log (1/s)). Then by
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Corollary 2.3,

(2.8)
∑

j≤N

φ( js)

j
= rΓ

( 1

r
+ 1
)

s−1/r

×
[

∑

j≤N

1

j1+1/r log (1/ js)
+ O
(

∑

j≤N

log log (1/ js)

j1+1/r log2 (1/ js)

)]

.

Now,

∑

j≤N

1

j1+1/r log (1/ js)
=

1

log (1/s)

∑

j≤N

1

j1+1/r
(

1 − log j
log (1/s)

)

(2.9)

=
1

log (1/s)

[

∑

j≤N

1

j1+1/r
+

1

log (1/s)

∑

j≤N

log j

j1+1/r
(

1 − log j
log (1/s)

)

]

= (log (1/s))−1
(

ζ
( 1

r
+ 1
)

+ O
( 1

N1/r

))

+
1

log2 (1/s)
O

(

∑

j≤N

1

j1+1/2r
(

1 − log j
log (1/s)

)

)

.

We have,

(2.10)
(log (1/s))−1

N1/r
= O(s1/r),

and
∑

j≤N

1

j1+1/2r
(

1 − log j
log (1/s)

) = Σ1 + Σ2,

where

Σ1 =

∑

j≤1/
√

s

1

j1+1/2r
(

1 − log j
log (1/s)

) , and Σ2 =

∑

1/
√

s< j≤N

1

j1+1/2r
(

1 − log j
log (1/s)

) .

But Σ1 ≪
∑

j≤1/
√

s
1

j1+1/2r ≪ 1, and

Σ2 ≪
∑

1/
√

s< j≤N

1

j1+1/2r
(

1 − log N
log (1/s)

)

≪
∑

1/
√

s< j≤N

log (1/s)

j1+1/2r log log (1/s)
≪ s1/4r log (1/s)

log log (1/s)
,
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Hence

(2.11)
∑

j≤N

1

j1+1/2r
(

1 − log j
log (1/s)

) ≪ 1.

We use a similar technique to bound the error term in (2.8). Write

∑

j≤N

log log (1/ js)

j1+1/r log2 (1/ js)
=

1

log2 (1/s)
(Σ ′

1 + Σ
′
2),

where

Σ
′
1 =

∑

j≤1/
√

s

log log (1/ js)

j1+1/r
(

1 − log j
log (1/s)

) 2
,

and

Σ
′
2 =

∑

1/
√

s< j≤N

log log (1/ js)

j1+1/r
(

1 − log j
log (1/s)

) 2
.

Then

Σ
′
1 ≪

∑

j≤1/
√

s

log log (1/s)

j1+1/r
≪ log log (1/s),

and

Σ
′
2 ≪

∑

1/
√

s< j≤N

log log (1/s)

j1+1/r
(

1 − log N
log (1/s)

) 2

≪
∑

1/
√

s< j≤N

log2 (1/s)

j1+1/r log log (1/s)
≪ s1/2r log2 (1/s)

log log (1/s)
.

Hence,

(2.12)
∑

j≤N

log log (1/ js)

j1+1/r log2 (1/ js)
≪ log log (1/s)

log2 (1/s)
.
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Next we must consider the tail of the sum
∑

φ( js)/ j:

∑

j>N

φ( js)

j
≪

∞
∑

n=2

∑

j>N

e− jsn

j
≪ 1

N

∞
∑

n=2

∑

j>N

e− jsn ≪ 1

N

∞
∑

n=2

e−Nsn

1 − e−sn

=
1

N

∑

2≤n≤1/s

e−Nsn

1 − e−sn
+

1

N

∑

n>1/s

e−Nsn

1 − e−sn

≪ 1

N

∑

2≤n≤1/s

e−Nsn

sn
+

1

N

∑

n>1/s

e−Nsn

≪ log (1/s)

∞
∑

n=2

e−Nsn +
1

N

e−N

1 − e−Ns

≪ log (1/s)
e−2Ns

1 − e−Ns
+

s log (1/s)e−1/(s log (1/s))

1 − e−Ns

≪ log2 (1/s)e−2/ log (1/s) + s log2 (1/s)e−1/(s log (1/s))

≪ log2 (1/s).

(2.13)

Combining (2.7) through (2.13), and the fact that

log (1 − e−s) ≪ log (1/s) ≪ s−1/r log log (1/s)

log2 (1/s)
,

as s → 0+, we have the following theorem.

Theorem 2.4 As s → 0+,

log f (s) = rΓ
( 1

r
+ 1
)

ζ
( 1

r
+ 1
)

s−1/r(log (1/s))−1 + O
( s−1/r log log (1/s)

log2 (1/s)

)

.

3 Bounding from Above

Now we are in a position to prove our main theorem, which we do in two parts, the

first being the simplest. First let us introduce some new notation.

Let k, r ≥ 1, an = p(k)
P(r) (n), An =

∑n
i=0 ai = p(k−1)

P(r) (n), and denote the following

constants:

A = rΓ
( 1

r
+ 1
)

ζ
( 1

r
+ 1
)

,

B = (r + 1)
[

Γ

( 1

r
+ 2
)

ζ
( 1

r
+ 1
)] r/(r+1)

.

Furthermore, choose C1 > 0 such that if

δ(s) = C1
log log (1/s)

log (1/s)
,
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then

|1 − (1/A)s1/r log (1/s) log f (s)| < C1
log log (1/s)

log (1/s)
.

We begin by bounding log An from above.

Lemma 3.1 There exists a function β ≪ log log n/ log n such that for all n sufficiently

large,

log An <
Bn1/(r+1)

(log n)r/(r+1)
(1 + β).

Proof We have that

(3.1) (1 − δ(s))As−1/r(log (1/s))−1 < log f (s) < (1 + δ(s))As−1/r(log (1/s))−1.

Since limn→∞ an = ∞, there exists an N ∈ N depending on k and r such that

n > N implies that an ≥ 0. We define a constant C2 by C2 =
∑N

j=0 |a j |. Thus if

n > N, then

Ane−ns
=

N
∑

j=0

a je
−ns +

n
∑

j=N+1

a je
−ns <

N
∑

j=0

a je
−ns +

n
∑

j=N+1

a je
− js

=

N
∑

j=0

a j(e−ns − e− js) +

n
∑

j=0

a je
− js < f (s) + C2,

and so

log An < ns + (1 + δ(s))As−1/r(log (1/s))−1 + log (1 + C2e−(1+δ(s))As−1/r(log (1/s))−1

)

< ns + (1 + δ(s))As−1/r(log (1/s))−1 + O(e−(1+δ(s))As−1/r(log (1/s))−1

).

(3.2)

For a large value of n, we can, by continuity, choose a corresponding s > 0 such

that

(3.3)
1 − δ(s)

r
As−(r+1)/r(log (1/s))−1 < n <

1 + δ(s)

r
As−(r+1)/r(log (1/s))−1.

For these values of s and n, we deduce from (3.3) that

(3.4)
1

s
=

[( rn log (1/s)

A

)(

1 + O
( log log (1/s)

log (1/s)

))] r/(r+1)

,

and hence

(3.5) log (1/s) =
r log n

r + 1

(

1 + O
( log log (1/s)

log n

))

.
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Note that this implies that log (1/s) ≪ log n ≪ log (1/s) as s → 0, or equivalently,

as n → ∞, so we may use log n, and log (1/s) interchangeably in various error terms.

This fact, together with equations (3.4) and (3.5) implies that

s =

[( A

rn log (1/s)

)(

1 + O
( log log (1/s)

log (1/s)

))] r/(r+1)

=

[( A(r + 1)

r2n log n

)(

1 + O
( log log (1/s)

log (1/s)

))] r/(r+1)

=
B

(r + 1)(n log n)r/(r+1)

(

1 + O
( log log n

log n

))

.

(3.6)

From (3.5) and (3.6), we infer that

ns + As−1/r(log (1/s))−1
=

Bn1/(r+1)

(r + 1)(log n)r/(r+1)

(

1 + O
( log log n

log n

))

+
A(r + 1)(r+1)/rn1/(r+1)

rB1/r(log n)r/(r+1)

(

1 + O
( log log n

log n

))

=
Bn1/(r+1)

(log n)r/(r+1)

(

1 + O
( log log n

log n

))

.

Therefore, by (3.2),

(3.7) log An <
Bn1/(r+1)

(log n)r/(r+1)

(

1 + O
( log log n

log n

))

.

This completes the proof of the lemma.

4 Bounding from Below

Lemma 3.1 is one half of what we require. We use it to prove the other half.

Lemma 4.1 Let ǫ > 0 be given. Then there is a function

β ≪ǫ

√

(log log n)1+ǫ

log n

such that for all n sufficiently large,

log An >
Bn1/(r+1)

(log n)r/(r+1)
(1 − β).

First let us introduce a convenient bit of notation. At times throughout the fol-

lowing argument, we are guaranteed the existence of certain positive functions which

are O(log log (1/s)/ log (1/s)) in magnitude, as s → 0+. Rather than rename each

such function, we may simply write η. Thus the precise η may vary, depending on

the context, even within the same equation, but will always be used to denote such a

positive function whose existence is guaranteed.
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Proof Let A(x) = An, for n ≤ x < n + 1. Hence by (3.7), there is a constant C3 > 0,

such that if η1(x) = C3
log log x

log x
,then

(4.1) log A(x) <
Bx1/(r+1)

(log x)r/(r+1)

(

1 + η1(x)
)

.

Now

f (s) =

∞
∑

n=0

ane−ns
=

∞
∑

n=0

An(e−ns − e−(n+1)s)

= s

∞
∑

n=0

An

∫ n+1

n

e−sxdx = s

∫ ∞

0

A(x)e−sxdx.

(4.2)

The inequalities in (3.1) together with equation (4.2) imply that

exp
(

(1 − δ(s))As−1/r(log (1/s))−1
)

< s

∫ ∞

0

A(x)e−sxdx

< exp
(

(1 + δ(s))As−1/r(log (1/s))−1
)

.

(4.3)

Given a small value of s > 0, we can, by continuity, choose a corresponding m > 0

such that

(4.4)
1

s
=

r + 1

B
(m log m)r/(r+1).

Now, denote

f (s) = s

∫ ∞

0

A(x)e−sxdx

= s
(

∫ m/H

0

+

∫ (1−ζ)m

m/H

+

∫ (1+ζ)m

(1−ζ)m

+

∫ Hm

(1+ζ)m

+

∫ ∞

Hm

)

= J1 + J2 + J3 + J4 + J5,

where

ζ =

√

(log log m)1+ǫ

log m
,

and H > 1 is a constant yet to be determined. We will see that the dominant term

here is J3, but first we shall prove that the terms J1, J2, J4, and J5 are negligible in

comparison to the exponentials on either side of (4.3).

We first dispatch J1 and J5. From Lemma 3.1, we have

J1 < s

∫ m/H

0

A(x)e−sxdx

< exp
[

(1 + η1(m/H))B(m/H)1/(r+1)(log (m/H))−r/(r+1)
]

.

(4.5)
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Taking logarithms in (4.4), we see that

r + 1

r
(1 − η) <

log m

log (1/s)
.

We can in light of this fact, select a positive function η3(s) ≪ log log (1/s)/ log (1/s)

such that for m sufficiently large relative to H (i.e., s sufficiently small),

( r + 1

r

) 1 + η1(m/H)
(

1 − log H
log m

) r/(r+1)
<

(1 + η3(s)) log m

log (1/s)
.

This leads to the following string of inequalities:

(1 + η1(m/H))A(r + 1)1+(r+1)/r

r2 log m
(

1 − log H
log m

) r/(r+1)
<

(1 + η3(s))A(r + 1)(r+1)/r

r log (1/s)
,

(1 + η1(m/H))B(r+1)/r

log m
(

1 − log H
log m

) r/(r+1)
<

(1 + η3(s))A(r + 1)(r+1)/r

r log (1/s)
,

(1 + η1(m/H))Bm1/(r+1)

(log m)r/(r+1)
(

1 − log H
log m

) r/(r+1)
<

(1 + η3(s))A(r + 1)(r+1)/r

rB1/r log (1/s)

× m1/(r+1)(log m)1/(r+1)

(1 + η1(m/H))Bm1/(r+1)

(log (m/H))r/(r+1)H1/(r+1)
<

(1 + η3(s))A(r + 1)

rH1/(r+1)s1/r log (1/s)
.

Comparing the final inequality with (4.5) yields

J1 < exp
[

(1 + η3(s))AH−1/(r+1)s−1/r(log (1/s))−1
]

,

for s sufficiently small. Choose H large enough such that for all s in the range in

question,

1 + η3(s)

H1/(r+1)
≤ 1 + δ(s)

2
.

Then

J1 < exp
[

((1 + δ(s))/2)As−1/r(log (1/s))−1
]

.

We now consider J5. Note that max {η1(x) : x > 1} = C3/e. We may choose H

sufficiently large such that

1

r + 1
>

2(1 + C3/e)

Hr/(r+1)
.
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Then

s =
B

(r + 1)(m log m)r/(r+1)
>

2(1 + C3/e)B

(Hm log (Hm))r/(r+1)

≥ 2(1 + η1(x))B

(x log x)r/(r+1)
for all x ≥ Hm,

and so
(1 + η1(x))Bx1/(r+1)

(log x)r/(r+1)
<

sx

2
,

for all x ≥ Hm. Thus

J5 = s

∫ ∞

Hm

A(x)e−sxdx < s

∫ ∞

Hm

exp
[ Bx1/(r+1)(1 + η1(x))

(log x)r/(r+1)
− sx

]

dx

< s

∫ ∞

0

e−sx/2dx = 2,

where the first inequality follows from (4.1).

Now we take a look at the integrals J2, and J4, beginning with the latter. By (4.1),

J4(s) = s

∫ Hm

1+ζ

A(x)e−sxdx < s

∫ Hm

1+ζ

eψ(x)dx,

where

(4.6) ψ(x) = (1 + η1(x))Bx1/(r+1)(log x)−r/(r+1) − sx.

If the maximum for ψ(x) occurs at x0, then, via a straightforward differentiation, it

transpires that

(4.7)
1

s
=

(

1 + O
( log log x0

log x0

)) r + 1

B
x

r/(r+1)
0 (log x0)r/(r+1).

Comparing this with (4.4), we conclude that log m ≍ log x0, and that

x0 =

(

1 + O
( log log x0

log x0

))

m,

and therefore, for s sufficiently small, (1 − ζ)m < x0 < (1 + ζ)m.

Writing x = x0 + ξ, Taylor’s formula gives us

ψ(x) = ψ(x0) +
B

2
ξ2 d2

dx2

[

(1 + η1(x))x1/(r+1)(log x)−r/(r+1)
]

∣

∣

∣

x=x1

,
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where x0 < x1 < x, and hence (1 − ζ)m < x1 < Hm. From this, it is easily seen that

there exist positive constants C4,C5 such that

d2

dx2
1

(1 + η1(x1))
[

x
1/(r+1)
1 (log x1)−r/(r+1)

]

< −C4x
1/(r+1)−2
1 (log x1)−r/(r+1)

< −C5m1/(r+1)−2(log m)−r/(r+1).

Equations (4.6), and (4.7) yield that

ψ(x0) = As−1/r(log (1/s))−1
(

1 + O
( log log (1/s)

log (1/s)

))

.

Combining the information on ψ(x), we see that there is a constant C6 > 0 such that

J4(s) <s exp
[

(1 + η)As−1/r(log (1/s))−1
]

×
∫ ∞

(ζ−η)m

exp
[

−C6ξ
2m1/(r+1)−2(log m)−r/(r+1)

]

dξ.

The integral on the right-hand side of this inequality is simplified by observing that

it is of the form
∫∞

D
e−Cx2

dx, for C,D > 0. Substituting u2
= Cx2 − CD2, we have

that

∫ ∞

D

e−Cx2

dx =
1√
C

∫ ∞

0

ue−CD2−u2

√
u2 + CD2

du <
e−CD2

√
C

∫ ∞

0

e−u2

du =
e−CD2

2

√

π

C
.

Hence with D = (ζ − η)m, and C = C6m1/(r+1)−2(log m)−r/(r+1), there is a C7 > 0

such that

J4(s) ≪ s exp
[

(1 + η)As−1/r(log (1/s))−1 −C7ζ
2m1/(r+1)(log m)−r/(r+1)

]

√

m1/(r+1)−2(log m)−r/(r+1)
.

Now, by the definition of m,

s
√

m1/(r+1)−2(log m)−r/(r+1)
= s

√

m(m log m)r/(r+1)

≪
√

sm ≪ 1
√

s1/r log (1/s)
.

As we similarly have s−1/r(log (1/s))−1 ≍ m1/(r+1)(log m)−r/(r+1), there is a constant

C8 > 0 such that

J4(s) ≪ exp
[

(1 + η −C8ζ
2)As−1/r(log (1/s))−1

]

√

s1/r log (1/s)

≪ exp
[

(1 −C8ζ
2/2)As−1/r(log (1/s))−1

]

.
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Virtually the same analysis works for J2(s) giving a bound of a similar form. The

results thus far have guaranteed us the existence of a constant C9 > 0, such that

J1, J2, J4, J5 ≪ exp
(

(1 −C9ζ
2)As−1/r(log (1/s))−1

)

.

Hence by (4.3), we may select a new function δ1(s) of the form

C log log (1/s)

log (1/s)

(2δ(s) works), such that for s sufficiently small,

exp
[

(1 − δ1(s))As−1/r(log (1/s))−1
]

< s

∫ (1+ζ)m

(1−ζ)m

A(x)e−sxdx

Since A(x) increases, we have

exp
[

(1 − δ1(s))As−1/r(log (1/s))−1
]

< sA((1 + ζ)m)

∫ (1+ζ)m

(1−ζ)m

e−sxdx.

Evaluating the integral leads to

(4.8) (eζsm − e−ζsm)A((1 + ζ)m) > exp
[

(1 − δ1(s))As−1/r(log (1/s))−1 + ms
]

.

Substituting s in terms of m into the right-hand side of (4.8), we obtain an expression

of the form

exp
[

Bm1/(r+1)(log m)−r/(r+1)
(

1 + O
( log log m

log m

))]

.

Now, equation (4.4) yields

eζsm − e−ζsm
= e

ζB
r+1

m1/(r+1)(log m)−r/(r+1)(

1 − e−
2ζB
r+1

m1/(r+1)(log m)−r/(r+1))

,

and so by (4.8),

(4.9) A((1+ζ)m) > exp
[

Bm1/(r+1)(log m)−r/(r+1)
(

1 − ζ

r + 1
+ O
( log log m

log m

))]

.

But (1 + ζ)m is a continuous function of m, which is ultimately increasing. Thus for

all n sufficiently large, we may choose a unique value of s, and hence of m such that

(1 + ζ)m = n. Substituting m =
n

1+ζ into (4.9) and observing that log m ≍ log n, we

have the lemma.

Together, Lemmas 3.1 and 4.1 yield our main theorem.

Theorem 4.2 For a fixed k ≥ 1,

log p(k−1)
P(r) (n) = (r + 1)

[

Γ

( 1

r
+ 2
)

ζ
( 1

r
+ 1
)] r/(r+1)

n1/(r+1)(log n)−r/(r+1)

×
(

1 + Oǫ

(

√

(log log n)1+ǫ

log n

))

, as n → ∞.
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