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By an £"-unitary inverse semigroup we mean an inverse semigroup in which the semilattice
is a unitary subset. Such semigroups, elsewhere called "proper" or "reduced" inverse semi-
groups, have been the object of much recent study. Free inverse semigroups form a subclass
of particular interest.

An important structure theorem for ^-unitary inverse semigroups has been obtained by
McAlister [4, 5]. From a triple (G, 3C, <&) consisting of a group G, a partially ordered set $C
and a subset <3/ of $C, satisfying certain conditions, he constructs an £-unitary inverse semi-
group P(G, SC, <&). A semigroup of this type is called a P-semigroup. The structure theorem
states that every ^-unitary inverse semigroup is, to within isomorphism, of this form. A
second theorem asserts that every inverse semigroup is isomorphic to a quotient of a P-
semigroup by an idempotent-separating congruence. We refer below to these results as
McAlister's Theorems A and B respectively. A triple (C, 3C, <&) of the type used to construct
a P-semigroup is here termed a "McAlister triple". It is shown further, in [5], that there is
essentially only one such triple corresponding to a given ^-unitary inverse semigroup.

A congruence p on an inverse semigroup S is called an /T-unitary congruence if and only if
S/p is an ^-unitary inverse semigroup. The main purpose of this paper is to provide some
results on such congruences.

In §1, we give an account of some basic properties of congruences on inverse semigroups,
with the emphasis on group congruences, idempotent-separating congruences and idempotent-
determined congruences (defined in [2]; see below). It is noted that an idempotent-determined
congruence on an £-unitary inverse semigroup is necessarily ^-unitary. In §2, properties of
P-semigroups are reviewed and, for a McAlister triple (G, 3C, <3J), we introduce and examine
two further concepts: T-congruences on 3C and the kernel of (G, 9C, <&).

Idempotent-determined congruences and idempotent-separating congruences on P-
semigroups are investigated in §3 and §4 respectively, with the techniques developed in §2.
In particular, it is shown in Theorem 3.2 that every quotient of a P-semigroup by an idempotent-
determined congruence is isomorphic to a P-semigroup, the McAlister triple for the quotient
being derived explicitly from that of the given P-semigroup. Theorem 4.5 provides a
similar result for the quotient of a P-semigroup by an ^-unitary idempotent-separating
congruence.

These results are applied in §5 to the case of a free inverse semigroup to yield a new proof
of McAlister's Theorems A and B. We also define the notion of a quasi-free inverse semigroup
and establish some basic properties of such a system.

The final section, §6, is devoted to a brief study of the set A* of all ^-unitary congruences
on an arbitrary inverse semigroup S. It is shown that A* is a complete lattice with respect to
inclusion, but not, in general, a sublattice of the lattice A(S) of all congruences on S. Certain
sublattices of A*, and the relationship between A* and the 0-classes of A(S) (in the sense of
[17]) are also discussed.
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58 N. R. REILLY AND W. D. MUNN

1. Preliminaries. Throughout the paper the basic terminology and notation will be that
of [1];

We begin with some remarks on sets. Let X be a nonempty set. The identity relation on
X will be denoted by ix. For any equivalence p on X the p-class containing xeX will be
denoted by xp and the natural mapping x\-+xp from Xto X\p by pb. If p, x are equivalences
on X such that p ^ x then xjp will denote the equivalence on X\p defined by the rule that
(xp, yp)ex/p if and only if (x,y)ex.

Now suppose that ^ is a partial ordering of X. We say that X is lower directed if and
only if, for all x,y sX, there exists zeXsuch that z ^ x and z ^ y. By a convex subset of X we
mean a subset Y such that, for all yx,y2eY and all xe X, y^ ^ x < j 2 implies xe T. A non-
empty subset y of X is called an ideal of X if and only if, for all xeX and all ye Y,x ^ y
implies xe Y. We call X a /owe/- semilattice if and only if every pair of elements of X has a
greatest lower bound with respect to the partial ordering. As is customary, we shall some-
times regard a lower semilattice as a commutative semigroup of idempotents in which the
product of two elements is their greatest lower bound; conversely a commutative semigroup S
of idempotents is a lower semilattice with respect to the partial ordering =S defined by the rule
that x s% y if and only if xy = x (x, y e S). In §2 we shall be concerned with a partially ordered
set 9£ containing an ideal ®l which is also a lower semilattice under the partial ordering of ST.

We now review some elementary properties of congruences on inverse semigroups.
Where no other reference is given, proofs may be found in [1, Chapter 7]. Let S be an inverse
semigroup with semilattice E. The set of all congruences on S forms a complete lattice with
respect to partial ordering by inclusion: it will be denoted by A(S). LetpeA(S). Then, for
al loeS,

(a,a2)ep=>(a,e)ep for some eeE, (1.1)

from which it follows that the quotient semigroup S/p is again an inverse semigroup. Also,
for all a,beS,

(a,b)ep=>(a~1,b~l)ep.
Now let xeA(S). Then

p S x <=> ep £ ex for all eeE. (1.2)

This shows, in particular, that p = x if and only if ep = ex for all eeE. If p £ x then x/p is a
congruence on S/p.

By a normal equivalence on E we shall mean an equivalence n satisfying the following
conditions ([17]):

(i) (e,f)en^(eg,fg)en for all geE,
(ii) (e,f)en=i>(xex~1,xfx~l)en for all xeS.

It is easily seen that if peA(S) then pn(E x E) is a normal equivalence on E. Furthermore,
the relation 9 defined on A(5) by

xE) (1.3)

is a congruence on the lattice A(S) and each 0-class is a complete modular sublattice of A(S)
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[17, Theorem 5.1]. Now suppose that n is any normal equivalence on E. Then

{peA{S) : pn{Ex E) = n)

is nonempty [17, Theorem 4.2] and so forms a 0-class of A(5). In particular this set has a
greatest and a least element. The least element is the congruence on S generated by n (viewed
as a relation on S) and it will be denoted by n*. We note that, for all/) eA(S),[pn(E x E)]*Zp.

Several special types of congruence on S will be central to our discussion. First, we call
peA(S) a group congruence if and only if S/p is a group. As shown in [8, Theorem 1], S
possesses a least group congruence a and this has the following characterisation:

{a,b)ea <=> ea = eb for some eeE. (1.4)

Since S/a is a group, E x E £ a; that is, E is contained in a single o--class. In general, E will
not itself be a <r-class, but we shall be concerned with the case in which it is (see Lemma 1.6
below). It is readily verified that if pe A(S) is such that p £ a, and if a{ denotes the least
group congruence on S/p, then

as=a\p. (1.5)

The relation < defined on S by the rule that

a ^ b o a = eb for some eeE

is a partial ordering of 5 (called the natural partial ordering) [1, Chapter 7]. From (1.4), it
can be seen that, under ^ , each a-class of S is lower directed.

Second, we call peA(S) an idempotent-separating congruence if and only if each p-class
contains at most one idempotent. A congruence p on S is idempotent-separating if and only
if p £ #f?. Consequently, there exists a greatest idempotent-separating congruence p. on S,
namely the greatest congruence contained in ffl. Howie [3] has provided a simple character-
isation of/(. It can readily be shown that if p,re A(5) are such that p £ T and pn(E x E) =
r n ( £ x £) then r/p is an idempotent-separating congruence on SI p. In particular, if pe A(S)
and if n denotes pn(E x E) then 7t* £ p (as remarked above) and p/n* is an idempotent-
separating congruence on S/n*.

Third, we call peA(S) an idempotent-determined congruence on S if and only if each p-
class that contains an idempotent consists entirely of idempotents. Such congruences have
been studied by D. G. Green [2].

A subset A of S is termed left unitary if and only if, for all as A and all xeS, axe A
implies xeA. Right unitary subsets are defined dually. By a unitary subset of S we mean a
subset that is both left and right unitary. Suppose that the semilattice E of S is left unitary.
Then it is also right unitary; for if ee^and xeS arc such that .reei? then ex~l = (xe)~leE
and so x~leE, which implies that xeE. This establishes the equivalence of conditions (i)
and (ii) of the lemma below. Conditions (ii) and (iii) are clearly equivalent and the equivalence
of (iii), (iv) and (v) has been noted elsewhere (for example, see [5, Proposition 1.1]).

LEMMA 1.6. The following conditions on an inverse semigroup S, with semilattice E and
least group congruence a, are equivalent:

E l
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(i) E is unitary in S;
(ii) E is left unitary in S;
(iii) ife,aeSare such that ea = e = e2 then a = a2;
(iv) E is a a-class of S;
(v)

An inverse semigroup 5 whose semilattice is unitary in S will be called an E-unitary
inverse semigroup. In what follows we shall use, without comment, some of the other
characterisations of such semigroups provided by Lemma 1.6. £-unitary inverse semigroups
have been studied by Saito [20], McAlister [4, 5], O'Carroll [12, 13], Reilly [16] and others.
Saito and McAlister call them "proper inverse semigroups", while O'Carroll refers to them as
"reduced inverse semigroups". The term "Is-unitary" was suggested by A. H. Clifford.

By an F-inverse semigroup, McFadden and O'Carroll [7] mean an inverse semigroup S,
with least group congruence a, such that each a-class has a greatest element under the natural
partial ordering of S. It is readily checked that every F-inverse semigroup is E-unitary. The
class of is-unitary inverse semigroups also contains that of free inverse semigroups (see §5).

We now introduce a fourth type of congruence on an inverse semigroup S. A congruence
p on S will be termed E-unitary if and only if Sjp is E-unitary. This paper is largely devoted to
a study of such congruences.

The next lemma exhibits relationships between some of the concepts discussed above.

LEMMA 1.7. Let p be a congruence on an E-unitary inverse semigroup S with semilattice E
and least group congruence a. The following conditions on p are equivalent:

(i) p is idempotent-determined;
(ii) p = it* for some normal equivalence n on E;
(iii) p £ a.

Now suppose that p satisfies these conditions. Then p is E-unitary. Moreover, if S1 is an
F-inverse semigroup then so also is (S/p)1.

Proof, (i) implies (ii). Let p be idempotent-determined. Write n = pn(E x E). Then
n is a normal equivalence on E and n* £ p. We show that p = n*. By (1.2) it suffices to show
that, for all eeE, ep s en*. Let eeE and let asep. Then aeE, since p is idempotent-
determined, and so (a,e)epn(E x E) = n £ n*. Thus aeen*, which shows that ep £ en*.
It follows that p = n*.

(ii) implies (iii). Let p = n*, where n is a normal equivalence on E. Since E x E £ a we
have that (ftn(T)n(E x E) = pn(E x E) — n and so, since p = n*, p £ pna. Hence p = pn<r;
that is, p £ a.

(iii) implies (i). Let p £ o \ Suppose that (a, e)ep, where eeE. Then (a,e)ea and so, by
(1.4), there exists feE such that fa =fe. Hence (ef) = (ef)a. Therefore, since S is i?-unitary,
aeE. Thus p is idempotent-determined.

It follows that (i), (ii), (iii) are equivalent. (The hypothesis that 5 is .E-unitary was used
only to show that (iii) implies (i).)

Now suppose that p satisfies (i), (ii) and (iii). We show that Sjp is .E-unitary. Let
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f,beSlp be such that/2 =/and (fb)2 =fb. By (1.1), there exist e,geE such that ep =/and
gp=fb. Let aeS be such that ap = b. Then (ea,g)ep. But p is idempotent-determined.
Hence eae£ and so ae£, since S is ^-unitary. Thus b2 = b. Therefore S/p is is-unitary.

Finally, suppose also that S1 is an F-inverse semigroup. We may assume that S # E.
Let a1, (Ti, a\ denote the least group congruences on S1, Sip, (Sip)1 respectively. Since Sjp
is £-unitary, the aj-class of (Sip)1 containing the idempotents of Sip consists entirely of
idempotents and so has a greatest element, namely the identity. Now let a e S\E. We show
that the o-J-class of (S/p)1 containing ap has a greatest element. First we note that this class
coincides with the o-^class of S/p containing ap; for ap contains no idempotent of S and so,
by (1.1), cannot be an idempotent of S/p. But Sl is an F-inverse semigroup. Hence, since
a$E, aal = aa and so there exists meS such that (i) (a,m)ea and (ii) b ^m for all beSsuch
that (a, b) e a. But p s a and so, from (1.5), CT, = alp. Hence (ap, mp) e ox; also, for all b e S
such that (ap,bp)eou we have that b ^m and therefore that bp < mp. This shows that the
o-j-class of S/p containing ap has a greatest element, namely mp. Thus (Sip)1 is an F-inverse
semigroup. |

2. P-semigroups. In studying £-unitary inverse semigroups, McAlister [4] introduced
the important concept of a /'-semigroup. For completeness, we start this section by recalling
the definition of such a semigroup and some of its properties.

By a McAlister triple we shall mean a triple (G, SC, <&) consisting of a group G, a partially
ordered set (S£, ^ ) and a nonempty subset ^ of % satisfying the following conditions:

(Tl) 3C is lower directed;
(T2) <& is an ideal of !£ and a lower semilattice under ^ ;
(T3) there exists an action (g,A)\-+gA of G on 9C by order automorphisms;
(T4) % = G<W.

It can be shown that if (G, 9C, W) is a McAlister triple then it also satisfies a further condition:
(T5) for all geG there exists Ae<& such that gAeW.

Conversely, any triple (G, $£, <&) consisting of a group G, a partially ordered set 3C and a
nonempty subset ®l of SC satisfying (T2), (T3), (T4) and (T5) must necessarily satisfy (Tl) and
is therefore a McAlister triple.

Let (G, SC, "30 be a McAlister triple. The greatest lower bound of A,Be3C, if such an
element exists, will be denoted by AAB. From (T2) it follows that, for all A,Be<W, AAB
exists. Accordingly, we call ®l a "lower subsemilattice" of 9£. It is a consequence of (T3)
that if A and B are elements of % such that AAB exists then, for any geG,gAAgB exists and
is equal to g(A A B).

Now let us write
S= {(A,g)e<& X.G •.g-'^Ae'W}.

It is straightforward to verify that if (A, g), (B, h)eS then (i) A A gB exists and lies in <&,
(ii) (gh)~1(AAgB)e<B/. Thus we can define a multiplication in S by the rule that

(A,g)(B,h) = (AAgB,gh).

Under this multiplication, S is an is-unitary inverse semigroup [4, §1]. We denote S by
P(G, 3C, <&). Any semigroup constructed in this way is called a P-semigroup.
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Some elementary and easily established facts about S = P(G, HE, <&) should be noted.
Let E denote the semilattice of 5 and let 1 denote the identity of G. Then E = {(A, 1) :
AeW} and this is order isomorphic to (S/. Also, (A,g)~l = (g~iA,g~1) for all (A,g)eS.
Green's equivalences are readily characterised; in particular,

((A,g),(B,h))etf o A = B and g~1A=h~lB. (2.1)

Now let a denote the least group congruence on S. Then

«A,g),(B,h))eaog = h. (2.2)

Moreover, the natural partial ordering of S is given by

{A,g) < (B,h) o A ̂  B and g = h. (2.3)

The importance of P-semigroups stems from the following theorems due to McAlister
[5, Theorem 2.6; 4, Corollary 2.5].

(A) Every ^-unitary inverse semigroup is isomorphic to a /"-semigroup.
(B) Every inverse semigroup is isomorphic to the quotient of a /'-semigroup by an

idempotent-separating congruence.

In §5 we shall obtain proofs of both theorems by applying our results on £-unitary con-
gruences to the case of free inverse semigroups.

McAlister [5, Theorem 2.8] has also shown that S — P(G, 3C, 'W) is an F-inverse semigroup
if and only if 3C is a lower semilattice and ty has a greatest element.

To conclude our survey of basic properties of P-semigroups we restate the isomorphism
theorem [5, Theorem 1.3]. Let (G, SC, <&), (G', T, <&') be McAlister triples and let 5, S' denote
the corresponding .P-semigroups. Then S = S' if and only if there exists an isomorphism
0 :G->G' and an order isomorphism 4> : 3C->T such that (i) <2/(f) = W and (ii) (gA)<j) =
(gd)(A4>) for all geG and all AeSC.

The remainder of this section is devoted to an analysis of certain types of congruences on
P-semigroups. This will be continued in §3 and §4.

We start with a definition. Let (G, ?E, <&) be a McAlister triple. By a T-congruence on
9C we shall mean an equivalence s o n f satisfying the following conditions:

(Cl) if A,C,DeX are such that A ^ C and (C,D)BK then there exists BeSC such that
B ^ D and {A,B)EK;

(C2) each x-class is convex;
(C3) Kn(<%/ x <W) is a congruence on <W;
(C4) if A,BeSC are such that (A,B)eic then, for all geG, (gA,gB)eK.

Let K be a T-congruence on SC. We define a relation ^ on 3C\K by the rule that, for sf,38e SCfK,

tf^SSoA ?;fl for some/4ej/, Be@. (2.4)

From (Cl) it follows that

si ^ ^ o for all Be38 there exists A esf such that A ̂  B. (2.5)
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The relation ^ on 9C\K is clearly reflexive. From (2.5) and (C2) we see that it is antisymmetric
and from (2.5) we see that it is transitive. Thus < is a partial ordering of 3C\K. We now
define a subset 'SZ/K of $£\K by writing

(2.6)

Also, by (C4), we can define a mapping from G x 3C\K to 3C\K by the rule that

(2.7)

It follows, again from (C4), that if A,Bs6E are such that AK^BK then, for all geG,
g(AK) < g{BK). From this we see easily that the mapping defined by (2.7) is an action of G
on #7*c by order automorphisms.

As in [9] we say that an inverse subsemigroup U of an inverse semigroup T is full if and
only if U contains all the idempotents of T. Then we have

LEMMA 2.8. Let (G, SC, <&) be a McAlister triple and let K be a T-congruence on 9£. Let
3C\K be partially ordered by (2.4), let 'SZ/K be defined by (2.6) and let G act on 3C\K according to
(2.7). Then (G, 9C\K, <2//K) is a McAlister triple.

Write S = P(G, SC, <&), J = P(G, 9C\K, <&\K) and let 6 :S->T be defined by (A,g)d =
(AK,g). Then

(i) 0 is a homomorphism and SO is a full inverse subsemigroup of T;
(ii) the congruence 0O0"1 on S is idempotent-determined;

(iii) if each K-class of2£ is lower directed then 8 is surjective;
(iv) if each K-class ofSC is lower directed and % is a lower semilattice then SC\K is a lower

semilattice.

Proof We first verify that (G, 9C\K, <&\K) satisfies conditions (Tl), (T2), (T3), (T4).
Since 3C is lower directed, so also is 9?/K; thus (Tl) holds.
Now consider the subset <2//K of 3C\K. Let s4ef9C\K, ^E'&JK and suppose that si < $.

Let Be@n<&. Then, by (2.5), there exists Aestf such that A < B. Since <& is an ideal of
9C,Ae<& and so ^ / 6 ^ / K : . Thus 'WJK is an ideal of 3C\K. We now show that <W\K is a lower
subsemilattice of SC\K. It will be enough to show that

(C A D)K = CK A DK (C, D e <&). (a)

Let C, D e <&. First, we note that (C A D)K ^ CK, DK. NOW suppose that Jl e SC\K is such that
Jl ^ CK,DK. We prove that M < {C/\D)K. By (2.5), there exist MuM2eJ/ such that
My ^ C and M2 «$ D. Since <& is an ideal of 3C, Mt and M2 He in <$t. Hence Mt A M2 < C A D.
But (Mi,M2)eK and so, by (C3), (Mv A M 2 , M 2 ) 6 K . Hence Jl - M2K = (M1AM2)KSZ:

(CAD)K. Thus (a) holds. This shows that 'WJK is a lower subsemilattice of SC\K. Hence
(T2) holds.

Equation (2.7) defines an action of G on S£JK by order automorphisms, as already noted;
thus (T3) holds. Finally, we show that %\K = G ( ^ / K ) . Let Ae&. Then there exist Be<&
and g e G such that A = gB. Hence AK = (gB)K = g(BK). Thus (T4) holds. Consequently,
(G, S£JK, <&IK) is a McAlister triple.
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Now let S = P(G, X, <Sf), T = P(G, X\K, <&IK). Let (A,g)eS. Then g~lAe9 and so
g-\AK) = (g~1A)Ke<2/lK. This enables us to define 0 : S-» Tby the rule that 04, #)0 =(^K,g).

(i) Let 04,0), (B,h)eS. To show that 0 is a homomorphism it suffices to prove that
^(CAg(Bic) = (AA0JB)/C. NOW

1i4Aj)ic], by(a),
XAA B)]K = (AA gB)K,

as required. Since the idempotents of T are the elements of the form {AK, 1) = (A, 1)0
(Ae'Sf), where 1 denotes the identity of G, SB is a full inverse subsemigroup of T.

(ii) Let (A,g), (B,h)eS be such that (A,g)0 = (B,h)6. Then # = h and so, by (2.2),
9 o 0 ~1 £ a, the least group congruence on S1. Hence, since S is ZT-unitary, 0 o 0 ~1 is idempotent-
determined, by Lemma 1.7.

(iii) Suppose that each K-class of SC is lower directed. Let (AK,g)e T, where Ae<&, geG.
Then g~1{AK)ec&lK; that is, {g~1A)K.e<&lK. Hence there exists Be<V such that (g"1^,5)GK;.
Since each K-class is lower directed, there exists Ce2£ such that C^g~lA, C^B and
(C,0~1^)6K. N o w g C ^ A, since C ^ 3 - 1 /4 ; hence gCe<&, since / ie 1 ^ . Also Ce1^, since
B e ^ . Hence (gC,g)eS. Furthermore, (gC,A) = (gC,g(g~1A))eK, by (C4). Thus
(gC)K = AK and so (gC,g)6 = (Aic,g). Hence 0 is surjective.

(iv) Suppose that each K-class of 3C is lower directed and that SC is a lower semilattice.
Let A, B&3C. To show that X\K is a lower semilattice it is enough to prove that

(AAB)K = AKABK.

Clearly, {A AB)K ^ AK,BK. Let JKeX/K be such that M ^AK,BK. By (2.5), there exist
MuM2e jfl such that Mx < /4 and M2 < 5. Hence, since Ji is lower directed, there exists
M 3 e ^ such that M3 < M t and M3 ^ M2. It follows that M3 < ^ A f i and so Ji ^ (/4 A 5)K.
Thus AKABK exists and is equal to (AAB)K. |

Henceforth if (G, ST, "^) is a McAlister triple and K is a 7-congruence on ST then
(G, 3T/K, <^/K) will denote the McAlister triple formed in the manner described above.

We now describe a second method for forming new McAlister triples from a given one.
By the kernel of a McAlister triple (G, X, <Sf) we shall mean the set {geG : gA = A for all
A e X}. It will be denoted by ker (G, X, <¥). Evidently ker (G, X, <&) is a normal subgroup of
G.

The proof of the following result is straightforward and will be omitted.

LEMMA 2.9. Let (G, X, <&) be a McAlister triple and let N be a normal subgroup ofG such
that N e ker(G, X, <&). Then the mapping from G/N x X to X, defined by the rule that

(gN)A = gA (geG,AeX),

is an action of GIN on X by order automorphisms and, with respect to this action, (G/N, X, <&)
is a McAlister triple.
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Write S = P(G, X, <&), T = P(G/N, X, <&) and let 9 :S->Tbe defined by (A, g)9 = (A, gN).
Then

(i) 6 is a surjective homomorphism,
(ii) the congruence Q°Q~l on S is idempotent-separating. |

We remark that, in general, not every idempotent-separating congruence on S is of the
form 0 o 0 - 1 for some 6 defined as above.

For the remainder of the paper, if (G, 9£, <%/) is a McAlister triple and if N is a normal
subgroup contained in its kernel then {GjN, SC, W) will denote the McAlister triple defined in
Lemma 2.9.

3. Idempotent-determined congruences on P-semigroups. We now apply the foregoing
results to the problem of describing the quotient of a P-semigroup S by an idempotent-deter-
mined congruence. Since S is £-unitary, it follows from Lemma 1.7 that a congruence p
on S is idempotent-determined if and only if p = n* for some normal equivalence n on the
semilattice of S. Thus we shall examine quotients of the form S/TT*.

First we have a technical lemma.

LEMMA 3.1. Let (G, 3C, <3J) be a McAlister triple, let S = P(G, SC, <&) and let it be a
congruence on *&. Let C,De2£ have the property that, for some n, there exist elements
C0 = C,Ci,C2, ...,Cn = D in % and gug2,..., gneG such that gfii-^gfiiety and
(3iCj_i,fifiC,)eA (i = 1,...,«). Let AeSC be such that A s£ C. Then

A A Q A C2 A ... A C,

exists ( /= 1 , . . . , «). Write Mo = A,Mt = A A Q A . . . A Q . Then giMi.l,glMie<& and
(i = 1 , . . . , «).

Proof. Let 1 < i < n and suppose that we have shown that Mi_l exists. Then M(_t ^
C,_! and so g.Af,-! ^gfiCj-t. But ^ C i ^ e 1 ^ ; hence fifiM,.^^. Also giC^ty. Thus
giM^x AgtC, exists and lies in <&. It follows that Mt( = Mf_x A C() exists and that giMls

<&.
Now (giCi-1,giCi)eit and so (gTjMi-j AgiCi-1,giMi^1 Agfi^eit, since it is a congruence on
<&. Hence {giM^^giM^eii. But M ^ ! exists for i = l. Hence, taking i=\,2,...,n
successively, we obtain the result. |

THEOREM 3.2. Let (G, SC, <&) be a McAlister triple, let S = P(G, %, <&), let E denote the
semilattice ofS and let 1 denote the identity ofG. Let nbea normal equivalence on E. Then the
relation it defined on ty by

(A,B)eit o dA,l),(B,l))€7t

is a congruence on <%/. Let K denote the transitive closure of the following relation on %:

{(C,D) :gC,gD6<2/ and (gC,gD)eit for some geG}.

Then K is a T-congruence on $C and S/n* s P(G, $£\K, ^/K). Moreover, if 3C is a lower semi-
lattice then so also is 3C\K.

https://doi.org/10.1017/S0017089500002731 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002731


66 N. R. REILLY AND W. D. MUNN

Proof. Since A\-*(A, 1) is an isomorphism from <& to E, and n is a normal equivalence
on E, it is a congruence on <gf. By (T4), K is reflexive. Since K is evidently symmetric and
transitive, it is an equivalence on 9C. We now show that it is a T-congruence.

Let A, C,De3C be such that A < C and (C,D)EK. Since (C,D)eic and ^ is a congruence
on ^ there exist elements C;,*/; satisfying the hypotheses of Lemma 3.1. Thus, by the
lemma, M{, — A A C 0 A C , A . . . A C ; exists (i = 0 , . . . ,« ) ; further, giMi-l,gikfie<3/ and
(0(Mf_1,0iMI.)ert(/ = 1,...,«). Write 5 = C O AC ( A . . . A C , , . Then

B^C,D; (A,A*B)eK. (a)

Since AAB^DH follows that K satisfies (Cl).
Next we show that each K-class is convex. Let A,C,De% be such that D ^ A s% C and

(C,D)BK. From (a), there exists BeSC such that B ^ D and {A, A AB)SK. Since B^D^A
we have that AhB = B. Hence (A,B)eK. On the other hand, (a) holds with A = C. Hence
(C, C A B) e K and so, since B < C, (C, 5) e K. Combining these results, we see that {A, C) e K.
This shows that CK is convex. Thus (C2) is satisfied.

We now prove that »cn(^ x <&) = A. Clearly ft ^ Kr\{<& x S'). Accordingly, let (C, D)e
Kn(f x <&). Then there exist elements Cf.gf; satisfying the hypotheses of Lemma 3.1. Taking
A — Cm the lemma, we see that Co A C, A . . . A C; = Mt exists for / = 0 , . . . , « ; furthermore,
giMi-ugiMie

t& and {giM^ugiM^eH {i=\,...,n). Now since Mi^C0 = Ce<& it
follows that Mie<& ( / = 0 , . . . , « ) . Hence (Mj_,,firf ^ e S ( / = ! , . . . , « ) and a simple com-
putation shows that

Thus since n is a normal equivalence on E and ((g^M;-,, 1), (^;M;, 1))6TT, it follows that
((Mi. , , !) , (Mj,l))e7r. Hence (M,_,,Af,)e*. But this holds for / = 1 , . . . , / ; . Hence
(Mo, M „) e n; that is, (C, Co A C, A . . . A Cn) e it. Since Cn = Da similar argument will prove
that {D, Co A Ci A . . . A C,,) e «. Hence (C, D) e A. Thus we have shown that Kn(<& x<&)^A.
Consequently, K D ( ^ x <&) = it. Since it is a congruence on <&, K satisfies (C3).

Last, we show that K satisfies (C4). Let (C,D)EK and let heG. Then there exist
elements Co = C,CU..., Cn=D in % and gu...,gneG such that giCi-ugiCie

<5f and
(ff»C,_i,flr,C,)e«(i= 1,...,«). Write C,' = /;Cf and 3 / = 0,/T1. Then Co'= hC, Cn' =ftD.
A\sogl'Cl'.1=gfil.le<Sf, g,'^ = g,C,e<Sf and fo/C/.j.ff/COea (1 = ! , . . . , « ) . Hence
{hC,hD)sK. Thus K satisfies (C4). Hence K is a T-congruence on dC.

We note next that every K-class of 2E is lower directed. To see this, let (C, D)ei<. Then
there exists BeSC such that (a) holds for any AeSC such that A ^ C. Take /4 = C. Then

Now let us apply Lemma 2.8. First, (G, 3C\K, <WIK) is a McAlister triple. Let S =
P(G, SE, <&), T = P{G, %/K, <&JK) and define 0 : S-*Tby (A,g)0 = (AK,g). Then 0 is ahomo-
morphism. Also, 9 is surjective, since each K'-class is lower directed. Thus SlQ°0~l s T.
Moreover, QoQ'1 is idempotent-determined. Hence, by Lemma 1.7, since S is £-unitary,
OoQ'1 =n* for some normal equivalence nt on E. Now, for all A,Be<&,
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((A,\),(B,\))enl

o (A, 1)0 = (B, 1)0, since 0o0"1n(£ x E) = nu

o (A,B)€K,

o (A,B)eft, since Kr\(<& x<&) = n,
o ((^,1), (5,1))en.

Hence 7̂  = n. Consequently, S/n* = T, as required.
Finally, since each K-class of 9C is lower directed it follows from Lemma 2.8 (iv) that if 9£

is a lower semilattice then so also is %\K. |

4. Idempotent-separating congruences on P-semigroups. Let (G, 3C, <$/) be a McAlister
triple, let S = P(G, 3C, <&) and let p be an idempotent-separating congruence on S. Since
p £ tf, it follows from (2.1) that if (A,g), {B, h) eS are p-equivalent then A = B. Denote the
identity of G by 1. We shall be interested in the following two subsets of G associated with p:

Mp ={geG : ((A,g), (A, l))ep for all Ae<Sf for which (A,g)eS};
Np= {geG :((A,g), (A,l))ep for some Ae<& for which (<4,0)eS}.

Clearly, \eMp,Np. Also Mp^Nf). Furthermore, if £, r\ are idempotent-separating con-
gruences on S such that { g i | then M,. s Mn and Ni £ A',.

In the next four lemmas we obtain some further properties of these subsets. To save
repetition, we shall assume here that S — P(G, SC, <3/) as above.

LEMMA 4.1. Let p be an idempotent-separating congruence on S. Then Np is a normal
subgroup of G.

Proof. Let g,heNp. Then there exist A,Be<& such that (A,g), (B,h)eS and
((A,g), (A, l))ep, {{B,h), (B, l))ep. Since p is a congruence, {{A,g){B,hyl, {A, \){B, \)~l)ep\
that is, {{AAgh'^B^h'1), {A^B,\))ep. But p c / and so A^gh~1B = A/\B. Hence
glr1 eNp and so Np is a subgroup of G. The proof that Np is normal in G is on similar lines
and will be omitted. |

By contrast, Mp need not always be a subsemigroup of G. But the situation is simplified
when p is .E-unitary, as will now be shown.

LEMMA 4.2. Let p be an E-unitary idempotent-separating congruence on S. Then Mp = Np.

Proof. We need only show that Np S Mp. Let geNp. Then there exists A €<2/ such that
{A,g)eS and ((A,g), (A,\))ep. Let B be any element of <& such that (B,g)eS. Then
((B, \)(A,g), {B, \)(A, \))ep. Hence, {{AAB, \){B,g), (AAB, \))ep and so, since p is E-
unitary, ((B,g)2, (B,g))ep. Hence, by (1.1), there exists Ce<& such that ({B,g), (C, \))ep.
But p s & and so C = B. Thus((B,g),(B,\))ep. Thisshowsthat g eMp. Hence Np £ Mp. |

LEMMA 4.3. Let £, rj be idempotent-separating congruences on S and let n be E-unitary.
Then
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Proof. We have already noted that if £ £ n then Nt £ Nr Suppose that Nt £ Nr

By (1.2), to show that £ £ n it is enough to show that 04,IX £ (4, \)i\ for a\\Ae<&. Let Ae<S/
and let (5, gf)G(/4, IX. Then, since £ £ <?f, B = A. Hence geNf and so, by hypothesis,
geNr But, since r\ is ^-unitary, A7, = Mv by Lemma 4.2. Hence g e M , and so (5,g) =
(A,g)e(A, 1% Hence (^, IX £ 0*, 1)* I

It follows from Lemma 4.3 that if £, ?/ are £-unitary idempotent-separating congruences
on 5 then

LEMMA 4.4. Let p Z>e an idempotent-separating congruence on S. Let N be a normal
subgroup ofG such that N £ Mp. A relation K is defined on 9C by the rule that

(A,B)eic o B = nA for some neN.

Then K is a T-congruence on °£ such that icn(^ x &) =i9 and A^£ ker(G, 3C\K, <&IK). Let
T = P(GjN, SCIK, <&/K) and let 6 : S — T be defined by {A, g)0 = (AK, gN). Then

(i) 6 is a surjective homomorphism;
(ii) 0O0"1 is an E-unitary (idempotent-separating) congruence contained in p;

(iii) # , „ , - . = * .

Proof. Since N is a subgroup of G, K is an equivalence on SC. We first show that

Kn(f x <&) = xv. (a)

Let (A,B)6Kn(<& x <W). We have to show that A = B. Since (A,B)eK there exists neN
such that.B = «4. Since Be<&, (A,n~l)eS. But n'^eN^M,, and so ((A,n~l), (A, l))ep.
Hence ((nA,n),(A,l))=((A,n-1)-i,(A,iy1)ep. But p £ f̂. Hence «^ = /4; that is,

We now verify that K is a T-congruence. Let A,C,De& be such that A ^ C and
(C,Z>)6K. Then there exists neN since that D = MC. Hence nA^nC = D; also (/4,n.4)eK.
Thus (Cl) is satisfied. It is immediate from (a) that K satisfies (C3). We prove next that it
satisfies (C4). Let (A,B)EK and let geG. Then B = nA for some neN and so gB = gnA =
n'gA, for some n'eJV, since iV is normal in G. Thus (gA,gB)eic. Hence K satisfies (C4).

It remains to show that K satisfies (C2). The result will follow if we prove that no two
distinct K-equivalent elements of SE are comparable. Suppose that there exist A,Be$C such
that A< B and (A,B)ex. We show that this leads to a contradiction. Since 3C = G<&, there
exists geG such that gBe<&. Now gA < gB and so gAe<&, since <& is an ideal of 3£. But
(gA,gB)eic, since (A,B)GK and K satisfies (C4). Hence (gA,gB)eKr>(<3/ x <&) and so, by
(a), gA = gB. This conflicts with the inequality gA < gB obtained above. Hence each K-class
is (trivially) convex; that is, K satisfies (C2). We have thus shown that K is a T-congruence on
X.

By Lemma 2.8, (G, X/K, <&IK) is a McAlister triple. Let neN. Then, for all AeX,
(nA)K = AK\ that is, n(Ak) = AK. Thus N £ ker(G, X/K, <&IK). Hence, by Lemma 2.9, we
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can form the McAlister triple (G/N, X/K, 'W/K), where the action of GjN on X/K is according
to the rule that

(9N)(AK) = 9(AK) = (gA)K (geG,Ae X).

Let T = P(G/N, X\K, <&IK) and let 9 : S -> T be defined by (^, #)0 = (/4K, ^AT).
(i) Let us denote P(G, X/K, <&IK) by U. By Lemma 2.8, the mapping 9L : (A,g)>-+(AK,g)

is a homomorphism from 5 to U and, by Lemma 2.9, the mapping 92 : (Ate, g)\-*(Aic, gN) is a
homomorphism from U to 7". Now 0 = 0102 and so 0 is a homomorphism. We show further
that 0 is surjective. Let (AK,gN)eT, where , 4 e ^ , geG. Then {gN)~l{AK)e<&lK. But
(3Af)~1(^K:) = (sf"1iV)(^K:) = g"1(^K) = (3"1^)K. Hence there exists 5 e ^ such that
(B,g~1A)eK and so there exists neN such that B = ng~1A. Since 2?e^ it follows that
(Ajgn'^eS. Moreover, (A^gn'^Q = {An,gN). Thus 6 is surjective. (It is tempting to
assume that 0j : S -» £/ is surjective; but this is not always true.)

(ii) Since 0 is surjective, S/OoQ'1 s 71. But Tis ^-unitary; hence 0O0"1 is an ^-unitary
congruence. We now show that 8 o 6~x s p. By (1.2), it suffices to show that (A, 1)9 o 9~1 s
(^, l)p for all y<e<Sf. LctAeW and let (5 ,g)e5be such that (5,#)0 = (/4,1)0. Then ( ^ , 5 ) 6 K
and ^A^ = AT. Since (A, B) e Kn(<& x <Sf) it follows from (a) that A = 5. Thus (5, gf) = (^, g).
Also, geNsMp; hence (^ ,^)e(^ , l)p. Thus (,4,1J0O0"1 c (^, \)p. Consequently
0 o 0 - 1 c p. Since p is idempotent-separating, so also is 8°9~i.

(iii) Let geN9oe.i. Then there exists ^ e ^ such that (A,g)eS and (/4,3)0 = (A, 1)9.
Thus gN=Nand so geN. Hence A ^ - i £ JV. Conversely, let geN. Then, by (T5), there
exists Ae<& such that g~lAe<&. Thus ( ^ , 3 ) e 5 and (A,g)9 = (Aic,gN) = (/iK.AO = (A, 1)9,
which shows that geNBog-i. Hence JVs Ngoe-i. |

As a consequence of these lemmas, we have

THEOREM 4.5. Let (G, %, <&) be a McAlister triple, let S = P(G, $£, <&) and let p be an E-
unitary idempotent-separating congruence on S. A relation K is defined on % by the rule that

(A,B)eK o B = nA for some neNp.

Then K is a T-congruence on ST such that Kr\C& x <&) = i9 and Np £ ker (G, 9C\K, <&\K). Further,
S/p S P(GINP, XIK, 9/K).

Proof. Since p is £-unitary, Mp = Np, by Lemma 4.2. Let us take N = Np in Lemma 4.4.
Then K is a T-congruence on 9C, Kn( f x $0 = i9 and• A^ s ker(C?, X/K, W/K). NOW define 9
as in Lemma 4.4. Since 8 is a surjective homomorphism, S/0O0"1 ^P(G/Np, X/K, <&\K).

Also, A^e-i = #,,. Hence, by Lemma 4.3, 9°8~l = p. |

5. An application. In this section we apply the results of the previous two sections to
obtain a proof of McAlister's Theorems A and B stated in §2.

First, we have the following lemma, which combines the results of Theorems 3.2 and 4.5.

LEMMA 5.1. Let S be a P-semigroup and let p be a congruence on S. Then there exists a
P-semigroup T such that T is isomorphic to a quotient of S by an idempotent-determined con-
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gruence and S/p = J /T , where % is an idempotent-separating congruence on T. Furthermore,
if p is E-unitary then Sjp is isomorphic to a P-semigroup.

Proof. Let S = P(G, #", <&) for some McAlister triple (G, %, <&). Write n = pn(E x E),
where E denotes the semilattice of S. Then n is a normal equivalence on E and Sjp =
(S/n*)l(pln*). But n* is an idempotent-determined congruence on S and S/n* is isomorphic
to a P-semigroup T, say, by Theorem 3.2. Also pjn* is idempotent-separating. Hence
Sjp = Tjx, for some idempotent-separating congruence T on T. Now suppose, in addition,
that p is ^-unitary. Then T is is-unitary and so T/z is isomorphic to a P-semigroup, by
Theorem 4.5. |

Next, we review some properties of free inverse semigroups. The structure of such semi-
groups was determined by Scheiblich [18, 19]; different approaches have been given, in-
dependently, by Munn [10, 11] and Preston [14].

Let Z be a nonempty set and let G = ^^z, the free group on Z. Following Scheiblich,
we define a partial ordering < of G by the rule that, for all a, b e G, a < b if and only if, when
a and b are written in reduced form, a is an initial segment of b. The identity of G will be
denoted by 1 and we make the convention that \^a for all aeG. For aeG we write
a = {xeG: x ^a} and for A ^ G we write A = \Ja. It is easily verified that a subset A of G

aeA_

which contains 1 is convex under ^ if and only if A = A.
We now describe Scheiblich's construction for the free inverse semigroup on Z. Let %/

denote the set of all finite convex subsets of G containing 1 and at least one other element.
Write

F={(A,g)e<W xG:geA}.

For geG and any nonempty subset B of A let gB denote {gb : beB). It can be shown that if
(A,g), (B,h)eF then AvgBety. Hence we can define a multiplication on Fby the rule:

Under this multiplication F is the free inverse semigroup !FJz on Z [18,19].
A subset M of an inverse semigroup S is termed a set of generators of S if and only if

every element of S can be expressed as a product of elements of the form xc (x e M, s e {1, -1}) .
Let K = {kz : zeZ}, where kz = ({1, z}, z). Then it can be shown that K generates F. More-
over, if (f> is an arbitrary mapping from K to an inverse semigroup S then <j> can be extended
uniquely to a homomorphism from F to 5 (and this is surjective if K(j) generates S). We
express this condition by saying that K generates F freely. Free generators of free inverse
semigroups have been studied by Reilly [15].

McAlister and McFadden [7] observed that F can be expressed as a P-semigroup. We
outline a proof. First, let us write

%•= {gA :geG,Ae<2/}.

This is a subset of the power set of G and we define a partial ordering < of it by the rule:
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Next, we note that the mapping (g, C)t—*gC is an action of G on 9C by order automorphisms.
It can then be shown that (G, SC, <W) is a McAlister triple and that

g-lAe<& o geA (geG, Ae<W). (*)

Let S = P(G, SC, <&). In view of (*) the elements of S coincide with those of F. Furthermore, the
multiplication of elements of S agrees with that in F. Thus the semigroups Sand Fare identical.

Let T denote the least group congruence on F. Then, from (T5) and (2.2), F/x s G s
. S ^ z . Moreover, with K as above, Kxb = {kzx : zeZ} isasetoffree generators of Fix.

Evidently, Fdoes not have an identity. In fact, <& (which is isomorphic to the semilattice
of F) has 21Z | maximal elements if Z is finite (| Z | if Z is infinite). These are the elements
{l,z} and {ljZ"1} (zeZ). A straightforward argument, making use of (2.2) and (2.3), shows
that F1 is an F-inverse semigroup. From this it can be deduced (McAlister, unpublished) that
?£ is a lower semilattice. Alternatively, for this last result we may proceed directly as follows.
Consider two typical elements gA,liBe2P (g,heG ; A,Be<&). Suppose that, in reduced form,
g = kgu h = khi; where g^Jh n a v e n o common initial segment except 1. Then it may be
checked that gA<ohBukgxu/r^\ is the greatest lower bound of gA and gB in SC.

Using the fact that a free inverse semigroup can be expressed as a P-semigroup we now
derive McAlister's Theorems A and B.

THEOREM 5.2 (McAlister). Let S be an inverse semigroup.

(i) There exists a P-semigroup T and an idempotent-separating congruence x on T such
that S £ T/x.

(ii) If S is E-unitary then S is isomorphic to a P-semigroup.

Proof. Let M be a set of generators of S, let Z be a set of the same cardinal as M and
let F = SFJZ. Then there exists a surjective homomorphism 0 :F-*S. Thus 5 s F/0 o 0 ~1.
But F can be expressed as a P-semigroup. The result now follows immediately from Lemma
5 . 1 . |

By a quasi-free inverse semigroup we shall mean a semigroup which is isomorphic to a
quotient of a free inverse semigroup by an idempotent-determined congruence. We end this
section with a theorem concerning such semigroups.

THEOREM 5.3. (i) Every inverse semigroup is isomorphic to the quotient of a quasi-free
inverse semigroup by an idempotent-separating congruence.

(ii) Let S be a quasi-free inverse semigroup. Then there exists a McAlister triple
(G, T, <&'), where G is a free group and T is a lower semilattice, such that S s P(G, SC', <&').
Moreover, S1 is an F-inverse semigroup.

(iii) Let S be an inverse semigroup with least group congruence a. Then S is quasi-free if
and only if (a.) Sfo is a free group and (b) S has a set M of generators such that o§ | M is injective
and Mak generates Sja freely.

Proof, (i) This follows from Lemma 5.1 in the same way as does Theorem 5.2 (i).
(ii) Suppose, without loss of generality, that S = Fjp, where F is a free inverse semigroup

and p is an idempotent-determined congruence on F. Now F = P(G, 3C, $/) for some McAlister
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triple (G, X, <&), with G a free group and X a lower semilattice. Hence, by Theorem 3.2, there
exists a T-congruence K o n i such that F\p s P(G, X', <&'), where X' = X\K and <&' = <&/K;
further, since X is a lower semilattice, so also is #"'. Moreover, F 1 is an F-inverse semigroup
and so, by Lemma 1.7, S1 is an F-inverse semigroup.

(iii) Suppose that S is quasi-free. We shall assume that S = Fjp, where F = 3FJZ for
some Z and p is an idempotent-determined congruence on F. Let kz denote ({l,z},z) for all
z e Z and let K= {k2 : zeZ}. Write M = £/rt = {fczp : z e Z } . Then M generates S, since
/T generates F. Let x denote the least group congruence on F. Then, by Lemma 1.7, p £ x
and so, by (1.5), xjp = a, the least group congruence on S. Now there exists a McAlister
triple (G, X, 9), with G = ^ z , such that F = P(G, X, <&). Also, for all (A, g), (B, h)eF,

(A,g)pob={B,h)pob o ((A,g)p,(B,h)p)eo
<* ((A,g),(B,h))ex
o g=h, by (2.2).

Hence we can define an injective mapping 6 : G -> 5/<r by the rule that gd = (^, 3)pa'i for some
(any) Ae<3/ such that (A,g)eF. Clearly 0 is also a surjective homomorphism and so an
isomorphism. Thus S/c is free. Also, since z0 = k^pab for all z e Z and 0 is injective, it
follows that 0*1 \M is injective. Further, ZQ = Ma^. Hence, since Z generates G freely, Mcfo
generates S\a freely.

Conversely, suppose that (a) S\a is free and (b) S has a set M of generators such that a\ \M

is injective and Ma^ generates 5/<r freely. Choose a set Z of the same cardinal as M and let
^ : Z -> M be a bijection. Write F = 3FJZ and let £:2(z e Z), AT be defined as before. Then K
generates F and the bijection kz\-*z<t> from K to M can be extended to a (unique) homo-
morphism 0 :F-*S. Since M generates S it follows that 9 is surjective. Thus S^F/Qod'1.
Let T denote the least group congruence on F. By Lemma 1.7, to show that S is quasi-free it
suffices to prove that OoO'1 c T.

Since 0crt| is a homomorphism from F to S/a and T is the least group congruence on F,
there exists a surjective homomorphism i]/ : F/T -+ S/u such that dob = rtli/'. Now 61K is a
bijection from if to M and, by hypothesis, <s\ \ M is a bijection from M t o Mob. Thus T ^ | K is
a bijection from K to Mob. But T*! | K is a bijection from K to ATrtt, by (2.2). Hence ty induces
a bijection from Kxb to Mtrli. But F/T is a free group, freely generated by Kxb; also, by
hypothesis, S/o is a free group, freely generated by Mob. Hence i/f must be an isomorphism.
Consequently,

0O0"1 c (ecr^o^aH)-1 = ( T ^ ) O ( T ^ ) - 1 = tH O(TH)"1 = T,

and so S is quasi-free. |

REMARK. It is possible to construct a McAlister triple whose middle component is not a
lower semilattice. Let (G', X', <Sf) be one such and let S = P{G', X', <ST). By Theorem 5.3 (i)
and (ii), S s T\x, where T = P(G, X, ¥) for some McAlister triple (G, X, <&) in which ^ is a
lower semilattice, and where x is an idempotent-separating congruence on T. Then, by
Theorem 4.5 and the isomorphism theorem, there exists a T-congruence K o n f such that X'
is order isomorphic to XJK. Hence, in this case, K is not a semilattice congruence on X.
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6. The lattice of E-unitary congruences. We conclude with a brief discussion of pro-
perties of the set of all ^-unitary congruences on an arbitrary inverse semigroup.

THEOREM 6.1. Let S be an inverse semigroup with semilattice E and least group congruence
a. Let A(S) denote the lattice of congruences on S and let A* denote the subset ofA(S) consisting
of all E-unitary congruences.

(i) A* is a complete lattice with respect to inclusion.
(ii) The least element X of A* is contained in a and {peA(S) : Xs p ^ <r} is a complete

sublattice of A*.
(iii) If a, fie A* are such that «SjJ and«n(E x E) = fin(E x E) then {y e A* : a £ y £ 0}

is a complete modular sublattice of A*.

Proof, (i) We first note that S x Se A*. Let (pf)i6/ be a nonempty family of elements of
A* and let p denote f] px. We show that peA*. Let a, b eS be such that (ab,b)ep and

iel

(b,b2)ep. Then, for all iel, (ab,b)ept and (b,b2)eph from which it follows that (a,a2)ept.
Hence (a,a2)ep and so pe A*. Thus (/>;)/6/ has a greatest lower bound in A*, namely p. Now,
since A* has a greatest element, the subset {teA* : T 2 pt for all iel} is nonempty and the
intersection p of all its members is again in A*. Hence (p()i6/ has a least upper bound in A*,
namely p. We have thus shown that A* is a complete lattice with respect to inclusion (and
also a complete lower subsemilattice of A(S)). In particular, as noted by O'Carroll [12,
Theorem 5], A* has a least element X.

. (ii) Every group congruence on S lies in A* and so X £ a. Write M= {peA(S) :
X £ p £ a}. Evidently M is a complete sublattice of A(5). We show that M £ A*. Let
peM. Then p/X^o/X. But ajX is the least group congruence on S/X, by (1.5). Hence, by
Lemma 1.7, p\X is an ^-unitary congruence on S/X. Now S/p s {SjX)HjplX). Hence S/p is
is-unitary and so peA*. Thus Af£ A*. Since M is a complete sublattice of A(S) it must
therefore also be a complete sublattice of A*. (It is easy to see that M is isomorphic to the
lattice of all idempotent-determined congruences on S/X.)

(iii) Let a,/?eA* be such that a = ft and an(£ x E) = Pr\(E x E). We apply the results
of §4 to the £-unitary inverse semigroup S/ct. By Theorem 5.2 (ii), we may, without loss of
generality, take S/u = P(G, 2C, <&) for some McAlister triple (G, 3C, <&). For any idempotent-
separating congruence f on 5/a let subsets M(, N^ of G be defined as in §4. In particular, by
Lemma 4.1, Ni is a normal subgroup of G and, by Lemma 4.2, if £ is .E-unitary then Af4 = iV4.
Write p = P/a. Then p is an .E-unitary idempotent-separating congruence on S/cc. Now
y\-*y/a, is an order isomorphism from {yeA* : a £ y £ 0} to the set Fp of all ^-unitary
(idempotent-separating) congruences on S/a contained in p. Let Sp denote the set of all
normal subgroups of G contained in Mp. Since p is 2s-unitary, Mp is a normal subgroup of G
and so Ep is a complete modular lattice with respect to inclusion. Now consider the mapping
(j) : Tp -+ Sp defined by £4> = ^ - By Lemma 4.4 (iii), 0 is surjective and so, by Lemma 4.3, 0
is an order isomorphism. |

The following example shows that A* need not be a sublattice of A(S). Let G be a non-
trivial group and let H denote the direct product G x G. Take S to be the semilattice of groups
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GuH, with H as least ideal and multiplication determined by the structure homomorphism
<t> : G -> H defined by g<j> = (g,g) [1, Theorem 4.1 ]]. It is easily seen that 5 is an E-unitary
inverse semigroup and that the relations

are £-unitary idempotent-separating congruences on S. Let pv v p2 denote the join of p t and
p2 in A(S). Then ptv p2 = (H x / / )u / s . Hence S/(px v/>2) = C° and so, since G is non-
trivial, Pi v p2 is not £-unitary. Thus, in this case, A* is not a sublattice of A(S).

Now let us again assume the hypotheses of Theorem 6.1, with S an arbitrary inverse semi-
group. Let n be a normal equivalence on £ and let Xvn* denote the join of A and n* in A(5).
Since 1 £ X v TT* £ er it follows from part (ii) of the theorem that X v n* e A*. From this we
deduce that, for any 0-class 0 of A(S) (see (1.3)),

0nA* ^ 0 o A0 < 0 ,

where ^ denotes the partial ordering of the quotient lattice A(5)/0.
Finally, suppose that in part (iii) of the theorem we no longer assume that /? is Zs-unitary.

Then, with the notation of the proof, we again have an order isomorphism from {yeA* :
a £ ) i c ^ t o Sp, the set of normal subgroups of G contained in Mp and ordered by inclusion;
however, Mp need no longer be a subgroup of G. A straightforward application of Zorn's
lemma shows that {ye A* : a s y c f l has a maximal element and that every element of this
set is contained in a maximal element. These remarks apply, in particular, to the case in
which p{ = J?/a) is the greatest idempotent-separating congruence on S/a.
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