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Summary

A MINQUE(l) procedure, which is minimum norm quadratic unbiased estimation (MINQUE)
method with 1 for all the prior values, is suggested for estimating variance and covariance
components in a bio-model for diallel crosses. Unbiasedness and efficiency of estimation were
compared for MINQUE(l), restricted maximum likelihood (REML) and MINQUE(0) which has
parameter values for the prior values. MINQUE(l) is almost as efficient as MINQUE(0) for
unbiased estimation of genetic variance and covariance components. The bio-model is efficient and
robust for estimating variance and covariance components for maternal and paternal effects as well
as for nuclear effects. A procedure of adjusted unbiased prediction (AUP) is proposed for
predicting random genetic effects in the bio-model. The jack-knife procedure is suggested for
estimation of sampling variances of estimated variance and covariance components and of
predicted genetic effects. Worked examples are given for estimation of variance and covariance
components and for prediction of genetic merits.

1. Introduction

Estimating genetic variance is of importance for
quantitative genetic research as well as for plant and
animal breeding. Estimation of genetic variance
components is generally accomplished by the method
of Cockerham (1963). A mating design is used to
generate sets of relatives tested in one or more
environments and an analysis of variance (ANOVA)
can be constructed for estimating variance com-
ponents which are then translated into covariances of
relatives. These covariances of relatives can also be
interpreted in terms of genetic and environmental
components and hence estimators of genetic variance
components can be derived. Among various mating
designs, the nested (Design I) and factorial (Design II)
designs (Comstock & Robinson, 1952; Hallauer &
Miranda, 1981) and the diallel designs (Yates, 1947;
Hayman, 1954; Griffing, 1956; Matzinger &
Kempthorne, 1956; Gardner & Eberhart, 1966) are
most used by plant and animal breeders. Cockerham
& Weir (1977) proposed a bio-model for diallel
crosses. This model partitions extranuclear effects into
maternal effects and paternal effects, and is more
representative of the biological situation. Since the
ANOVA method cannot give separate estimates for
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variance components of maternal effects and paternal
effects, mixed linear model approaches need to be
employed for unbiased estimation of variance com-
ponents.

In this study, Monte Carlo simulations are used to
evaluate estimation methods of minimum norm
quadratic unbiased estimation (MINQUE) (Rao,
1970, 1971) and restricted maximum likelihood
(REML) (Patterson & Thompson, 1971; Corbeil &
Searle, 1976). A MINQUE procedure is suggested for
estimating covariance components between two traits
with equal design matrices. Unbiasedness and
efficiency for estimating variance components and
covariance components are tested by Monte Carlo
simulations for MINQUE and REML procedures. A
method of adjusted unbiased prediction (AUP) for
random genetic effects is compared with the best
linear unbiased prediction (BLUP) procedure. A
worked example is presented to illustrate the use of
these new methods of analysis.

2. Model and methodology

Cockerham & Weir's (1977) bio-model of diallel
crosses provides a way of estimating maternal and
paternal variance components. If other higher-order
interaction effects are not included in the model, the
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bio-model for an observation in the fcth block of the
cross between line / (maternal) and line j (paternal)
can be expressed as

y»k = ^ + ni +
 ni + tn + mt+pj + bk + em, (1)

where ym is the average phenotypic value of indi-
viduals from line z'xline j in block k; /i is the
population mean; ni is the effect of nuclear contri-
bution of maternal line /, n( ~ (0, <r2

n); nj is the effect
of nuclear contribution of paternal liney, n} ~ (0, cr2

n);
tt} is the interaction effect of nuclear contributions of
lines ixj, t(j ~ (0, of); mi is the extranuclear maternal
effect of line i,mt ~ (0, o-^); pi is the extranuclear
paternal effect of line j,p} ~ (0, o^); bk is the effect of
block, k,bk ~ (0, (xl); em is the residual effect,
etjk~(0,at).

All the effects except the constant /i are independent
random effects. Terms n and t are for nuclear genetic
effects. They refer to effects associated with genes
transmitted from parent to offspring. The extranuclear
effects are not due to the individual's genotype but to
the maternal (m) or paternal (p) influence. The
assumptions for the bio-model are: (a) regular diploid
segregation; (b) parents randomly sampled from a
reference population; (c) no epistatic effects; and (d)
no genotype by environment interaction. There is no
correlation between nuclear effects and extranuclear
effects in the bio-model. The maternal effects consist
mainly of maternal genetic effects and/or cytoplasmic
effects. The paternal effects are mainly paternal genetic
effects. The maternal (or paternal) common environ-
mental effects can be eliminated by special experi-
mental designs, such as randomized complete block
design. Reciprocal crosses are needed to separate
genetically determined variation from maternally or
paternally determined variation.

The bio-model of diallel crosses can be written in a
matrix form of the mixed linear model,

y =

The vector y is distributed with mean \fi and variance
V = 2^= 1 <J\ Uu U'u + <J% I. The constant /t is the popu-
lation mean, and Uu is the known incidence matrix
relating to the random vector eu ~ (0, cr\ I).

The MINQUE method was proposed by Rao
(1970, 1971) for estimating variance components.
Variance components of the bio-model can be
estimated by solving the following MINQUE
equat ions for u,v = 1,2, ...6:

[tr (U'u CL U, U; Qa U J] [<r\] = [y'CL UB V'u Qa y], (2)

where the trace tr is the sum of diagonals of a matrix,
and

and Va
1 is the inverse of Va with prior values au in

place of <j\ in V.
Methods of estimating covariance components were

proposed by Rao & Kleffe (1980) for the MINQUE
procedure. Those procedures involve extensive com-
putations and have been put to little use in practice. A
much simpler MINQUE procedure for estimating
covariance components can be derived for any number
of traits for the genetic model. If two variables yx and
y2 have equal design matrices, they have covariance
matrix V1/2 = 2'_1(r1 /2 \iu\i'u. The expectation of
the quadratic function" y, Qa Uu U'u Qa y2 is

tr(QaUttU;QaV1/2) =

By MINQUE theory, the invariant and unbiased
estimators of covariance components can then be
obtained by solving the following system of equations
for w,v = 1,2,... ,6:

(3)

Although the estimates of variances and covariances
depend on prior values a, they are unbiased, provided
that the choice of a does not depend on the data.
Because a is a vector of known values, it may be
chosen from prior experiments, from iterations or
theoretical considerations. If the parameter values are
known and used for [aj (au = a2

u or <rx /2 ), this is the
MINQUE(#) which will give the minimum variance,
invariant, unbiased estimators for linear functions of
variance components under the normality assumption
(Rao, 1972). If the user has no basis for selecting a,
MINQUE(l) with a = 1 was suggested by Giesbrecht
(1985). If ocu are replaced by the iterated estimates
with the restriction that they are within the parameter
space, REML estimates can be obtained by iteration
until converging.

By the best linear unbiased prediction (BLUP)
method (Henderson, 1963), the Mth vector of random
genetic effects in the bio-model can be obtained by

where Qg is Qa with the prior values replaced by
parameter values. The BLUP needs known variances.
Since the true variances are unknown in practice,
estimates are usually used in prediction. Then the
genetic effects can be predicted as

Such prediction is just a so-called 'BLUP' since it has
already lost the linearity and the guarantee for
unbiasedness by using estimated variances. The
unknown variances can also be replaced by prior
values from prior experiment or from reasonable
guesses. Therefore the genetic effects can be predicted
by choosing prior values a as in the case of MINQUE
method:
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The linear unbiased prediction (LUP) can be accom-
modated by the estimated variance to give an adjusted
unbiased prediction (AUP):

where K = V[(dfu&
2

u)/(e'uia)euia))], with constraint
&2

U ^ 0, and df is the wth vector size minus one.
The jack-knife procedure (Miller, 1974; Efron,

1982) can be used for estimating sampling variances
of estimated variance or covariance components and
of predicted genetic effects. In this study genetic
entries serve as jack-knifing units, leaving out one
genotype for all replicates at a time. When jack-knife
estimates and standard errors are obtained, the null
hypotheses of zero parameter values can be tested by
a Mest.

Monte Carlo simulations were performed in this
study to evaluate the estimation of variances and
covariances of the bio-model by MINQUE(#),
MINQUE(l) and REML. The unbiasedness and
efficiency of prediction with BLUP, AUP and 'BLUP'
methods were also compared by Monte Carlo simu-
lations. Pseudo-random normal deviates with zero
mean and unit variance were generated by the method
of Kinderman & Monahan (1977). For each case 200
simulations were run to obtain sample means of
estimates, bias and mean squared error (MSE). If the
absolute value of bias is less than 10% of the
parameter value, the parameter is said to be well
estimated. In cases where the parameter value of a
variance or covariance component is zero, bias < 1 %
of the sum of variances and covariances is considered
to be negligible.

For simplicity, randomized complete block designs
with three replications were used in this study. Ten
parents were used for constructing an unbalanced
diallel mating design with reciprocals by assuming
that parents 1-6 could not mate with each other and
crosses from parent 1 to parents 9 and 10 are missing.
Parents were not included. The 56 genetic entries were
assigned at random within each block. Since estimates
of block variance and covariance are usually not of
much concern for diallel analyses, simulation results
of block effects are not presented in this paper.

3. Monte Carlo simulation results

(i) Estimation of variance and covariance components

Simulation results for bias and MSE are summarized
in Table 1 for variance components and in Table 2 for
covariance components. Variance and covariance of
residual effects can always be efficiently estimated
without bias by MINQUE(0), MINQUE(l) and
REML methods. But estimation of genetic variance
and covariance components is not equally efficient
for these three methods. Both MINQUE(<9) and
MINQUE(l) can give unbiased estimates for variance

components and covariance components no matter
what values are set for parameters. There are no
apparent differences of bias and MSE between these
two MINQUE methods. Unbiased estimates are
obtained by the REML method for variance and
covariance components of nuclear effects. Variance
and covariances for maternal and paternal effects tend
to be slightly over-estimated by the REML method.
REML may give a smaller MSE for cr2

n, cr2
m and a2

p but
a larger MSE for a2. Since REML requires more
computations due to iterations, there is no apparent
advantage of REML over MINQUE(l). By the
MINQUE(l) method, the bio-model is quite robust
for estimating variance and covariance components
even though there are no paternal and maternal
effects.

When the procedure of jack-knifing over genotypes
is used in MINQUE(l) estimation, unbiased estimates
are obtained for both variance components and
covariance components. The values of bias and MSE
are very close to those of MINQUE(l) in Tables 1 and
2. Power values (the probabilities of rejecting the null
hypotheses of no variation) are over 90 % for testing
significant variance of nuclear effects and residual
effects. Power values are relatively low (around 50%)
for detecting significant variances of maternal and
paternal effects if they exist. If there are no paternal
effects (o-p = 0), correct conclusions of no paternal
effects can be drawn with a probability over 90%.
When there are no maternal and paternal effects
(cr2

m = 0 and a2, = 0), non-significance can be detected
with 99% probability for these two variance com-
ponents. The power values of hypothesis tests for
covariance components are relatively low compared
with the variance estimation. It is indicated that more
genetic entries are needed to detect significance of
covariance components between two traits.

(ii) Prediction of genetic effects

Two prediction methods - 'BLUP' eu(^ using REML
estimates and AUP e£(1) with a = 1 - were compared
with the BLUP eum using parameter values. Two
hundred simulation runs were conducted for es-
timating bias in predicted effects and distance between
predictor vector eu and sampling vector eu. The
distance is defined as ||e—e|| = \/[2u(eu — <?u)]

2.
All these prediction methods will give extremely low

bias for predicted mean genetic effects. Hence these
predictors are unbiased for random genetic effects.
The variances of predicted random genetic effects are
always smaller than the true variances for both BLUP
and 'BLUP' methods (Table 3). It is shown by Monte
Carlo simulations that these two methods yield
predictions with unbiased means but under-estimated
variances for all the random effects. In plant and
animal breeding, 'BLUP' is mostly used by breeders
for evaluating breeding values of genetic materials.
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Table 1. Bias and MSE of variance components estimated by
MINQUE(0), MINQUE(l) and REMLfor unbalanced diallel crosses

Parameter Value

cr2 50
of 30

a2 20
of 30
<r2 50

o-f 30

o-2 0

o-f 30
<r2 50

of 30
o-2 0

o-2 0

o-f 30

MINQUE(<9)

Bias

0-78
0-86
1-60

-1-89
000

2-20
0-86
0-24

- 0 0 1
- 0 0 0

2-37
0-87
016

- 0 1 0
001

MSE

1279
158
506
362

13

1105
158
315
184

13

878
158
21
23
13

MINQUE(l)

Bias

0-70
0-88
1-56

-1-92
000

2-13
0-88
015

- 0 0 2
001

2-33
0-88
0-30

-0-24
001

MSE

1267
159
508
361

13

1096
159
319
187

13

872
159
32
31
13

REML

Bias

100
0-85
2-88"

-0-51
- 0 0 1

2-33
0-83
0-61
5-07°

- 0 0 0

2-53
0-81
2-22"
2-07°

- 0 0 1

MSE

1260
161
449
286

13

1105
159
304
96
13

877
158
17
15
13

" Bias > 10% of the true value.
If the true value = 0, bias > 1 % of the total variance value.

Table 2. Bias and MSE of covariance components estimated by
MINQUE{0), MINQUE(l) and REMLfor unbalanced diallel crosses

Parameter

0,11

^m/m
ap/P

°"e,e

anln

Tilt

m/rn

Vplp

<7tt/n

Vtlt

Vmlm
avlp

«ele

Value

25
15
10
10
15

25
15
10
0

15

25
15
0
0

15

MINQUE(<9)

Bias

- 0 1 5
0-79
0-26

-0-37
001

Oi l
0-76
006

-0-27
001

0-34
0-76
0-44

-0-49
000

MSE

669
73

239
281

10

521
73

157
98
10

490
73
12
12
9

MINQUE(l)

Bias

- 0 1 5
0-78
0-24

-0-35
001

008
0-77
005

— 0-31
001

0-38
0-76
0-47

-0-57
001

MSE

668
74

240
282

10

524
73

159
99
10

491
73
16
15
10

REML

Bias

111
1-72
2-33°
206"
001

0-79
1-42
114"
3-91°
000

1-36
114
1-68°
117<"

- 0 0 0

MSE

563
96

172
212

10

461
104
128
55
10

429
90
10
5

10

" Bias > 10% of the true value.
If the true value = 0, bias > 1 % of the total variance value.

Under-estimating variances of 'BLUP' predictors
mean that the absolute values of predicted genetic
effects will be smaller than the real values. When
adjusted by estimated variances, AUP will give
predictors with unbiased means and variances for
random genetic effects if they exist. Since adjustor K
needs the constraint of 6\ S= 0, variances of AUP
predictors are slightly over-estimated if there are no
random effects.

The BLUP eu(W should give the smallest distance for
the predicted genetic effects among all unbiased linear

predictions (Henderson, 1979). The distances of
'BLUP' eu(j, and AUP e£(1) are a little larger than
those of BLUP eu(W. The difference between distances
of 'BLUP' eu(^ and AUP e (̂1) is negligible in most
cases. It is concluded that AUP can be used for
predicting genetic effects. Since the distribution of
AUP is unknown, standard errors of predictors can be
obtained by the jack-knife procedure as in the case of
estimating variances and covariances. A Mest can
then be used for detecting significance of specific
genetic effect.
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Table 3. Prediction of genetic effects by BLUP, AUP and ' BLUP' for unbalanced diallel crosses"

237

Parameter6

o*2 = o"2 = 20
n
t
m
P

<rl = 20, o-2 = 0
n
t
m
P

n
t
m
P

BLUP eu(S)

Variance

36-7
18-7
10-7
10-2

43-5
18-9
16-9
00

44-2
18-9
00
00

Distance

12-6
18-3
10-2
100

10-3
18-2
6-9
00

100
18-2
00
00

AUP 6*,

Variance

50-9
30-8
22-7
19-4

52-1
30-9
20-5

5-0

52-3
30-8
2-27
203

Distance

13-4
19-4
12-2
11-6

121
19-4
9-6
4-2

10-3
19-3
2-93
2-62

' B L U P ' e , , ^

Variance

39-9
196
16-4
13-2

40-7
19-6
13-4
30

43-7
19-5
0-60
108

Distance

13-9
18-8
116
11-4

11-6
18-7
8-3
30

10-5
18-6
1-43
3-48

" Absolute bias for mean prediction of genetic effects is 10~5 ~ 10 7 for these three predictions.
b Parameter values are set to a\ = 50, of = 30 for nuclear effects.

4. Example

Data for Nicotiana rustica plants from Hayman (1954)
were presented in appendix C of Cockerham & Weir
(1977) and are also used as an example here. They are
the mean flowering times of five plants per plot in two
complete blocks. Variance components were estimated
by the MINQUE(l) method, and their standard
errors were estimated by the jack-knife procedure
from cell means of eight-parent diallel crosses. The
estimates of variance components and their standard
errors are listed in Table 4. The estimates of variance
components are very close to those obtained by the
ANOVA method (Cockerham & Weir, 1977) although
those authors did not give standard errors for their
estimates. Significance for variance components is
detected by the Mest for a\ and cr\. As an example,
data from blocks I and II were used for estimating
covariance components. The estimated genetic co-
variance components are very close to the estimates of
genetic variance components (Table 4). There was

Table 4. Jack-knife estimates of variance components
by cell means and covariance components between
block I and block II with the MINQUE(l) method
for diallel crosses from Hayman's data

Estimate n t m p e

o-2

S.E.(<72)

S.E.(d-1/2)

5106**
(2-125)

4-855*
(2152)

2-386
(3-601)

2-727
(3-892)

1-913
(2-211)

1-938
(2-231)

3-308
(3-236)

3-501
(3-280)

5-830*
(3-235)

3-873
(3-541)

* Significantly different from zero at 5 % level.
** Significantly different from zero at 1 % level.

strong nuclear additive correlation for observations
between blocks I and II.

Random genetic effects were predicted by the jack-
knife procedure with the AUP method for these eight
parents regarded as a sample from a reference
population. Predictors e£(1) and their standard errors
are listed in Table 5. Parental genetic merits can be
evaluated mainly by predicted nuclear effects nt. Both
parents 1 and 3 can be used in crosses for delaying
flowering time, while parents 2, 7 and 8 may have
effects on earliness. Although significant values of
extranuclear variances are not observed, a significant
positive maternal effect and a negative paternal effect
are detected for parent 4. Parent 4 may have very little
nuclear contribution but strong extranuclear effects
for flowering time.

5. Discussion

Parents were not included in diallel analysis for the
original bio-model. This is preferred for the estimation
of genetic variance and covariance components,
especially for cross-pollinated plants and domestic
animals. For diallel mating of completely outbred
parents, additive variance (or covariance) can be
estimated by VA = Aa\ (or CA = 4o-n/n) and dominance
variance (or covariance) by Vv = 4af (or CD = 4o-(/().
Additive variance refers to the sum of the con-
tributions of each allele separately to the variance,
while dominance variance refers to the joint con-
tributions of the two alleles at a locus.

Since breeding pure line cultivars is the major
purpose of breeding programmes for self-pollinated
plants, diallel analysis including inbred parents may
give plant breeders a chance to evaluate the potential
usefulness of the selected parents as breeding materials
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Table 5. Predicted genetic effects e£(1) and standard errors {in parentheses) by jack-knife procedure for diallel
crosses from Haymari's {1954) data

Parent
no.

1

2

3

4

5

6

7

8

Genetic effect

n, in

301** -2 -71*
(0-85) (1-35)

-1-73*
(0-66)
3-75**

(108)
0-31

(058)
-0-48

(0-53)
0-28

(0-84)
-3-26**

(0-79)
-1-89*

(0-74)

904
(458)
013

(2-25)

- 0 0 1
(0-74)
0-72

(0-81)
0-66

(0-96)

- 1 1 3
(0-90)

- 0 0 4
(0-56)

-2-95
(1-43)

- 3 1 7 *
(1-44)

4
-0-56
(3-14)
0-25

(0-85)
3-75

(3-80)
106

(1-03)
0-33

(0-92)

- 0 1 3
(0-99)
1-84

(1-66)
-3-58

(2-32)
- 0 1 6
0-36)
1-25

(1-08)
-2-74

(1-47)

-1-65
(1-26)

-1-85
(1-30)

-3-44
(2-71)
1-22

(1-89)
5-25*

(2-24)
-1-72

(110)
0-35

(0-83)

rht

1-20
(0-93)

-1-48
(0-87)

-0-92
(0-97)
303*

(1-44)
0-84

(0-50)
1-24

(106)
-1-80

(109)
- 2 1 1

(1-21)

Pt

1-49
(106)
005

(0-70)
419

(217)
-3-24*

(0-89)
— 1 41*

(0-65)
-0-88

(114)
-0-96

(0-79)
0-76

(0-81)

* Significantly different from zero at 5 % level.
** Significantly different from zero at 1 % level.

or directly as cultivars. Under the bio-model, we
assume no epistasis Qoint contributions from alleles at
more than one locus). When inbred parents are
included in the bio-model, covariances of relatives
involving inbred parents consist of quadratic com-
ponents £>!, D* as well as an additive genetic variance
component (Cockerham & Weir, 1984). With an
additive and dominance model for only nuclear gene
effects, the covariances of full sib families are

and

for inbred parents, and

for Ft organisms, where D1 is the covariance of
additive and homozygous dominance effects and D* is
the variance of homozygous dominance effects. The
covariances of half-sib families are

Cov{yi(k,ym,) = a\

= V 4- D

for F, organisms and their inbred parents, and

for Ft organisms with one common parent. A
fundamental assumption for the bio-model of diallel
crosses is that all the genetic effects are independent
random variables. This implies that nuclear additive
and nuclear dominance effects are not correlated and
D1 is approximately zero. It is approximately true for

Cov{y(ik,ytik.) = 4

For self-pollinated plants with no serious inbreeding
depression, it may be acceptable to assume t(} ~ (0, of)
for / ̂  j and

Therefore the variance of homozygous dominance
effects D* is approximately equal to the dominance
variance VD. When diallel mating is conducted from
completely inbred parents, direct genetic variances (or
covariances) can be estimated by FA = 2cr\, and
Vo = of (or CA = 2<rn/n, and CD = <rw) if parents are
not included, or approximately by F A « 2a2

n and
VD x of (or CA x 2<rn/n, and CD x aw) if parents are
included. One advantage of including parents in the
bio-model is that heterosis can be measured by the
predicted interaction effects S,fH. A negative sum
implies that positive heterosis may be important for
the trait studied.

Griffing's diallel model (Griffing, 1956) is one of the
most popular models for diallel analyses. Among four
methods of Griffing's model, methods 1 and 3 are the
diallel crosses which involve reciprocal Fx organisms
and so can give maternal and paternal effect estimates.
Griffing's model for genetic entry from line / x liney' is

y» = I*>+gi+gj + s(, + rtl + error.

The reciprocal effects ri} can then be analysed as the
extranuclear effects. The variances of general com-
bining ability, a2, specific combing ability, <r\, and
reciprocal effects, a2, can be estimated by methods 1
and 3 of Griffing's model. The variance components
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in the bio-model for diallel crosses have an equivalence
to these: cr\ ~ o*v<r\ ~ a],(<r2

m + o*J/2 ~ <r2
r. By

Griffing's model, only an average variance for mater-
nal and paternal effects can be estimated as the
reciprocal variance cr\. The causes of extranuclear
effects are not distinguishable for maternal and
paternal effects. When both maternal and paternal
effects are present, the bio-model is superior to
Griffing's model for unbiased estimation of variance
and covariance components for nuclear, maternal and
paternal effects.

In this study the unbalanced mating design has an
experimental size of 168 (56 genotypes and three
replications) which is the same size as an eight-parent
balanced design. Monte Carlo simulations for the
balanced design (simulation results are not presented
in this paper) showed no considerable differences of
bias, MSE and power value for estimating variance
and covariance components between balanced and
unbalanced mating designs. It is indicated that
MINQUE(l) is equally efficient for estimating vari-
ance and covariance components for both balanced
and unbalanced diallel crosses with the same experi-
mental sizes. By using partial diallel crosses, the
number of parents sampled at random from the
reference population can be increased but not the
experiment size.

In breeding practice, parental genetic merits are
sometimes of more concern to the breeder. There is no
way to estimate separately the genetic effects of the
bio-model by any side conditions (Cockerham &
Weir, 1977), although these random genetic effects are
predictable by the BLUP procedure (Henderson,
1963). Parents as a random sample from a reference
population can then be evaluated by predicted genetic
merits. Random genetic effects have most often been
predicted by using estimates of variance components.
'BLUP'predictors are unbiased for means (i'eu(^ « 0)
but under-estimated for variances ( e ^ §„«,-, < dfu &l)
(Searle et al., 1992). We have shown that an adjusted
unbiased prediction (AUP) by the MINQUE(l)
method can give predictors with unbiased means and
variances.

Standard errors of estimated variances and co-
variances or of predicted random effects in the bio-
model can be obtained directly by some approximate
formulae (Kackar & Harville, 1984; Searle et al.,
1992). In the present paper we suggest using the jack-
knife method for estimating standard errors. Statistical
tests for the hypothesis of no variation tend to be
more powerful when using standard errors obtained
by the jack-knife procedure (Zhu, 1989). Standard
errors for functions of estimated variances and
covariances (e.g. heritabilities and correlation co-
efficients) or of predicted random effects (e.g. heterosis)
are also obtainable by the jack-knife procedure.

In summary, the bio-model with mixed model
approaches allows the analysis of data from
unbalanced designs and the separate estimation of

variance and covariance components for maternal
and paternal effects. We have evaluated three es-
timation procedures for the components of the bio-
model and have given a methodology for covariance
component estimation and for prediction of genetic
effects. The methods of diallel analysis suggested in
this paper are also applicable to balanced and
unbalanced data of other diallel models with in-
dependent random genetic effects.
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