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Abstract
The COVID-19 pandemic interrupts the relatively steady trend of improving longevity observed in many
countries over the last decades. We claim that this needs to be addressed explicitly in many mortality
modelling applications, for example, in the life insurance industry. To support this position, we provide a
descriptive analysis of the mortality development of several countries up to and including the year 2020.
Furthermore, we perform an empirical and theoretical investigation of the impact a mortality jump has on
the parameters, forecasts and implied present values of the popular Lee–Carter mortality model. We find
that COVID-19 has resulted in substantial mortality shocks in many countries. We show that such shocks
have a large impact on point and interval forecasts of death rates and, consequently, on the valuation of
mortality-related insurance products.We obtain similar findings under the Cairns–Blake–Dowdmortality
model, which demonstrates that the effects caused by COVID-19 show up in a variety of models. Finally,
we provide an overview of approaches to handle extrememortality events such as the COVID-19 pandemic
in mortality modelling.
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1. Introduction
In many applications, there is a need for reliable mortality models. For example, they are an
essential ingredient of population projections, which yield important information for planning
the future of society. For pension funds and life insurers, accurate mortality modelling is part of
their business model.

The last century has seen a tremendous decrease of mortality rates in developed countries, call-
ing attention to the risk of underestimating average future longevity, which has actually happened
in the official estimates of many of these countries (Michaelson & Mulholland, 2014). This risk
has been termed longevity risk and particularly concerns all types of annuity providers as their
liabilities depend on mortality development. Many efforts such as improvements in modelling
and the design of innovative capital market hedging instruments have been undertaken to cope
with longevity risk.

Recently, a threat to the continued longevity improvements has emerged in the shape of the
COVID-19 pandemic, which has cost over 4.6 million lives worldwide as of September 2021
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(Dong et al., 2021). SARS-CoV-2 is not the first virus to cause a pandemic, and it certainly will
not be the last. A study by Woolhouse & Gaunt (2007) finds that over 6% of all known human
pathogens were first reported in humans after 1980, and many of them were globally spreading
viruses.

Any mortality modeller must address the question whether allowing for pandemics, or more
generally for mortality shocks induced not only by pandemics but also other events such as nat-
ural catastrophes or major terror attacks, is necessary for their specific application. In contrast to
annuity providers, writers of life insurance policies are exposed to mortality risk, i.e., the risk of
underestimating future mortality rates. This risk might be enlarged by not taking into account the
possibility of mortality jumps. Therefore, as Cox et al. (2010) write, “including pandemic effects
is an important issue in modeling mortality for life insurance liabilities”.

Accounting for severe mortality shocks is in fact required from life insurers by Solvency II reg-
ulations, according to which the available mortality risk capital must be sufficient to cover for
losses resulting from an instantaneous permanent increase of mortality rates by 15% (European
Union, 2020). While it seems unlikely that COVID-19 will cause such an extreme long-term
change of mortality rates, it is plausible that even transitory mortality jumps of this size can have
non-negligible financial consequences.

An empirical study on US life insurance data by Individual Life COVID-19 Project Work
Group (2021) finds that life insurance claim counts have increased by 4.6% for females and 5.5%
for males in the first half of 2020. The appearance of excess claims differs by age and heavily by
geographical region. In particular, the New York/New Jersey region “had a terrible April”: all-
cause life claim counts were 230% of the previous five years’ average. Similar analyses have been
performed in other countries. For example, Continuous Mortality Investigation (2020) present
empirical evidence for weekly excess mortality of up to 144% in England and Wales along with
some recommendations on whether and how to include 2020 data in the mortality modelling and
forecasting process. They particularly mention the necessity to adjust stochastic mortality models
but do not provide a deeper analysis.

In the following, we investigate whether COVID-19 had a notable impact on mortality rates
in different regions by analysing mortality data up to and including 2020 for several European
countries. We find that the influence of COVID-19 on mortality in 2020 is clearly recognisable
both on a weekly and on a yearly scale according to different measures such as excess death ratios
and age-standardised death rates. COVID-19 has caused a (temporary) setback of the mortality
development in the considered countries by up to 12 years. In terms of improvement rates, 2020
is among the 10 worst years for all countries in our considered data set, which dates back to as far
as 1900 in many cases. Therefore, it seems advisable to take COVID-19 into account in mortality
models and for valuations, reserving decisions or solvency capital calculations derived from such
models by (re)insurance companies.

In order to quantify the impact of the 2020 mortality shock, we calibrate the widely used Lee–
Carter (LC) model by Lee & Carter (1992) on real data including COVID-19 deaths and compare
its parameters, forecasts and the implied present values of annuities and life insurance policies
to a counterfactual scenario in which 2020 mortality continues to develop according to the 2019
trend. As expected, we find that forecasts based on the real data drift away from forecasts based on
the hypothetical situation without COVID-19 with increasing forecasting horizon. Consequently,
annuity values decrease by up to 9% and term assurance values increase by up to 29% in the
numerical example we consider. This is due to the fact that we use 2020 as the forecast jump-
off year, whose mortality strongly influences the LC forecasts under the usual random walk with
drift forecasting method. However, with another numerical example, we show that a mortality
jump at any time point in the calibration data set of an LC model has a significant impact on the
uncertainty related to its forecasts and should therefore not be ignored but explicitly dealt with
by the modeller. To check whether our findings pertain to other mortality models, we consider
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the Cairns–Blake–Dowd (CBD) model by Cairns et al. (2006) as a robustness check. We obtain
qualitatively similar results.

Additionally, we provide a theoretical analysis regarding the influence of a mortality shock
during the calibration period on the parameters and forecasts of the LCmodel. To facilitate under-
standing of our results, we make an assumption on the shape of this shock. In the demographic
literature, evidence has been found that the age dependence of COVID-19-related mortality is
similar across a broad range of countries and often resembles the age dependence of all-cause
mortality (Goldstein & Lee, 2020). There is some variation in COVID-19 mortality age patterns
between countries, which is likely due to country-specific factors such as health care standards,
but Sasson (2021) empirically confirms that COVID-19 mortality in many countries increases
approximately log-linear with age between ages 25 and 84. Therefore, we will base our theoretical
analysis on the assumption that COVID-19 (approximately) induces a log-parallel shift of death
rates, i.e., it makes mortality rates increase by an age-independent multiplicative factor (see also
Milevsky, 2020).

To summarise, we illustrate the influence of COVID-19 on mortality rates and quantify its
potential impact on insurance valuation applications. We find this impact to be quite high for
point forecasts when using 2020 as the jump-off year and we illustrate that the impact on interval
forecasts will continue to be high, even if mortality levels were to normalise quickly. Speaking in
statistical terms, a mortality jump might lead to a substantial violation of the usual normal distri-
bution assumption made for the period effect increments of the LC model. This implies that the
random walk with drift, which is the most commonly used time series model for obtaining fore-
casts in the LC framework, might lead to invalid conclusions and unreliable forecasts when based
on data which include a mortality shock. This observation leads the way to several approaches
frommathematical finance to deal with the situation, of which we provide an overview as a starting
point for further research.

We proceed as follows: In Section 2, the different sources of data used in our study along
with some necessary preprocessing steps are described. This is followed by an explanation of
the methods used for analysing mortality data and the LC model as well as theoretical con-
siderations regarding the impact of a mortality jump during the model calibration period in
Section 3. The results of our empirical analysis are given in Section 4. In Section 5, we present
several approaches from the literature regarding the adjustment of mortality data or models to
account for (the possibility of) mortality shocks. Section 6 concludes. Details on the LC model,
the proofs of all theoretical findings and some additional empirical results are presented in the
appendix.

2. Data
We analyse mortality data which depend on age x ∈X = {x1, . . . , xA}, where A denotes the num-
ber of ages or age groups. For the numerical results in Section 4, the available data are given in
5-year age groups starting from age 35 so that x1 = 35, x2 = 40, . . . , xA = 90 andA= 12. Note that
we denote the age groups by their lower bound for notational simplicity. Explicitly, we consider
the age intervals 35− 39, 40− 44, . . . , 85− 89 and the open-ended age group 90+. The data also
depend on the calendar year, which we denote by t ∈ T = {t1, . . . , tY}, where Y is the number of
available years and differs by population as detailed below.

We consider the mortality experience of multiple populations which we index by i ∈P :=
{1, . . . , P}, where P denotes the number of populations. In our application, a population is a com-
bination of country and sex (female, male, total). We restrict our analysis to Austria (1947–2020),
Belgium, France, Germany (1956–2020, aggregating West and East Germany before 1990), Italy,
Poland (1958–2020), Spain (1908–2020), Sweden and Switzerland. Where not stated differently,
data are available for the period 1900–2020. This means that we consider P = 27 populations in
total.
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Our main quantity of interest is the death rate, which is the proportion

mi
x, t :=

Di
x, t

Eix, t
(1)

of the death count Di
x, t for population i, year t and age x to the corresponding total number of

person-years at risk, the exposure Eix, t . We also consider data on a weekly scale and write mi
x, t,w,

Di
x, t,w and Eix, t,w with w ∈ {1, . . . , 52} for weekly death rates, death counts and exposures.
We get observations of these quantities from the Human Mortality Database (2021, HMD)

and Short Term Mortality Fluctuations (2021, STMF). They provide historical yearly and recent
weekly mortality data, respectively, of several countries in a unified format. Note that there can
be substantial delay in the reporting of fully accurate vital statistics, which means the most recent
STMF data should be considered preliminary. However, as a consequence of the increased public
interest in mortality data during the COVID-19 pandemic, many statistical offices have made
significant efforts to provide high-quality data in a more timely manner. We expect the effects of
future data updates to be negligible for our conclusions

Before we use the data in our analysis, we apply some preprocessing steps. We aggregate death
counts and exposures where necessary to obtain the 5-year age groups as described above. In the
STMF data for Sweden, there are some deaths for which age or week of occurrence are unknown.
We redistribute deaths at unknown ages according to the observed distribution of deaths at known
ages, and we also redistribute deaths in unknown weeks according to the observed distribution of
deaths in known weeks within each year. For details on this standard approach, we refer to the
HMDmethods protocol (Wilmoth et al., 2021, section 4.1).

Furthermore, STMF data are available on a weekly scale, but for some purposes we need recent
yearly mortality data. For such purposes, we group the weekly death counts in the STMF data by
age, population and year and aggregate them to obtain yearly death counts. These yearly death
counts are then appended to the HMD data where the most recent years (2018–2020, 2019–2020
or only 2020) are not available yet. We expect this to give a fairly accurate impression on how
recent trends compare to historical observations.

Finally, to calculate death rates from death counts, we also need the corresponding exposure,
which is not available in the STMF input data. As exposures are notoriously hard to estimate,
we refrain from sophisticated methods and perform a simple age- and population-specific linear
extrapolation of the last five known exposures from the HMD (similarly to Leavitt, 2021). This
will not be completely accurate but should be sufficient to get a good qualitative understanding of
the recent mortality developments. Setting Eix, t,w := Eix, t

52 for all the weeks w= 1, . . . , 52 in a year
t ≤ 2020 allows us to calculate weekly death rates as well.

3. Methodology and Theoretical Results
3.1. Mortality statistics
To quantify the impact of COVID-19 on mortality, we calculate several measures derived from
the raw death counts or death rates. A term which has often been used in the context of the pan-
demic is excess mortality, relating to the question by how much mortality during the COVID-19
pandemic deviates from previous expectations. We prefer to investigate all-cause excess mortal-
ity as opposed to directly analysing data on COVID-19-related deaths because these might give
an incomplete account for multiple reasons (such as cause of death misclassifications and col-
lateral effects of the pandemic on other causes of death, see Aburto et al., 2021; Institute for
HealthMetrics and Evaluation 2021b for further details). There are several ways to measure excess
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mortality (Aron & Muellbauer, 2020). We will look at weekly excess death ratios, defined by

pix, t,w := Di
x, t,w − D̂i

x, t,w

D̂i
x, t,w

, (2)

where D̂i
x, t,w denotes our expectation under “normal” circumstances for the death counts in week

w of year t ∈ T . An often used approach is to define this as the average of the NP previous years
(Eurostat, 2021; Destatis, 2021), i.e.,

D̂i
x, t,w := 1

NP

NP∑
l=1

Di
x, t−l,w, (3)

where we use NP := 4. This average does not necessarily coincide with our expectations, as one
might rather expect mortality to decrease over time and as it does not take into account changes
in population size and structure, but we deem (3) sufficient to get a qualitative impression.

We also look at mortality rates averaged over ages. However, in order to make meaningful
comparisons over different populations with potentially quite different age structures, we apply a
standardisation procedure yielding age-standardised death rates

mi
S, t :=

xA∑
x=x1

ωxmi
x, t , (4)

where the weights ωx ∈ [0, 1] are defined by

ωx := ESx
xA∑

x=x1
ESx

. (5)

Here, ESx denotes exposures of a synthetic population, in this case the European Standard
Population (European Commission & Eurostat, 2013). This makes age-standardised death rates
independent of the underlying age structure and therefore facilitates comparability over popula-
tions (Keyfitz & Caswell, 2005, Chapter 4.1).

To achieve comparability over time as well, a standard approach is to consider changes in mor-
tality rates instead of the mortality rates themselves. We implement this by calculating annual
improvement rates

Iix, t :=
mi

x, t−1 −mi
x, t

mi
x, t−1

, (6)

which are positive if mortality decreases from t − 1 to t and negative if it increases. We again
perform age standardisation via

IiS, t :=
xA∑

x=x1
ωxIix, t (7)

with the weights as in (5)1 .

1Alternatively, it would also make sense to define IiS, t as the improvement rate of age-standardised mortality rates

mi
S, t , i.e., IiS, t :=

mi
S, t−1−mi

S, t
mi
S, t−1

. This would take improvements at younger ages (with lower mortality rates) not into account
as strongly as (7) does. However, it would not materially change the conclusions drawn in Section 4 about how mortality
improvements in 2020 rank compared to other years.
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Table 1. Overview of the different LCmodels we use and their calibration periods.

Model name Calibration period Comments

LC_aux 1991–2019 (real data) Auxiliary LCmodel, used to obtain central
forecasts for 2020 and 2021



real_20 1991–2020 (real data) –


LC_20 1991–2019 (real data) and 2020 (central
forecasts of LC_aux)

The forecasts of LC_aux and LC_20 are identical
for 2021 and beyond, see Proposition 3



real_20/LC_21 1992–2020 (real data) and 2021 (central
forecasts of LC_aux)

Calibration starts in 1992 so that we have a
30-year calibration period



LC_20/21 1992–2019 (real data) and 2020/2021
(central forecasts of LC_aux)

–

3.2. Mortality forecasts and insurance contracts
The mortality model by Lee & Carter (1992) has become a standard both in academic work and
applications. Therefore, we mainly focus our analysis on this model in order to evaluate the influ-
ence of COVID-19 on mortality modelling. For the reader’s convenience, we provide some details
on model calibration and on obtaining point and interval forecasts in Appendix A.

Of course, the LCmodel has some limitations, for example, it does not take into account cohort
effects, which are certainly relevant for some of the populations we consider. The following eval-
uation in Section 4 could easily be repeated for the LC model with cohort effects (Renshaw &
Haberman, 2006) or, in fact, any other stochastic mortality model. We do not expect that this
would change our main qualitative conclusions, which will be confirmed by a robustness check
with the Cairns–Blake–Dowd model in Section 4.5.

In order to quantify the impact of COVID-19 on mortality forecasts, we calibrate LC models
on different data sets. An overview is given in Table 1.

In particular, we will present two comparative analyses, the first of which is between

• real_20 (data from 1991 to 2020, where 2020 data are observed mortality rates), and
• LC_20 (data from 1991 to 2020, where 2020 data are the central forecasts of an auxiliary LC

model trained on the years 1991 to 2019).

In this case, using the notation from Section 2, we have T = {1991, . . . , 2020} and Y = 30 for
all populations. Analysing these two models, we get an impression of the behaviour of a model
including COVID-19 mortality compared to a model trained in a world where 2020 mortality
behaves exactly as the LCmodel would have expected in 2019. This illustrates the consequences of
a mortality shock in the jump-off year of the forecast. In other words, COVID-19 has influenced
mortality in 2020 and we calibrate our mortality model on data up to and including 2020 and
make forecasts from this year on. It is clear from the forecasting method, see (A.4), that mortality
in the last year tY has a decisive impact on point forecasts.

If mortality returned to normal levels in a future year t > 2020, central forecasts based on data
including t would not be influenced much by the mortality jump in 2020. However, whether the
jump is present or not would certainly make a difference for the prediction intervals (A.5) because
it increases the estimated volatility of the period effect time series. In order to study these two
effects with a numerical example, we will make a second comparison of two LC models calibrated
on slightly different data sets:

• real_20/LC_21 (data from 1992 to 2021, where 2020 data are observed mortality rates and
2021 data are the central forecasts of an auxiliary LC model trained on the years 1991 to
2019), and
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• LC_20/21 (data from 1992 to 2021, where both 2020 and 2021 rates are obtained from the
auxiliary LC model).

In this case, using the notation from Section 2, we have T = {1992, . . . , 2021} and Y = 30 for all
populations. The aim is to compare the real development including COVID-19 and an assumed
subsequent return to the expected levels as of 2019 on the one hand with a world where COVID-
19 did not occur and death rates consistently behave according to the LCmodel on the other hand.
Note that we do not claim that 2021 mortality is going to return to LC levels. We just consider it
as a scenario to illustrate how the LC forecasts are influenced by a mortality shock which happens
within the calibration period but not in the jump-off year. We expect the obtained results to be
qualitatively similar to the situation where a return to normal levels only occurs some time after
2021.

Wemeasure howCOVID-19mortality could influence insurance contract values by calculating
present values of annuities and term life insurance policies under the different LC models. We
assume a constant yearly discount factor v. This is a simplification allowing us to focus solely on
mortality shocks. First, we consider a temporary annuity-immediate issued to a life aged x at the
start of year t which runs for n years and pays an amount of 1 at the end of each year in which
the annuitant is alive. Denoting the s-year cohort survival probability by spx, t with the special case
px, t := 1px, t , the present value of such an annuity is given by

ax:n|(t) :=
n∑

s=1
vsspx, t =

n∑
s=1

vs
s−1∏
j=0

px+j, t+j ≈
n∑

s=1
vs exp

⎛
⎝−

s−1∑
j=0

mx+j,t+j

⎞
⎠ . (8)

Furthermore, we consider a term assurance issued to a life aged x at the start of year t which
runs for n years and pays an amount of 1 at the end of the year if the life has died within this year.
Its present value is given by

Ax:n|(t) :=
n−1∑
s=0

vs+1
spx, t

(
1− px+s, t+s

)

≈
n−1∑
s=0

vs+1 exp

⎛
⎝−

s−1∑
j=0

mx+j,t+j

⎞
⎠ (

1− exp
(−mx+s, t+s

))
.

(9)

In the above equations, we have used the standard approximation px, t ≈ exp
(−mx, t

)
(Pitacco

et al., 2008, Chapter 2.3).
We calculate intervals for annuity and life insurance values simply by inserting the prediction

interval bounds for the death rates from (A.5) into the valuation formulae (8) and (9). For the
annuity, the upper bound is obtained by inserting the lower bounds of the death rates, and vice
versa, due to the monotonically decreasing dependence of annuity values on death rates.

3.3. The impact of a log-parallel mortality shift onmodel parameters and forecasts
We close this section with a theoretical analysis of the question how a mortality shock influences
the parameters and forecasts of an LC model. Generally, being able to estimate by how much a
mortality model changes in response to the arrival of new calibration data is highly relevant in
applications. For instance, under the Solvency II framework, solvency capital requirements are
calculated as the 1-year value-at-risk of the basic own funds of an insurance company. When esti-
mating the distribution of own funds in 1 year’s time, the fact that newmortality data will become
available during this year has to be taken into account for valuing mortality-related liabilities. New
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data would lead to a recalibration of the applied mortality model with the risk of a subsequent sig-
nificant change in its forecasts and, therefore, the valuation of liabilities. This risk has been termed
recalibration risk and demonstrated to be material for the LC model (Cairns, 2013).

Here, we exemplarily focus on the special case that mortality rates at all ages increase by a
common multiplicative factor, which is equivalent to a parallel shift of logarithmic mortality rates
(“log-parallel shift”). As detailed in Section 1, this has been observed to approximately be the case
for the COVID-19 mortality shock in several populations between ages 25 and 89. Furthermore,
it is also the scenario used in the Solvency II standard formula for mortality risk quantification.

In the following, we suppress the dependence of the model parameters on the population i
for better readability. We write mB

x, t for the baseline mortality within a population. We assume
mx, t =mB

x, t for all x ∈X and t < tY , whereas baselinemortality is not observed during the extreme
event which we assume takes place in the final year tY and increases mortality by c ·mB

x, tY for some
c> 0, so thatmx, tY = (1+ c)mB

x, tY . Note that this implies

mx, tY −mB
x, tY

mB
x, tY

= c, (10)

so that c is the age-independent excess mortality ratio with respect to baseline mortality. As
explained above, we assume c to be independent of age, which makes the following analysis easier
to grasp but is not strictly necessary, see Remark 4 below.

We consider an LC model for the observed rates
logmx, t = αx + βxκt + εx, t , (11)

and an LC model for the baseline rates
logmB

x, t = αB
x + βB

x κB
t + εBx, t . (12)

We write �εx, t := εx, t − εBx, t and assume that c is small enough to imply
�εx, t ≈ 0 for all x ∈X , t ∈ T . (13)

A more explicit formulation of (13) is that the exceedance probability P
(∣∣�εx, t

∣∣ > δ
)
is required

to be low for some small δ > 0, which is achieved if the variance σ 2
�ε is sufficiently close to 0 by

Chebyshev’s inequality. In this sense, assumption (13) and the following results could be made
more precise, but we refrain from doing so for clarity of exposition. Proofs of the following
statements are given in Appendix C.
Proposition 1 (Parameter changes induced by a log-parallel shift). Under the identifiability
constraints

xA∑
x=x1

βx = 1 and κt1 = 0 (14)

and assumption (13), we get the following relationships between the parameters of the LC models
(11) and (12):

αx ≈ αB
x , (15)

βx ≈ βB
x , (16)

κt ≈ κB
t +A log (1+ c) 1t=tY , (17)

where ≈ denotes equality between both sides up to (terms of) �εx, t .

Proposition 1 confirms the intuition that a mortality shock in a particular year t should mainly
lead to a significant change (an increase) of the period effect κt belonging to that year. The details
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of the result depend on the choice of identifiability constraints, but it is easily transferred to other
constraints and its qualitative statement holds for all constraints which are usually applied in the
literature.

As the parameters of a model determine its forecasts, we can analyse these as well.
Corollary 1. (Forecast changes induced by a log-parallel shift).Under the conditions of Proposition
1 and using the random walk with drift forecasting approach, we get the following relationship
between the h-step central forecasts of the LC models (11) and (12):

m̂x, tY+h ≈ m̂B
x, tY+h · exp

(
β̂B
x ·A log (1+ c)

(
1+ h

Y − 1

))
. (18)

Remark 1 (Interpretation of Corollary 1). Corollary 1 shows the influence of different parame-
ters on the LC forecasts when a shock occurs in the jump-off year. A higher age effect β̂B

x leads
to an increased sensitivity of the model death rate to temporal mortality development and, thus,
to a larger increase in response to a shock. Unsurprisingly, the ratio of m̂x, tY+h and m̂B

x, tY+h also
increases with the excess death ratio c, the number of available ages A and the length of the fore-
casting horizon h. On the other hand, the influence of a shock on the forecast can be diminished
by increasing the number Y of training years. However, even with a very long history of training
data mortality forecasts will increase approximately by a factor of exp

(
β̂B
x ·A log (1+ c)

)
as a

result of the shock in the jump-off year.

To give a numerical example, the 1-step forecast at age group x= 60 with age effect β̂B
x = 0.075

increases by 9.3% (compared to the situation without shock) if there areA= 12 age groups,Y = 30
years of training data and a c= 10% shock occurs in the jump-off year tY . Ceteris paribus, the
increase in the 20-step forecast is 15.6%.
Remark 2 (Generalisation to prediction intervals and present values). Corollary 1 can be gener-
alised to describe the shock-induced change of the LC randomwalk variance estimator (A.6). This
would allow us to make statements about the change in uncertainty related to the point forecasts
(A.3). Similarly, building on Corollary 1, the impact of a mortality shock on annuity and life insur-
ance values as defined in (8) and (9) can be quantified. We refrain from deriving explicit formulae
because these would be rather complex and give little additional insight.

Remark 3 (Generalisation to other shock times). So far, we have assumed that a mortality shock
occurs at time tY , i.e., the jump-off year of the mortality forecasts. Of course, the situation where a
mortality shock occurs sometime between t1 and tY is of interest as well. Proposition 1, Corollary
1 and Remark 2 are easily generalised to a mortality jump occurring at any time t ∈ {t2, . . . , tY−1}.

In particular, if the shock occurs at t < tY , random walk forecasts as in Corollary 1 should
change very little compared to the situation without a jump because they depend mainly on the
drift μ̂, which is determined by the marginal period effects κ̂t1 and κ̂tY . However, the uncertainty
in the forecasts, which additionally depends on the variance of the random walk, would increase.
Both these effects were observed by Lee & Carter (1992) when calibrating their model on data
including the 1918 pandemic.
Remark 4 (Generalisation to non-parallel shifts). Despite the empirical evidence that COVID-19
might have caused an approximate log-parallel shift of the death rates, this is obviously not the
case for every extreme mortality event. The above results can be generalised in this direction as
well by allowing c in (10) to depend on age x, replacing c with cx and repeating the calculations
performed in the proofs.
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Figure 1. Weekly, country-specific age-standardised death ratesmi
S, t,w as defined in (4) for the years 2019 and 2020.

As a further illustration, we provide the analogue of Proposition 1 for a variant of the CBD
model,

logmx, t = κ
(1)
t + (x− x̄)κ (2)

t + εx, t , (19)

where x̄ := 1
A

xA∑
x=x1

x and εx, t ∼N
(
0, σ 2) i.i.d.

Proposition 2 (Parameter changes of the CBD model induced by a log-parallel shift). For a CBD
model (19) of observed mortality mx, t and another CBD model of baseline mortality mB

x, t and given
an assumption similar to (13), it holds that

κ
(1)
t ≈ κ

(1),B
t + log (1+ c) 1t=tY , (20)

κ
(2)
t ≈ κ

(2),B
t . (21)

4. Empirical Results
4.1. Mortality development in 2020
Figure 1 shows weekly age-standardised death rates mi

S, t,w during the years 2019 and 2020.
Dramatic increases are visible in some countries at the time when COVID-19 was emerging in
Europe and in the winter months at the end of 2020.

In order to quantify exactly how dramatic these increases were, we compare the development
of 2020 to the average of the four preceding years by calculating excess death ratios pix,2020,w,
which are displayed in Figure 2. For a better overview, we only show some of the age groups.
Furthermore, we focus on the total populations, although men have a significantly higher risk of
dying from aCOVID-19 infection compared to women (Jin et al., 2020). Excessmortality is clearly
visible at higher ages for all populations, with Belgium, Italy and Spain having been hit particu-
larly hard by the first wave in late March and April 2020. The impact of COVID-19 on mortality
in our selection of countries seems to be smallest in Germany, although we observe an increase
at higher ages near the end of 2020. We refer to Islam et al. (2021) for a more detailed evaluation
of excess mortality in 29 countries, where the baseline mortality D̂i

x, t,w in (2) is calculated based
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Figure 2. Weekly, country-specific excess death ratios pix,2020,w as defined in (2) for the year 2020 and age groups 40–44,
50–54, 60–64, 70–74, 80–84 and 90+. Values above the zero line (blue, dash) indicate excess mortality.

on an over-dispersed Poisson regression model accounting for seasonal variation and temporal
trends.

For mortality modelling applications such as demographic projections or many actuarial cal-
culations, the development on a yearly scale is of greater importance than weekly fluctuations.
One has to note that we only have one complete year of data influenced by COVID-19 at the
moment and that it is not clear for how much longer the pandemic will continue to have a strong
impact on mortality. However, 2020 marks a notable increase in the age-standardised yearly death
rates mi

S, t of some populations such as Belgium, Spain and Poland compared to the previous
slightly but steadily decreasing trend. Looking at age-specific rates at higher ages, we have found
that the increase of mortality can be even more substantial. One could say that COVID-19 sets
back all of these countries in their mortality development by several years. For example, the age-
standardised death rates of the Polish male and Spanish female populations in 2020 are at a similar
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Figure 3. Yearly German, Polish and Spanish age-standardised death ratesmi
S, t as defined in (4) between 2006 and 2020 for

females (red, solid), males (green, dash) and the total population (blue, long dash).

level as in 2008, making them, at least temporarily, lose 12 years of mortality development. The
smallest “loss” of development in this sense was suffered by German females, who had higher age-
standardised death rates in 2015 than in 2020. As an illustration, the mortality development of
these three countries over the last 15 years is depicted in Figure 3.

We look at age-standardised improvement rates IiS, t for a comparison in the time dimension.
Table 2 lists the 10 worst years in terms of mortality development for the total populations. We
see that for all countries 2020 is among the 10 years with the lowest age-standardised improve-
ment rate. Considering only males, 2020 is among the worst 10 years for all the countries as well,
whereas it is not among the worst 10 years for Swedish and French females.

Note that the length of the considered time period differs due to limited data availability for
some countries. For populations with a long available history of mortality data, we often see that
the 1918 pandemic had a larger impact, but apart from that 2020 improvement rates in the consid-
ered age range are mostly comparably low to those in years of war or years with other pandemics
(such as the 1968–70 Hong Kong flu).

4.2. Mortality shock in the jump-off year
We compare the model trained on real data from 1991 to 2020 (real_20 in Table 1) to the model
trained on real data from 1991 to 2019 and a 2020 best estimate (LC_20 in Table 1).

Looking at the model parameters in Figure 4, we find, as predicted by Proposition 1, that the
age-dependent parameters αx and βx of both models differ only very slightly. The same holds for
the period effects κt for t < 2020. However, for the model which takes the real development of
2020 into account we observe an upward jump in the period effect κ2020 for most populations,
which might in some cases even lead to a violation of the usual assumption that the period effect
increments follow a normal distribution.

These differences in calibrated parameters have implications on forecast death rates, in partic-
ular because 2020 is the last year in the calibration period so that it is used as the jump-off year
for forecasts. This means that it strongly influences the fitted drift of the random walk in (A.2).
Unsurprisingly, taking COVID-19 into account leads to higher forecasts. Due to the LC projection
methodology, these forecasts drift away from the forecasts by the model which ignores COVID-19
with an increasing forecasting horizon.

We quantify this effect by considering present values of a 30-year annuity for a life aged 65
and a 30-year life insurance contract for a life aged 35 at the beginning of 2021 in Figure 5. Only
results for males are shown as the described effects are visible more easily for them, but the pic-
ture is qualitatively similar for the female and total populations. Looking at the values based on
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Table 2. Country-specific list of the 10 years with the lowest age-standardised improvement rates IiS, t as defined in
(7). Years are sorted ascendingly by improvement rate so that the worst year is listed first. 2020 is marked in bold.

Country Available years Worst mortality development years (descending)

Austria 1947–2020 1965, 1949, 1969, 2009, 2020, 1962, 1967, 2015, 1983, 1956
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Belgium 1900–2020 1944, 1940, 1929, 2020, 1911, 1960, 1919, 1922, 1935, 1939
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

France 1900–2020 1940, 1914, 1944, 1918, 1929, 1949, 1907, 2020, 1962, 1905
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Germany 1956–2020 2020, 1968, 2015, 1960, 1957, 1975, 1969, 1978, 1990, 2018
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Italy 1900–2020 1918, 1943, 2020, 1915, 1911, 1956, 1908, 1917, 1931, 1929
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Poland 1958–2020 2020, 1980, 1969, 1991, 1971, 1975, 1984, 1985, 1967, 1959
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Spain 1908–2020 1918, 1941, 2020, 1936, 1946, 1938, 1937, 1969, 1909, 1931
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sweden 1900–2020 1918, 1927, 1922, 1915, 1931, 2020, 1944, 1904, 1960, 1929
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Switzerland 1900–2020 1918, 1944, 1924, 2020, 1929, 1935, 1927, 1905, 1917, 1903

central forecasts, there are significant differences between countries, with France, Germany and
Sweden experiencing the smallest changes in annuity and life insurance policy values. At the other
extreme, annuity values for Polish males drop by 9% due to the inclusion of COVID-19, and
the value of life insurance policies for Italian males increases by 29%.2 Furthermore, we observe
that the COVID-19 mortality jump has led to an increase in prediction uncertainty and a cor-
responding widening of interval forecasts. For the annuity, this is most pronounced for Spanish
females with an increase in interval width by a factor of 2.10. For the term assurance, Polish males
experience the strongest increase in interval width (factor 2.35).

4.3. Mortality shock before the jump-off year
We compare the model trained on real data from 1992 to 2020 and a best estimate for 2021
(real_20/LC_21 model in Table 1) to the model trained on real data from 1992 to 2019 and
2020/2021 best estimates (LC_20/21 model in Table 1). As mentioned in Section 3.2, best esti-
mates are obtained from an auxiliary LC model calibrated only on data up to 2019 (LC_aux in
Table 1).

As expected, these two models produce very similar point forecasts, which usually differ by at
most 5%. However, there are material differences between the variance estimates of the associated
randomwalks. The variances are estimated to be up to 6.7 times higher for the LCmodel calibrated
on the real 2020 data, which of course results in substantially wider prediction intervals.

This is also evident from Figure 6, where we display annuity and life insurance policy values
and their intervals. While the point forecasts are always on a very similar level, the intervals can be
much wider when we use the real death rates observed in 2020 instead of the LC central forecast.
In the most extreme case (Spanish females), the intervals widen by a factor of 2.58 for annuities
and 2.61 for term assurance. This illustrates that an appropriate way of adjusting for mortality
shocks in modelling is highly relevant for applications in which extreme events play a role, for
example, in risk management.

It is important to note that our observations regarding the widening of prediction intervals
do not depend on the exact timing of the observed mortality jump. In particular, the mortality
changes induced by COVID-19 will continue to influence uncertainty estimations of the LCmodel
for a long time, unless the model is adjusted in some way. For example, if we were to wait for
10 years and recalibrate the model on data from 2002 to 2031 (assuming a “normal” mortality

2The opposite directions of these changes are due to the fact that annuity values have a decreasing dependence and life
insurance values an increasing dependence on death rates.
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Figure 4. Country-specific LC model parameters for males, comparing an LC model trained on real data up to 2020 (blue
triangle) and an LCmodel trained on real data up to 2019 and 2020 best estimates (red circle).
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(a)

(b)

Figure 5. Country-specific annuity and life insurance values for males (based on point and interval death rate forecasts),
comparing an LC model trained on real data up to 2020 (blue triangle) and an LC model trained on real data up to 2019 and
2020 best estimates (red circle). Discount factor v= 1

1.005 .

development between 2021 and 2031), our findings would not change much because the highly
volatile years from 2019 to 2021 would still be part of the training data set.

It must further be emphasised that we have assumed that mortality will return to “normal”
(LC) levels in 2021 for illustrative purposes in the above calculations. It is possible and, in view
of the situation in many countries during the first months of 2021, rather probable that this will
not be the case. As an alternative scenario, we have considered the more pessimistic possibility
that death rates do not change at all from 2020 to 2021. In this case, the results of comparing an
LC model calibrated on these data to a model trained on LC best estimates for 2020 and 2021
are very similar to those obtained in Section 4.2: different point forecasts are produced because
the death rates used for calibration differ in the jump-off year, and prediction intervals of the
model calibrated on the data including COVID-19 mortality can be substantially wider because
the training data contain the mortality shock in 2020.

4.4. Robustness check: using a different calibrationmethod
As detailed in Appendix A, we assume logarithmic death rates to be normally distributed and,
therefore, calibrate the LC model by singular value decomposition (SVD). Alternatively, there are
also arguments in favour of making a Poisson distribution assumption for the death counts and
performing calibration by maximum likelihood estimation (MLE), see Brouhns et al. (2002). To
check the robustness of our results with respect to the calibration method, we have reiterated the
above evaluations when calibrating the LC model by MLE instead of SVD.

The model parameters, which are shown in Figure D.1 (Appendix D), are similar to the ones
obtained by SVD. For some populations, such as Polish, Italian and Spanish males, κ2020 shows a
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(b)

(a)

Figure 6. Country-specific annuity and life insurance values for males (based on point and interval death rate forecasts),
comparing an LC model trained on real data up to 2020 and 2021 best estimates (blue triangle) and an LC model trained on
real data up to 2019 and 2020/2021 best estimates (red circle). Discount factor v= 1

1.005 .

slightly stronger increase as a result of the COVID-19mortality shock. This also leads to somewhat
more pronounced changes in annuity and term assurance values. A comparison of the models
real_20 to LC_20 (jump-off year 2020, see Table 1) is displayed in Figure D.2. Annuity values
decrease by up to 11% and interval widths increase by a factor of up to 2.14 (Polishmales), whereas
term assurance values increase by up to 44% (Italian males) and interval widths by a factor of up
to 2.90 (Polish males). With 2021 as the jump-off year and under the assumption of a return to
normal (LC best estimate) mortality levels in 2021, the COVID-19 mortality shock has very little
influence on point forecasts, see Figure D.3. However, interval widths strongly increase, by a factor
of up to 2.96 for annuities and up to 3.08 for life insurance (Polish males).

Empirically, the two calibration methods lead to qualitatively similar findings, with COVID-19
having an even larger impact under MLE calibration. Our conclusions are robust with respect to
the calibration method.

4.5. Robustness check: the Cairns-Blake-Dowdmodel
To further check the robustness of the results in Sections 4.2 and 4.3, we have repeated our analysis
for the CBD model (19). The model parameters κ

(1)
t and κ

(2)
t are calibrated by linear regression

(for every t, regress logmx, t on x− x̄), and forecasts are obtained via a two-dimensional random
walk with drift (Villegas et al., 2018). Due to the more stringent parametric shape of the CBD
model, we have restricted the analysis to the age range x1 = 60, x2 = 65, . . . , x7 = 90+.

Regarding the model parameters, which are displayed in Figure D.4 (Appendix D), we see an
increase in κ

(1)
2020 when using the real 2020 death rates instead of their best estimates for model

calibration, which is expected due to the interpretation of this parameter (general mortality level).
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In a few populations (e.g., Polish males and Swiss males), we also observe a slight increase in κ
(2)
2020,

which indicates that COVID-19 has not led to a perfect parallel shift over the whole age range in
these populations, hitting older age groups slightly harder (see Proposition 2). With 2020 as the
jump-off year, annuity values drop by up to 13% and interval widths increase by a factor of up
to 1.90 (Polish males) as a result of the COVID-19 mortality shock, see Figure D.5. With 2021 as
the jump-off year and under the assumption of a return to normal (CBD best estimate) mortality
levels in 2021, annuity values do not change, but interval widths increase by a factor of up to 2.76
(Polish males), see Figure D.6.

Summarising, the results based on the CBDmodel are qualitatively similar to the ones obtained
for the LC model. This illustrates some robustness of our findings to the choice of model.

5. How to Adjust for Mortality Shocks
The findings of the preceding section show that a mortality shock such as the one induced by
the COVID-19 pandemic can strongly influence mortality models and the resulting valuation of
insurance products. This leads to the question what measures should be taken for jump years
like 2020 in the modelling process. There are a lot of different options, from treating these years
as completely regular data points to removing COVID-19-related deaths from the data as far
as possible, for example, by relying on the log-parallel shift assumption as proposed in Cairns
et al. (2020) or by subtracting all excess deaths as proposed in Continuous Mortality Investigation
(2020) and in this sense “ignoring” the pandemic in future models and forecasts.

Similarly, outlier analysis can be performed on the fitted period effects
(
κ̂t

)
t∈T of the LC

model in order to identify extreme mortality changes and remove their influence on the model.
Lee & Carter (1992) themselves follow this idea, but they somewhat arbitrarily only identify
the 1918 Spanish flu as an outlier and then apply an intervention model to remove its effect.
Li & Chan (2005, 2007) propose a more systematic approach applying established techniques
from time series outlier analysis to

(
κ̂t

)
t∈T . They specify four different types of possible out-

liers, for example, additive outliers which only affect the series at one point in time, and use
t-statistics on the empirical residuals of the assumed time series model to identify them. Finally,
they adjust the period effect time series for the detected outliers and recalibrate the time series
model.

Outlier adjustment methods restore the (approximate) normality of period effect increments,
which means that the random walk model is valid again for the adjusted data. However, as Li &
Chan (2007) and Chen & Cox (2009) note, ignoring mortality jumps might not be applicable, for
example, when calculating solvency capital requirements or pricing mortality-linked securities.
This is confirmed by our empirical results, which indicate that completely excluding 2020 data
from the calibration or applying a similar outlier adjustment method could lead to an underes-
timation of prediction uncertainty. For instance, the model does in this case not allow for the
occurrence of new COVID-19 waves or, generally, further pandemics, even though it is quite
probable that they will be a recurring problem in the future (Taubenberger &Morens, 2010; Jonas,
2013; Dodds, 2019; Engel & Ziegler, 2020).

On the other hand, treating 2020 as a regular data point by continuing to use the random walk
with drift might not be appropriate, either, as it leads to very pessimistic point forecasts and as it
is equivalent to a normal distribution assumption for the period effect increments, which may be
violated as a result of the COVID-19 mortality shock. However, this normality assumption can be
relaxed by a broad range of techniques often used in similar situations in mathematical finance,
such as regime switching, extreme value theory or jump processes.

Milidonis et al. (2011) propose a Markov regime switching model with two hidden states
for the LC period effects. They assume that �κ̂t := κ̂t − κ̂t+1 switches between two normal
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distributions, i.e.,

�κ̂t ∼
{
N

(
μ, σ 2) if ρt = 1

N
(
m, s2

)
if ρt = 2

, (22)

where ρt denotes an underlying, hidden binary Markov chain. Estimates for the transition proba-
bilities P (ρt = 1|ρt−1 = 2) and P (ρt = 2|ρt−1 = 1) are calibrated by maximum likelihood, along
with the remaining parametersμ,m, σ , s. Themodel is in principle easily generalised tomore than
two regimes, and it contains the ordinary LC model as the special case with only one regime. The
advantage of regime switching models consists in their precise description of structural changes
in the underlying time series, including the possibility for serial correlation in the occurrence
of “shock years”. For instance, it is easy to model an extreme event which potentially has an
increasing influence on volatility for several years by moving into a high-volatility regime for
this duration. The obtained classification of historical mortality observations into two regimes
also facilitates interpretation. For example, on 1901–2005 US data, Milidonis et al. (2011) find
a high-volatility regime containing the years around the Spanish flu and a low-volatility regime
containing most other years. Drawbacks of this model are its relatively high number of parame-
ters and that it tends to generate rather wide prediction intervals because of the two distinct states
which can have very different drift values μ andm.

Extreme value theory seeks to model events which occur seldom but can have a large impact if
they occur. Chen & Cummins (2010) use the peaks-over-threshold approach from extreme value
theory to include negative mortality jumps (improvements) in the LC model. They determine a
threshold for �κ̂t above which it is modelled by the usual normality assumption, whereas the
tail below the threshold is approximated by a generalised Pareto distribution (GPD). Of course,
this mixture distribution can easily be adjusted to focus on upward mortality jumps instead.
The peaks-over-threshold approach has deep theoretical foundations, in particular the theorem
by Pickands (1975) and Balkema & de Haan (1974) stating that, under certain conditions, the
excess value of a random variable over some threshold converges in distribution to a GPD as the
threshold grows. The main difficulty in the calibration of this model lies in identifying a suitable
threshold, which ideally requires some domain knowledge regarding the point at which values
of �κ̂t are considered extreme. As a simpler alternative, Chen & Cummins (2010) choose it by
profile likelihood maximisation.

Another idea is to include a jump process in the time series model for the LC period effects.
Jumps can be transitory or permanent (Cox et al., 2010) and their severity can be assumed to
follow different distributions (e.g., normal, truncated normal, Pareto, beta). Chen & Cox (2009)
propose an extension of the LC period effect model (A.2) with transitory jumps via

κ̂t+1 = κ̂t + μ + et+1 +Nt+1Yt+1 −NtYt (23)
where the jump indicator Nt follows a Bernoulli distribution and the jump severity Yt is nor-
mally distributed. Deng et al. (2012) note that the implicit symmetry assumption of the normal
distribution might not be suitable for mortality modelling because upward jumps (mortality dete-
rioration) typically have lower frequency but higher severity than downward jumps (mortality
improvement). Inspired by the option pricing model of Kou & Wang (2004), they propose to
account for this by using a double exponential distribution. In our notation, this means that
log (Yt) in (23) is a random variable with density function

f (y)= pηue−ηuy1{y≥0} + qηdeηdy1{y<0} (24)
where 1 denotes an indicator function, p and q describe the proportion and ηu, ηd the severity of
upward and downward jumps, respectively. Further generalisations such as age-specific severity
patterns (Liu & Li, 2015) are possible. Although longer-lasting shocks can occur under the jump
model, its conceptual idea is to model transitory shock events which only influence mortality for
one time period (1 year). This is suitable for short-term shock events, but might necessitate some
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adjustment for the COVID-19 mortality shock as it continues to evolve in 2021 and, possibly, in
the years to come.

Which of the above options should be chosen depends on the views of the modeler regard-
ing the mentioned advantages and drawbacks and, in particular, on the application. Defining
several possible scenarios and comparing the performance of different models under each sce-
nario can aid an informed decision for the most appropriate way of handling extreme mortality
events in the modelling process. For this purpose, projections of COVID-19 death counts could
be used, which are available from various sources such as the Institute for Health Metrics and
Evaluation (2021a). We leave the practical implementation of such an analysis along with more
detailed recommendations regarding model choice for future work.

6. Conclusion
We have provided a descriptive analysis of mortality shocks due to COVID-19 in different popu-
lations along with a comparison to historical observations. These shocks can have a substantial
impact on mortality forecasts and present values of life insurance products. More precisely,
our analysis illustrates that a significant impact of a mortality shock on LC point forecasts
obtained under the usual random walk assumption is only visible when the shock occurs in
the forecast jump-off year. However, we have further observed that prediction uncertainty can
increase dramatically whenever a mortality shock appears in the calibration period of the LC
model.

Although our quantitative results come with the caveat that official data are still subject to
change, for example, due to delayed or erroneous reporting, we are confident that our qualitative
conclusions are valid. Nevertheless, it would be interesting to repeat the analysis as more recent
data become available. Looking at the first months of 2021, the hypothetical scenario of a quick
return to normal mortality levels which we consider in Section 4.3 is unrealistic in many coun-
tries. This means that our main conclusions and recommendations for 2020 might turn out to be
applicable to 2021 as well.

Many questions still remain open, in particular regarding the future development of COVID-
19-related mortality:

• SARS-CoV-2 is generally expected to become endemic (Phillips, 2021). However, the recent
uptake in vaccinations is believed to substantially reduce COVID-19-related mortality (Ng &
Reid, 2021; Andrews et al., 2021; Moore et al., 2021). Given these and other influence factors
such as ongoing non-pharmaceutical interventions, which pattern of COVID-19 deaths will
we observe in the future?

• Will COVID-19 cause new cohort effects, for example, selection effects because primarily the
healthier individuals might survive whereas the more frail might perish (Cairns et al., 2020)?
It would be interesting to repeat our analysis with a model including cohort effects to see
whether COVID-19 leads to changes in the cohort parameters and, if yes, which cohorts are
influenced the most.

• Will there be amplifying or weakening interaction effects between COVID-19 and Influenza?

While these questions are impossible to answer definitively, they give rise to several possible
scenarios that could be investigated in future research.

Finally, the most important question for mortality modelers right now is of course how 2020
– and possibly also 2021 – mortality data should be treated in the modelling process. We have
presented several approaches in Section 5. Further research should focus on evaluating their suit-
ability for current mortality data and deriving specific, problem-adjusted recommendations for
practitioners. Ideally, a model adjustment technique can be identified which produces satisfactory
results over a broad range of scenarios.
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Appendix A. Lee-Carter Model Fitting and Forecasting
For a fixed population i, Lee & Carter (1992) model logarithmic death rates as

logmi
x, t = αi

x + β i
xκ

i
t + εix, t (A.1)
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where αi
x is an age-specific base mortality level, κ i

t is the period effect which describes mortality
development over time and β i

x is the age effect which allows changes in the period effect to influ-
ence different ages with varying intensity. In our numerical studies in Section 4, we consider data
in 5-year age groups, which means, for example, that β35 denotes the age effect for the age group
35− 39. The error terms εix, t are usually assumed to follow homoskedastic normal distributions.
The model can then be fit via singular value decomposition. In the following, we suppress the
dependence on i in our notation.

It is easily seen that the parameters of the LC model are not identifiable without imposing
some constraints. Several types of identifiability constraints have been used by different authors
(Hunt & Blake, 2020). Here, we will use (14), i.e.,

∑xA
x=x1 βx = 1 and κt1 = 0. It is always possible

to transform parameters obeying (14) to parameters obeying any other set of identifiability con-
straints, and vice versa. The choice of identifiability constraints has by definition no influence on
the fitted mortality rates. It can have an influence on point and distribution forecasts, which can
be avoided by using a location and scale invariant forecasting technique such as an ARIMAmodel
with intercept, see Nielsen & Nielsen (2014), Hunt & Blake (2020) for details.

To obtain mortality forecasts, Lee & Carter (1992) propose to fit such an ARIMA model to the
calibrated time series of period effects

(
κ̂t

)
t∈T . The standard choice is a random walk with drift,

i.e.,

κ̂t+1 = μ + κ̂t + et+1 with μ ∈R and et+1 ∼N
(
0, σ 2) i.i.d. (A.2)

Point forecasts for year tY + h are then obtained by inserting the expectation of κ̂tY+h in the LC
model, i.e.,

m̂x, tY+h := exp
(
α̂x + β̂x

(
κ̂tY + h · μ̂))

(A.3)

with the estimator

μ̂ := κ̂tY − κ̂t1
Y − 1

(A.4)

for the drift.
An important advantage of stochastic mortality models is the possibility to obtain estimates

of prediction uncertainty in addition to central forecasts, which is, for example, vital in risk
management applications. We calculate h-step prediction intervals at level a ∈ (0, 1) by

m̂lower|upper
x, tY+h := exp

(
α̂x + β̂x

(
κ̂tY + h · μ̂ ± √

h · σ̂ · �−1
(
1+ a
2

)))
(A.5)

where �−1 denotes the quantile function of the standard normal distribution and

σ̂ 2 := 1
Y − 2

tY∑
t=t2

(
κ̂t − κ̂t−1

)2 (A.6)

is the estimator for σ 2. For our numerical results in Section 4, we use a= 0.95, i.e., we calculate
95% prediction intervals.

Note that we do not include parameter uncertainty here to allow for better comparability to
othermodels.With increasing forecasting horizon, the influence of parameter uncertainty on total
prediction uncertainty grows and so, depending on the application, it should be taken into account
as well. We refer to Kleinow & Richards (2016) for a general treatment of parameter uncertainty
estimation in period effect ARIMA models.
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Appendix B. Recalibration Consistency of the LC Model
The following proposition shows that the LC model is consistent under recalibration.
Proposition 3 (Recalibration consistency). Consider an LC model calibrated to mx, t where x ∈X
and t ∈ {t1, . . . , tY−1}, and denote its one-step forecasts by m̂x, tY .

Consider another LC model calibrated to mnew
x, t , x ∈X and t ∈ T = {t1, . . . , tY}, where mnew

x, t :=
mx, t for t ∈ {t1, . . . , tY−1} and mnew

x, tY := m̂x, tY .
These two models yield the same fitted values αx + βxκt for all x ∈X and t ∈ T and so can only

differ in the choice of identifiability constraints. In particular, using a scale and location invari-
ant forecasting method in the sense of Hunt & Blake (2020), their forecasts beyond tY also exactly
coincide.

Proof. This follows from a more general result in the setting of learning an estimator by
empirical risk minimisation. Given some training data set (o1, y1), . . . , (on, yn) with observations
o1, . . . , on and ground truths y1, . . . , yn, the empirical risk of an estimator h is defined as

R̂n(h) := 1
n

n∑
j=1



(
yj, h(oj)

)
(B.1)

for some real-valued loss function 
. Denoting a minimiser of (B.1) by hmin and assuming that
another data point (on+1, hmin(on+1)) is added to the training data set, the adjusted empirical risk

R̂n+1(h)= 1
n+ 1

⎛
⎝ n∑

j=1


(
yj, h(oj)

) + 

(
hmin(on+1), h(on+1)

)⎞⎠ (B.2)

is clearly still minimised by hmin, i.e., the model does not change (up to identifiability issues).
It is easy to see that calibrating an LC model amounts to minimising (B.1) with a suitable loss

function, for example, quadratic loss under formulation (A.1), and the claim follows.

While the fit stays unchanged, the uncertainty estimates (A.5) resulting from the two models
described in Proposition 3 would differ.

Appendix C. Proofs of Results from Section 3.3
Proof of Proposition 1.We calculate

αx = logmx, t1 − βxκt1 − εx, t1 = logmB
x, t1 − εx, t1 = αB

x − �εx, t1

which shows (15),

κt =
xA∑

x=x1
βxκt =

xA∑
x=x1

(
logmx, t − αx − εx, t

)

=
xA∑

x=x1

(
logmB

x, t + log (1+ c) 1t=tY − αB
x + �εx, t1 − εx, t

)

= κB
t +A log (1+ c) 1t=tY +

xA∑
x=x1

(
�εx, t1 − �εx, t

)
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which shows (17), and

βx = logmx, t∗ − αx − εx, t∗

κt∗

= logmB
x, t∗ − αB

x + �εx, t1 − εx, t∗

κB
t∗ + ∑xA

x=x1
(
�εx, t1 − �εx, t∗

)
= βB

x κB
t∗ + �εx, t1 − �εx, t∗

κB
t∗ + ∑xA

x=x1
(
�εx, t1 − �εx, t∗

) ≈ βB
x κB

t∗

κB
t∗

where t∗ 
∈ {t1, tY} is chosen such that κt∗ 
= 0 and κB
t∗ 
= 0, which shows (16).

Proof of Corollary 1. The assumption that the period effect follows a random walk with drift
means that Equation (A.2) holds for κ̂t+1 and, suitably adjusting the notation, for κ̂B

t+1. The
maximum likelihood estimator for the drift μ is

μ̂ := κ̂tY − κ̂t1
Y − 1

≈ κ̂B
tY +A log (1+ c) − κ̂B

t1
Y − 1

= μ̂B + A
Y − 1

log (1+ c) (C.1)

where we have used equation (17) from Proposition 1. Combined with equations (15) and (16),
this implies for the central forecast as defined in (A.3)

m̂x, tY+h = exp
(
α̂x + β̂x

(
κ̂tY + hμ̂

))
≈ exp

(
α̂B
x + β̂B

x

(
κ̂B
tY +A log (1+ c) + h

(
μ̂B + A

Y − 1
log (1+ c)

)))

= m̂B
x, tY+h · exp

(
β̂B
x ·A log (1+ c)

(
1+ h

Y − 1

))

Proof of Proposition 2.We calculate

κ
(1)
t = κ

(1)
t + (x̄− x̄)κ (2)

t
= logmx̄ ,t − εx̄, t

= logmB
x̄, t + log (1+ c) 1t=tY − εx̄, t

= κ
(1),B
t + log (1+ c) 1t=tY − �εx̄, t

and

κ
(2)
t = logmx1, t − εx1, t − logmx̄, t + εx̄, t

x1 − x̄

= logmB
x1, t − εx1, t − logmB

x̄, t + εx̄, t

x1 − x̄

= κ
(2),B
t + �εx̄, t − �εx1, t

x1 − x̄
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Appendix D. Additional Figures

Figure D.1. Country-specific LC model parameters for males, comparing an LC model trained on real data up to 2020 (blue
triangle) and an LC model trained on real data up to 2019 and 2020 best estimates (red circle), calibration method: Poisson
maximum likelihood estimation.
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(a)

(b)

Figure D.2. Country-specific annuity and life insurance values for males (based on point and interval death rate forecasts),
comparing an LC model trained on real data up to 2020 (blue triangle) and an LC model trained on real data up to 2019 and
2020 best estimates (red circle), calibration method: Poisson maximum likelihood estimation. Discount factor v= 1

1.005 .
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(a)

(b)

Figure D.3. Country-specific annuity and life insurance values for males (based on point and interval death rate forecasts),
comparing an LC model trained on real data up to 2020 and 2021 best estimates (blue triangle) and an LC model trained on
real data up to 2019 and 2020/2021 best estimates (red circle), calibrationmethod: Poissonmaximum likelihood estimation.
Discount factor v= 1

1.005 .
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Figure D.4. Country-specific CBDmodel parameters for males, comparing a CBDmodel trained on real data up to 2020 (blue
triangle) and a CBDmodel trained on real data up to 2019 and 2020 best estimates (red circle).

Figure D.5. Country-specific annuity values a65:30|(2021) for males (based on point and interval death rate forecasts), com-
paring a CBDmodel trained on real data up to 2020 (blue triangle) and a CBDmodel trained on real data up to 2019 and 2020
best estimates (red circle). Discount factor v= 1

1.005 .
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Figure D.6. Country-specific annuity values a65:30|(2022) for males (based on point and interval death rate forecasts), com-
paring a CBDmodel trained on real data up to 2020 and 2021 best estimates (blue triangle) and a CBDmodel trained on real
data up to 2019 and 2020/2021 best estimates (red circle). Discount factor v= 1

1.005 .
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