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CHARACTERIZATIONS OF COMPLETELY HAUSDORFF-
CLOSED SPACES VIA GRAPHS AND PROJECTIONS 

JAMES E. JOSEPH 

1. I n t r o d u c t i o n . L. L. Herrington recently characterized completely 
Hausdorff-closed topological spaces in terms of arbi t rary filterbases and a type 
of convergence for filterbases called /-convergence [2], Before this, characteriza­
tions of these spaces via filterbases was by open filterbases [1]. In this article, 
we employ Herr ington 's characterizations to obtain characterizations of com­
pletely Hausdorff-closed spaces in terms of projections and in terms of graphs 
of functions into the spaces; both of these—projections and graphs—are utilized 
in conjunction with a class 5" of spaces containing as a subclass the Hausdorff 
completely normal fully normal spaces to effect the characterizations. See [1] 
for a survey of results on completely Hausdorff-closed spaces. 

2. Pre l iminar i e s . The closure of a subset K of a space will be denoted by 
c l ( i£) ;ad£2 will represent the adherence of a filterbase 12 on the space. If 
\p, X: X —> F a r e functions, E(\(/, X, X, Y) will represent {% £ X: \p(x) = \(x)\ 
and G(\j/) will represent the graph of \f/. T h e class of continuous real-valued 
functions on X will be denoted by C(X). If f Ç C(X), x £ X and H is an open 
set a b o u t / ( x ) , we will call / and H an ordered pair for x and denote this by 

2.1. Definition. A point x in a space is in the f-closure of a subset K of the 
space (x G f-cl(K)) if K Hif~l(H) ^ 0 is satisfied by each pair (/, H)x. K is 
f-closed if K contains its /-closure (j-c\(K) C K). 

2.2. Definition [2]. A point x in a space is in the /-adherence of a filterbase Q 
on the space (x G / - ad 0) if each F G fi and pair (/, H)x satisfy F C\ f~l{H) ^ 0 . 

2.3. Definition [1]. A space X is completely Hausdorff if for each pair x, y Ç X 
with x ^ y, there is an / G C(X) sa t i s fy ing/ (x) 9e f(y)). 

We sta te the following theorem without proof. 

2.4. T H E O R E M . The following statements are equivalent for a space X: 
(a) X is completely Hausdorff. 
(b) {x} — P iv f -c l (F ) for each x G X and open set base S at x. 
(c) Each point in X is f-closed. 
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(d) Each function \p into X satisfies \p~l(x) = n c u ) ( g o ^)~l(g(x)) for each 
x 6 X; 

(e) {%) = r\C{x)g~l{g{x)) for each x G X. 

In stat ing our next theorem, which may be readily established, we recall t ha t 
a point x in a space is in the 9-closure of a subset K of the space (x £ d-d(K)) 
if each V open about x satisfies K C\ c\(V) ^ 0; K is 6-closed if d-d(K) C ^ 
[6]. We further recall from [6] tha t a point x in a space is in the 6]-adherence of a 
filterbase 12 on the space (x G #-ad 12) if x £ 0-cl (F) for each F Ç 12. In addition, 
we employ the following definition. 

2.5. Definition. If X and F are spaces, (x, y) £ X X Y is in the first-
coordinate f-closure of K CX X Y((x,y) G (l)/-cl(2£)) if K ^ Cf _ 1 (#) X 
F) ^ 0 is satisfied for each pair (/, H)x and V open about y. K is first-coordinate 

f-closed {(I)f-closed) if ( l ) / -cl( iv) C K. 

2.6. T H E O R E M . The following statements hold for topological spaces X and F, 
subsets K and M of X and subsets P and Q of X X Y: 

(a) X(X X Y) and® aref-closed {{I)f-closed). 
(b) K C d(K) C 0-cl(iv) C / - c l ( i v ) ; P C c l (P) C ( l ) / - c l ( P ) ; f-closed 

{{I)f-closed) subsets are 6-closed (closed). 
(c) f-d(K) ( ( l ) / - c l (P ) ) isf-closed {{\)f-closed). 
(d) The intersection of any collection of f-closed ((I)f-closed) subsets of 

X(X X Y) isf-closed ((l)f-closed). 
(e) IfKC M(P C Q), thenf-d(K) Cf-d(M) ((l)f-d(P) C (Df-d(Q)). 
(f) For each filterbase 12 on X, we have / -ad 12 = P\ f i / -c l (F) and 6-s.d 12 C 

/ -ad 12. 

I t is known tha t a function \p: X —> F is continuous if and only if ^ (ad 12) C 
ad ^(12) for each filterbase 12 on X. A function \j/: X —* F is weakly-continuous 
if for each x (z X and £/ open about \p(x), there is a F open about x satisfying 
*P(V) C d(U) [5]. We assert tha t the following theorem is valid. 

2.7. T H E O R E M . A function \p: X —> Y is weakly-continuous if and only if 
^ (ad 12) C #-ad ^(12) for each filterbase 12 ow X. 

These last observations motivate the following definition. 

2.8. Definition. A function \p: X —> F is f-weakly-continuous if ^ (ad 12) C 
/ -ad ^(12) for each filterbase 12 on X. 

Theorem 2.9 gives various characterizations of/-weakly-continuous functions. 

2.9. T H E O R E M . The following statements are equivalent for spaces X, Y and 
function \p\ X —> F: 

(a) yp is f-weakly-continuous-, 

(b) \Kcl(iv)) CZ-clOA(iv)) for each K CX; 
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(c) g o \j/ is continuous for each g Ç C(Y). 

In [3], a function \j/: X —» F is said to have a strongly-closed graph if for each 
(x, 3/) G (X X F) — G(i/0, there is a F open about x and £/ open about y 
satisfying (V X c\(U)) H G(^) = 0. We assert that the following theorem 
holds. The characterizations in this theorem motivate Definition 2.11. 

2.10. THEOREM. The following statements are equivalent for a space X, a 
T\{J\) space Y and function \p: X —> F; 

(a) \p has a closed graph (strongly-closed graph) ; 
(b) ad ^(0) C {^(x)} (0-ad ^(12) C \t(x)}) for each x £ X and filterbase 12 

on X with 12 —» x ; 
(c) ad ^(G) C {^(x)} (0-ad ^(12) C {^(x)}) for each x f X and filterbase 12 

on X — \x} with 12 —» x. 

2.1L Definition. A function i//: X —> Y has an f-strongly-subclosed graph if 
/-ad ^(12) C {\K^)! for each x 6 X and filterbase 12 on X - {x} with 12 ~> x. 

It is clear from above that a function into a 1\ space with an /-strongly-
subclosed graph has a strongly-closed graph. 

Our next theorem gives several characterizations of functions with/-strongly-
subclosed graphs. 

2.12. THEOREM. The following statements are equivalent for spaces X, Y and 
function \j/: X —> F; 

(a) \p has an f-strongly-sub closed graph. 
(b) For each (x, y) £ {X X Y) — G(\f/), there is a V open about x and a pair 

(/, H)y satisfying ( (F - {*}) X f~'(H)) H G W = 0. 
(c) For eacft (x\ 3') Ç (X X F) — G(\p)} there is a V open about x and a pair 

(/, ff), satisfying (V X C /" 1 ^ ) ~ M*)}) ) H G(*) = 0. 
(d) For eacfe (x, 7) G (A" X Y) — G(\j/), ^ere is a F o/?ew aoow/ x and a />azr 

(/, H)y satisfying ^(V - \x\) ^f~l(H) = 0. 
(e) For each (x, 3O t (X X Y) — G(\p), //zere is a F o£>ew a&oẑ  x and a pair 

(/, H)v satisfying *( I') n ' ( / - 1 ( # ) - {*(*)}) = 0. 
(f) For me/? x G X and eacfe (some) open set- base 2 at x, we /zaz^ 

n 2 / - d ( ^ ( F - {*})) c {*(*)}. 
2.13. Definition. Let X be a nonempty set, let x0 G X, and let 12 be a filterbase 

on X; {A C X: x^ (z X — A or F U {x0} C A for some F Ç 12} is a topology 
on X which will be called the topology on X associated with x0 and 12. A" equipped 
with this topology will be called the space X associated with x0 and 12. We will 
denote this space by X(XQ, 12), 

The following easily established theorem is used frequently in the sequel. 

2.14. THEOREM. Let X be a nonempty set, let x0 £ X be a filterbase on X 
with empty intersection on X — {x0}. Then X(x0, 12) is in class S. 

3. Characterizations of completely Hausdorff-closed spaces via graphs. 
In [3], it is proved that a Hausdorff space F is FF-closed if and only if all 
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functions with strongly-closed graphs from a space in class S to F are weakly-
continuous. In this section, we present—via graphs—some characterizations of 
spaces satisfying condition CH (below), which has been observed by Herring-
ton [2] to be equivalent to completely Hausdorff-closedness for completely 
Hausdorff spaces. 

(CH) Each filterbase on the space has a nonempty f-adherence. 

We now use graphs to give several characterizations of CH spaces which are 
not necessarily completely Hausdorff. 

3.1. T H E O R E M . A space Y is CH if and only if for each space X in class S, 
each bijection \p: X —> Y with an f-strongly-sub closed graph is f-weakly-con­
tinuous. 

Proof. (Strong necessity). Let F be a CH space, X be any space, and \p: X —> Y 
be any function with an/-strongly-subclosed graph; let 12 be a filterbase on X, 
choose y £ ^ (ad 12) and x £ ad 12 with \[/(x) = y. If 12] = {(V H F) - {x}: 
V open about x, F Ç 12} is not a filterbase on X — {x},then x Ç F for each 
F G 12, so y = \(/(x) Ç \p(F) for each F £ 12. If 12i is a filterbase on X — {x}, 
then 12i —> x and, since Y is CH and G(\[/) is /-strongly-subclosed, we have 
0 ^ / - ad ^(120 C \t(x)}. This gives y Ç / -ad <K^i) C / - a d i//(12). 

(Sufficiency). Suppose 12 is a filterbase on F w i t h / - a d 12 = 0. Choose x0 £ F 
and let ^ : F(x0 , 12) —> F be the identi ty function. Let x t Y and let 12i be a 
filterbase on F(x0 , 12) — {x} with 12i —> x. Then x = x0 and 12i is stronger than 
12; so we h a v e / - a d ^(12i) = / -ad 12i C / - a d 12 = 0 C {^(x0)}. This means tha t 
G(\p) is /-strongly-subclosed. However, ^ is not / -weakly-continuous since 
x0 G ^ (ad 12i) — (/-ad ^(12i)). Thus F does not satisfy the condition of the 
theorem. 

The proof is complete. 

3.2. T H E O R E M . A space Y is CH if and only if for each space X in class S and 
bijections \p, X: X —-> Y with f-strongly-subclosed graphs, E(\p, X, X, Y) is closed 
in X. 

Proof. (Strong necessity). Let F be CHf X be any space, and \p, X: X —> Y be 
any functions with/-strongly-subclosed graphs. Let x 6 c l (E(^ , X, X, F ) ) — 
E(\P, X, X, F ) . There is a filterbase 12 on £ ( ^ , X, X, Y) with 12 -> x. Since X 
has an/-strongly-subclosed graph, and \p isf-weakly-coninuous from Theorem 
3.1, we get {\p(x)\ C ^ (ad Î2) C / - a d ^ ( 1 2 ) = / - a d X(12) C {Hx)\. This is a 
contradiction. 

(Sufficiency). Suppose 12 is a filterbase on a space F w i t h / - a d 12 = 0. Choose 
Xo, 3>o G F with Xo 9e yo and let 12i = \F — {x0, 3̂ 0} : F £ 12}. Then 12i is a 
filterbase on F. Let ^ : F(x0 , 12i) -> F be the identi ty function and define 
X: F(x0 , 12i) —» F by X(x0) = ^0, X(3>o) = ^0 and X(x) = x otherwise. Then 
E(\p, X, F(x0 , 12i), F) = F — {xo, 3>o} which is not closed in F(x0 , 12i). We see 
tha t \p and X are bijections and we show tha t both have/-s trongly-subclosed 
graphs. This will establish tha t F does not satisfy the condition of the theorem. 
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(a) G(i/0 is f-strongly-subclosed. An argument similar to that for \j/ in the 
proof of the sufficiency of Theorem 3.1 will verify this. 

(b) G(\) is fstrongly-subclosed. Let x £ F and let ft2 be a filterbase on 
Y(x0l fti) — {x} with ft2 —• x. Then x = x0 and ft2 is stronger than fti; 
so we have / - ad X(ft2) = / - ad ft2 C / - ad fti C / - ad ft = 0 C {X(x)}. 
T h u s G(\) is /-strongly-subclosed. 

The proof is complete. 

3.3. T H E O R E M . A space Y is CH if and only if for each space X in class S and 
functions (one a bijection) \p, X: X —> Y with f-strongly-sub closed graphs, 
E(\j/, X, X, Y) = X whenever £ ( ^ , X, X, Y) is dense in X. 

Proof. (Strong necessity). Let F be a CH space, X be any space and \p, X: X—>F 
be any functions with /-strongly-subclosed graphs. From Theorem 3.2, 
E(t, X, X, Y) is closed in X; so £ t y , X, X, Y) = X if £(<£, X, X , F) is dense in 
X . 

(Sufficiency). We follow the proof of the sufficiency of Theorem 3.2 to the 
point immediately preceding the definition of X. We define X: F(x0 , fti) —» F 
byX(xo) = ^ 0 , a n d X ( x ) = x otherwise. Then E(\p, X, F(x0 , fti), Y) = F—{x 0} 
which is dense in F(x0 , fti). By arguments similar to those in the proof of the 
sufficiency of Theorem 3.2, we can show tha t G(\p) and G(\) a r e / - s t rong ly -
subclosed. 

The proof is then complete. 

4. A c h a r a c t e r i z a t i o n of c o m p l e t e l y Hausdorf f -c losed spaces via pro­
j e c t i o n s . In [4], the author has proved tha t a Hausdorff space X is H-c\osed 
if and only if the projection, iry: X X Y—> Y, takes 0-closed subsets onto 
^-closed subsets for every space F in class 5 . In this section, we give a similar 
characterization of spaces satisfying condition CH. 

4.1 . T H E O R E M . A space X is C H if and only if iry: X X F—> Y maps (I) f-
closed subsets of X X Y onto closed subsets of Y for every space Y in class S. 

Proof. (Strong necessity). Let X be a CH space and let F be any space. Let 
K C X X F be (l)/-closed and let y £ C\(TTV(K)). Then ft = {irx((X X V) C\ 
K): V open about y) is a filterbase on X. Let x G / - ad ft. Then (x, y) € (1)/-
c l (20 C # , so 3; G 1^(20. 

(Sufficiency). Let ft be a filterbase on X with / - ad ft = 0, choose yo (? X, let 
Y = X\J {3/0} and K = { (x, x ) : x £ X } . Then ( l ) / -c l ( i£) is (l)/-closed in 
X X F(yo, fi) and X C ( l ) / -c l ( i£) . T h u s 3/0 G i r y ( ( l ) / - c l ( 2 0 ) . Let x Ç X with 
( x , y 0 ) G ( l ) / -c l ( i£) . For each ( / , # ) * and F G ft, we have (f~l(H) X 
(F\J {y0})) H Z ^ 0 . S 0 / - U H ) n ^ 0 and, consequent ly , / -ad ft ^ 0. 

The proof is complete. 

5. First c o u n t a b l e c o m p l e t e l y Hausdorff spaces . See [1] for definitions 
and results used bu t not given here. Observing t ha t X (xQ, ft) is metrizable when 
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12 = {Fn} is countable and X(xQ} 12) is Ti(X(x0, 12) is regular and \V(n)} 

denned by V(n) = { F n U ( x 0 ) ) U {{x}:x G Z - (Fn U {x0})} is a d-locally 

finite base), we may establish the following theorems by appropriate use of the 

first countabili ty and arguments similar to those in the last section. 

5.1. T H E O R E M . The following statements are equivalent for a first countable 
space Y. A may represent the class of first countable spaces, the class of first 
countable spaces in class S, or the class of metric spaces. 

(a) Each countable filterbase on Y has nonvoid f-adherence. 
(b) Each sequence in Y f-accumulates [2] to some point in Y. 
(c) For each X G A, each function (bijection) \p: X —•> Y with an f-strongly-

subclosed graph is f-weakly-continuous. 
(d) For each X (z A and any two functions (bijections) \f/, X: X —> Y with 

f-strongly-sub closed graphs, E(\p, X, X, Y) is closed in X. 

(e) For each X G A and any two functions {one a bijection) \p, X: X —> Y with 
f-strongly-sub closed graphs, E(\p,\,X, Y) = X when E(\p,\,X, Y) is 
dense in X. 

We utilize the following notion in our next theorem. 

5.2. Definition. A function \p: X —•> Y has a subclosed graph if ad ^(12) C 
{\p(x)\ for each x G X and filterbase 12 on X — {%} with 12 —» x. 

5.3. T H E O R E M . The following statements are equivalent for a first countable 
space Y. X is restricted as in Theorem 5.1. 

(a) Each countable filterbase on Y with at most one f-adherent point is con­
vergent. 

(b) Each sequence in Y with at most one f-accumulation point converges. 
(c) For each X G A, each function (bijection) \p: X —> Y with an f-strongly-

subclosed graph is continuous. 
(d) For each X £ A and any two functions (bijections) \[/, X: X —» Y with 

f-strongly-sub closed graph and subclosed graph, respectively, E(\p, X, X, Y) 
is closed in X. 

(e) For each X t A and any two functions (one a bijection) \p, X: X —* Y with 
f-strongly-sub closed graph and subclosed graph, respectively, E(\p, X, X, Y) 
= X when E(\p, X, X, Y) is dense in X. 

Proof. T h a t (a) and (b) are equivalent is fairly immediate. We remark tha t 
(a) , (c), (d), and (e) are established as equivalent s ta tements by the appropri­
ate use of the first countabil i ty and arguments similar to those in Section 3. 
W7e prove only the equivalence of (a) and (c). T o establish a strong (c), 
suppose Y satisfies (a) , let X be any first countable space and let \p: X —» Y 
have an/-s trongly-subclosed graph. Let x Ç X and let 2 be a countable open 
set base a t x. If {xj G S, then \[/ is continuous a t x. If {xj ? S, then 12 = { V — 
{x}: F G 2} is a filterbase on X — {%} with 12 —• x. So ^(12) is a countable 
filterbase on F and, consequently, 0 ^ / -ad i^(12) C {^(x)}. This gives yp (12) —• 
^ ( x ) . So for each W open about ^ (x ) , there is a F G 2 satisfying \p(V) C W. 
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Now, suppose a space Y satisfies (c) but not (a). Then there is a yQ G Y, 
countable filterbase 12 on F, and a F0 open about y0 with /-ad 1] C {yo} and 
fix = {F P\ ( 7 - Fo): ^ ^ | a filterbase on F. Let ^ F(yo, ûi) -^ F be the 
identity function. Let y £ F and let ft2 be a filterbase on Y(yo, tti) — {y} with 
fi2—>y. Then y = ;y0 and we have /-ad ^(122) = / - a d 122 C / -ad fii C î^oî; 
so G(i/0 is/-strongly-subclosed. However, ^ is a bijection and is not continuous 
since Oi —> yo in Y(y0, 121) but 12i ŷ> y0 in F. 

The proof that (a) and (c) are equivalent is complete. 

5.4. COROLLARY. A first countable completely Hausdorff space Y is first 
countable and completely Hausdorff-closed {minimal completely Hausdorff) if Y 
satisfies any of the equivalent statements of Theorem 5.1 (5.3). 

Proof. Follows from Theorem 4.2 (4.4) of [2]. 

6. Some examples. In this section, we give some examples to indicate some 
of the limitations on the weakening of hypotheses in the theorems in this 
paper. In the examples below, let F be a completely Hausdorff-closed space 
which is not i^-closed [1]. Let y0 G F and let 12 be a filterbase on F satisfying 
#-ad 12 = 0 and 12 —> fyQ [2]. Choose x0 Ç F — {yo} and define a, \p, A: F( j 0 , 12) 
—» F by \p(x) = x for all x, a(yo) = x0 and a(x) — x otherwise, X(x0) = yo, 
\(yo) = XQ and \(x) = x otherwise. 

6.1. Example. No "f-strongly-sub closed" can be replaced by "strongly-closed" 
in either of Theorems 3.1, 3.2 or 3.3. \p has an/-strongly-subclosed graph and a 
and X both have strongly-closed graphs which are not /-strongly-subclosed. 
However, X is not/-weakly-continuous. E(\p, X, Y(yQ, 12), F) is not closed in F, 
and E(\p, a, Y(y0, 12), F) = F — {y0\ which is dense in Y(y0, 12). 

6.2. Example. The phrase uf-weakly-continuous cannot be replaced by il weakly -
continuous" in Theorem 3.1. It is clear that a weakly-continuous function is 
/-weakly-continuous. However, \p is not weakly-continuous. 
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