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By an E-unitary inverse semigroup we mean an inverse semigroup in which the semilattice
is a unitary subset. Such semigroups, elsewhere called “proper” or “reduced” inverse semi-
groups, have been the object of much recent study. Free inverse semigroups form a subclass
of particular interest.

An important structure theorem for E-unitary inverse semigroups has been obtained by
McAlister [4, §). From a triple (G, ¥, %) consisting of a group G, a partially ordered set I
and a subset % of &, satisfying certain conditions, he constructs an E-unitary inverse semi-
group P(G, Z, #%). A semigroup of this type is called a P-semigroup. The structure theorem
states that every E-unitary inverse semigroup is, to within isomorphism, of this form. A
second theorem asserts that every inverse semigroup is isomorphic to a quotient of a P-
semigroup by an idempotent-separating congruence. We refer below to these results as
McAlister’s Theorems A and B respectively. A triple (G, Z, %) of the type used to construct
a P-semigroup is here termed a “McAlister triple”. It is shown further, in [5], that there is
essentially only one such triple corresponding to a given E-unitary inverse semigroup.

A congruence p on an inverse semigroup S is called an E-unitary congruence if and only if
S/p is an E-unitary inverse semigroup. The main purpose of this paper is to provide some
results on such congruences.

In §1, we give an account of some basic properties of congruences on inverse semigroups,
with the emphasis on group congruences, idempotent-separating congruences and idempotent-
determined congruences (defined in [2]; see below). Itis noted that an idempotent-determined
congruence on an E-unitary inverse semigroup is necessarily E-unitary. In §2, properties of
P-semigroups are reviewed and, for a McAlister triple (G, %', %), we introduce and examine
two further concepts: T-congruences on & and the kernel of (G, &, %¥).

Idempotent-determined congruences and idempotent-separating congruences on P-
semigroups are investigated in §3 and §4 respectively, with the techniques developed in §2.
In particular, it is shown in Theorem 3.2 that every quotiént of a P-semigroup by an idempotent-
determined congruence is isomorphic to a P-semigroup, the McAlister triple for the quotient
being derived explicitly from that of the given P-semigroup. Theorem 4.5 provides a
similar result for the quotient of a P-semigroup by an E-unitary idempotent-separating
congruence.

These results are applied in §5 to the case of a free inverse semigroup to yield a new proof
of McAlister’s Theorems A and B. We also define the notion of a quasi-free inverse semigroup
and establish some basic properties of such a system.

The final section, §6, is devoted to a brief study of the set A* of all E-unitary congruences
on an arbitrary inverse semigroup S. It is shown that A* is a complete lattice with respect to
inclusion, but not, in general, a sublattice of the lattice A(S) of all congruences on S. Certain
sublattices of A*, and the relationship between A* and the 6-classes of A(S) (in the sense of
[17)) are also discussed.

E
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1. Preliminaries. Throughout the paper the basic terminology and notation will be that
of [1):

We begin with some remarks on sets. Let X be a nonempty set. The identity relation on
X will be denoted by 1. For any equivalence p on X the p-class containing xe X will be
denoted by xp and the natural mapping x+— xp from X to X/p by ph. If p, t are equivalences
on X such that p € 7 then t/p will denote the equivalence on X/p defined by the rule that
(xp, yp)et/p if and only if (x,y)eT.

Now suppose that < is a partial ordering of X. We say that X is lower directed if and
only if, for all x, y € X, there exists ze X such that z < x and z < y. By a convex subset of X we
mean a subset Y such that, for all y;,y,€ Y and all xe X,y, € x € y, implies xe Y. A non-
empty subset Y of X is called an ideal of X if and only if, for all xeX and all yeY,x<y
implies xe Y. We call X a lower semilattice if and only if every pair of elements of X has a
greatest lower bound with respect to the partial ordering. As is customary, we shall some-
times regard a lower semilattice as a commutative semigroup of idempotents in which the
product of two elements is their greatest lower bound; conversely a commutative semigroup S
of idempotents is a lower semilattice with respect to the partial ordering < defined by the rule
that x < y if and only if xy = x (x,y€S). In §2 we shall be concerned with a partially ordered
set & containing an ideal &/ which is also a lower semilattice under the partial ordering of 4.

We now review some elementary properties of congruences on inverse semigroups.
Where no other reference is given, proofs may be found in [1, Chapter 7). Let S be an inverse
semigroup with semilattice E. The set of all congruences on S forms a complete lattice with
respect to partial ordering by inclusion: it will be denoted by A(S). Let pe A(S). Then, for
all ae S,

(a,a>)ep=(a,e)ep forsome eekE, (1.1)

from which it follows that the quotient semigroup S/p is again an inverse semigroup. Also,
for all a,be S,
(a,byep=(a"t, b~ Hep.
Now let Te A(S). Then
' pSt <= epc<etr forall eekF. (1.2)

This shows, in particular, that p = 7 if and only if ep = et forallecE. If pc=tthent/pisa
congruence on S/p. :

By a normal equivalence on E we shall mean an equivalence n satisfying the following
conditions ([17)):

() (e.f)en=>(eg,fg)en forall geE,
(i) (e,f)en=(xex™ !, xfx en forall xeS.

It is easily seen that if pe A(S) then pn(E x E) is a normal equivalence on E. Furthermore,
the relation 0 defined on A(S) by

(p1,p2)€0 <> py(E x E) = p2n(E x E) (1.3)

is a congruence on the lattice A(S) and each 6-class is a complete modular sublattice of A(S)
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[17, Theorem 5.1]. Now suppose that 7 is any normal equivalence on E. Then
{peN(S) : pn(E x E) ==}

is nonempty [17, Theorem 4.2] and so forms a #-class of A(S). In particular this set has a
greatest and a least element. The least element is the congruence on S generated by n (viewed
as a relation on S) and it will be denoted by n*. We note that, forall pe A(S), [pn(E x E))*c<p.

Several special types of congruence on S will be central to our discussion. First, we call
peA(S) a group congruence if and only if Sfp is a group. As shown in [8, Theorem 1}, §
possesses a least group congruence o and this has the following characterisation:

(a,b)ed < ea=eb forsome eek. (1.4)

Since Sfa is a group, E x E < g; that is, £ is contained in a single g-class. In general, £ will
not itself be a o-class, but we shall be concerned with the case in which it is (see Lemma 1.6
below). It is readily verified that if pe A(S) is such that p < o, and if o, denotes the least
group congruence on S/p, then

gy =alp. (1.5)
The relation < defined on S by the rule that
a<b < a=eb forsome eecFE

is a partial ordering of S (called the natural partial ordering) [1, Chapter 7]. From (1.4), it
can be seen that, under <, each o-class of S is lower directed.

Second, we call pe A(S) an idempotent-separating congruence if and only if each p-class
contains at most one idempotent. A congruence p on S is idempotent-separating if and only
if p = o#. Consequently, there exists a greatest idempotent-separating congruence u on S,
namely the greatest congruence contained in 3#. Howie [3] has provided a simple character-
isation of p. It can readily be shown that if p, e A(S) are such that p < 7 and pn(E X E) =
tn(E x E)then 1/p is an idempotent-separating congruence on S/p. In particular, if pe A(S)
and if n denotes pn(E x E) then n* < p (as remarked above) and p/n* is an idempotent-
separating congruence on S/n*.

Third, we call pe A(S) an idempotent-determined congruence on S if and only if each p-
class that contains an idempotent consists entirely of idempotents. Such congruences have
been studied by D. G. Green [2].

A subset A4 of S is termed left unitary if and only if, for all ae A and all xeS, axeA
implies xe A. Right unitary subsets are defined dually. By a wnitary subset of S we mean a
subset that is both left and right unitary. Suppose that the semilattice £ of S is left unitary.
Then it is also right unitary; for if ee E and xe S arc such that xee E then ex™! = (xe) '€ E
and so x~'€E, which implies that xe E. This establishes the equivalence of conditions (i)
and (ii) of the lemma below. Conditions (ii) and (iii) are clearly equivalent and the equivalence
of (iif), (iv) and (v) has been noted elsewhere (for example, see [S, Proposition 1.1]).

LemMa 1.6.  The following conditions on an inverse semigroup S, with semilattice E and

least group congruence o, are equivalent:
E2
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() E is unitary in S;
(ii) E is left unitary in S;
(iii) if e,ae S are such that ea = e = e* then a = a*;
(iv) E is a g-class of S;
™) Zno =151

An inverse semigroup S whose semilattice is unitary in § will be called an E-unitary
inverse semigroup. In what follows we shall use, without comment, some of the other
characterisations of such semigroups provided by Lemma 1.6. E-unitary inverse semigroups
have been studied by Saité [20], McAlister [4, 5], O’Carroll [12, 13], Reilly |16] and others.
Saitd and McAlister call them “proper inverse semigroups”, while O’Carroll refers to them as
“reduced inverse semigroups’”. The term “E-unitary” was suggested by A. H. Clifford.

By an F-inverse semigroup, McFadden and O’Carroll [7] mean an inverse semigroup S,
with least group congruence o, such that each g-class has a greatest element under the natural
partial ordering of S. It is readily checked that every F-inverse semigroup is E-unitary. The
class of E-unitary inverse semigroups also contains that of free inverse semigroups (see §5).

We now introduce a fourth type of congruence on an inverse semigroup S. A congruence
pon S will be termed E-unitary if and only if S/p is E-unitary. This paper is largely devoted to
a study of such congruences.

The next lemma exhibits relationships between some of the concepts discussed above.

LeMMA 1.7. Let p be a congruence on an E-unitary inverse semigroup S with semilattice E
and least group congruence 6. The following conditions on p are equivalent:

() p is idempotent-determined;
(ii) p = n* for some normal equivalence n on E;
(i) p< 0.

Now suppose that p satisfies these conditions. Then p is E-unitary. Moreover, if S is an
F-inverse semigroup then so also is (S/p)*.

Proof. (i) implies (ii). Let p be idempotent-determined. Write # = pn(E x E). Then
7 is a normal equivalence on E and n* < p. We show that p = n*. By (1.2) it suffices to show
that, for all ecE, ep c en*. Let ecE and let acep. Then a€kE, since p is idempotent-
determined, and so (a,e)epN(E x E) =n S n*. Thus acen*, which shows that ep < en*.
It follows that p = n*.

(ii) implies (iii). Let p = n*, where 7 is a normal equivalence on E. Since E X E < o we
have that (pno)N(E x E) = pn(E x E) = 7 and so, since p = n*, p € pno. Hence p = pna;
that is, p S o.

(ii1) implies (). Let p = . Suppose that (a,e)€p, where ee E. Then (a,e) € and so, by
(1.4), there exists fe E such that fa = fe. Hence (ef) = (ef)a. Therefore, since S is E-unitary,
acE. Thus p is idempotent-determined.

It follows that (i), (ii), (iii) are equivalent. (The hypothesis that S is E-unitary was used
only to show that (iii) implies (i).)

Now suppose that p satisfies (i), (ii) and (iii). We show that S/p is E-unitary. Let
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f,beS/p be such that 2 = fand (fb)? = fb. By (1.1), there exist e, g € E such that ep = f'and
gp =jfb. Let aeS be such that ap =b. Then (ea,g)ep. But p is idempotent-determined.
Hence eac E and so a€E, since S is E-unitary. Thus b? = 5. Therefore S/p is F-unitary.

Finally, suppose also that S' is an F-inverse semigroup. We may assume that S # E.
Let ¢!, o,, 6! denote the least group congruences on S*, S/p, (S/p)! respectively. Since S/p
is E-unitary, the ol-class of (S/p)' containing the idempotents of S/p consists entirely of
idempotents and so has a greatest element, namely the identity. Now let ae S\E. We show
that the g}-class of (S/p)! containing ap has a greatest element. First we note that this class
coincides with the ¢,-class of S/p containing ap; for ap contains no idempotent of S and so,
by (1.1), cannot be an idempotent of S/p. But S' is an F-inverse semigroup. Hence, since
a¢E, ac' = ac and so there exists me S such that (i) (@, m) e and (ii) b < m for all be S such
that (a,b)ea. But p < ¢ and so, from (1.5), 6, = o/p. Hence (ap,mp)ea,; also, forall be S
such that (ap, bp)e o, we have that b < m and therefore that bp < mp. This shows that the
o,-class of S/p containing ap has a greatest element, namely mp. Thus (S/p)! is an F-inverse
semigroup. ||

2. P-semigroups. In studying E-unitary inverse semigroups, McAlister [4] introduced
the important concept of a P-semigroup. For completeness, we start this section by recalling
the definition of such a semigroup and some of its properties.

By a McAlister triple we shall mean a triple (G, &', %) consisting of a group G, a partially
ordered set (%, <) and a nonempty subset % of Z satisfying the following conditions:

(T1) & is lower directed;

(T2) % is an ideal of & and a lower semilattice under <;

(T3) there exists an action (g, A)— gA of G on & by order automorphisms;

(T4) & = G%.

It can be shown that if (G, &', #) is a McAlister triple then it also satisfies a further condition:

(T5) for all geG there exists 4e% such that g4e%.

Conversely, any triple (G, &, %) consisting of a group G, a partially ordered set Z and a
nonempty subset % of & satisfying (T2), (T3), (T4) and (T5) must necessarily satisfy (T1) and
is therefore a McAlister triple.

Let (G, &, %) be a McAlister triple. The greatest lower bound of 4, BeZ, if such an
element exists, will be denoted by A AB. From (T2) it follows that, for all A,Be®, AAB
exists. Accordingly, we call % a “lower subsemilattice” of &. It is a consequence of (T3)
that if 4 and B are elements of 4 such that 4 A B exists then, for any geG, gA4 A gB exists and
is equal to g(4 A B).

Now let us write

S={(4,9)e¥ xG:9g '4e%}.

It is straightforward to verify that if (4,g), (B,h)eS then (i) A AgB exists and lies in ¥,
(ii) (gh)" (A AgB)e®. Thus we can define a multiplication in S by the rule that

(A,9)(B,h) = (AAgB,gh).

Under this'multiplication, S is an E-unitary inverse semigroup [4, §1]. We denote S by
P(G, &, %). Any semigroup constructed in this way is called a P-semigroup.
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Some elementary and easily established facts about S = P(G, &, %) should be noted.
Let E denote the semilattice of S and let 1 denote the identity of G. Then E = {(4,1) :
Ae%} and this is order isomorphic to #. Also, (4,9) ' =(g97"'4,¢7") for all (4,g)€S.
Green’s equivalences are readily characterised; in particular,

(4,9), (B,h))e # <> A=B and g 'A=h"'B. Q.10
Now let o denote the least group congruence on S. Then
(4,9), (B,h))eo <= g=1h. (2.2)
Moreover, the natural partial ordering of S is given by
(4,9) <(B,h) < A<B and g=h 2.3)

The importance of P-semigroups stems from the following theorems due to McAlister
[5, Theorem 2.6; 4, Corollary 2.5].

(A) Every E-unitary inverse semigroup is isomorphic to a P-semigroup.
(B) Every inverse semigroup is isomorphic to the quotient of a P-semigroup by an
idempotent-separating congruence.

In §5 we shall obtain proofs of both theorems by applying our results on E-unitary con-
gruences to the case of free inverse semigroups.

McAlister [S, Theorem 2.8] has also shown that S = P(G, &, %) is an F-inverse semigroup
if and only if & is a lower semilattice and # has a greatest element.

To conclude our survey of basic properties of P-semigroups we restate the isomorphism
theorem [5, Theorem 1.3]. Let (G, &, %), (G', Z', #") be McAlister triples and let S, S’ denote
the corresponding P-semigroups. Then S =~ S’ if and only if there exists an isomorphism
f : G— G’ and an order isomorphism ¢ : & —» 2" such that (i) ¥¢ =%’ and (ii) (gA)¢ =
(90)(A¢) for all ge G and all 4eZ.

The remainder of this section is devoted to an analysis of certain types of congruences on
P-semigroups. This will be continued in §3 and §4.

We start with a definition. Let (G, &', %) be a McAlister triple. By a T-congruence on
Z we shall mean an equivalence x on & satisfying the following conditions:

(C1) if A,C,DeX are such that 4 < C and (C, D)ek then there exists BeZ such that
B< Dand (4, B)ex;

(C2) each x-class is convex;

(C3) k(% x %) is a congruence on ¥ ;

(C4) if A, Be X are such that (4, B)ex then, for all geG, (g4, gB)e«k.

Let x be a T-congruence on . We define a relation < on &'/k by the rule that, for of, Ze %[k,
o < B« A< Bforsome Ae o/, Be 4. 24)
From (C1) it follows that

& < B« for all Be# there exists A€o such that 4 < B. 2.5)
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The relation < on &'k is clearly reflexive. From (2.5) and (C2) we see that it is antisymmetric
and from (2.5) we see that it is transitive. Thus < is a partial ordering of Z/k. We now
define a subset #/x of &'[x by writing

Yk = {Ax : Ae¥}. (2.6)
Also, by (C4), we can define a mapping from G x &'/ to &/x by the rule that
g(4x) = (gA)x (9geG,AeX). .7

It follows, again from (C4), that if 4, Be& are such that Ax < Bk then, for all geG,
g(4x) € g(Bk). From this we see easily that the mapping defined by (2.7) is an action of G
on %[k by order automorphisms.

As in [9] we say that an inverse subsemigroup U of an inverse semigroup T is full if and
only if U contains all the idempotents of 7. Then we have

LemmA 2.8. Let (G, &, %) be a McAlister triple and let k be a T-congruence on ¥. Let
Z [k be partially ordered by (2.4), let ¥ [k be defined by (2.6) and let G act on Z [k according to
(2.7). Then (G, Z|x, ¥[x) is a McAlister triple.

Write S=P(G, %, %), T=P(G,Z|x,¥[x) and let 0 : S— T be defined by (A4,9)0 =
(Ax,g). Then

(i) 0 is a homomorphism and S8 is a full inverse subsemigroup of T,
(ii) the congruence 000~ on S is idempotent-determined;
(iii) if each x-class of & is lower directed then 0 is surjective;
(iv) if each k-class of & is lower directed and & is a lower semilattice then &/« is a lower
semilattice.

Proof. We first verify that (G, [k, #/x) satisfies conditions (T1), (T2), (T3), (T4).

Since & is lower directed, so also is &/x; thus (T1) holds.

Now consider the subset #/x of &/x. Let €X'k, Be¥/x and suppose that & < &.
Let BeBn%. Then, by (2.5), there exists Ae.s/ such that 4 < B. Since % is an ideal of
Z,Ae¥ and so L e¥[x. Thus ¥/ is an ideal of Z'/k. We now show that #/k is a lower
subsemilattice of Z'fx. It will be enough to show that

(CAD=CrkaDx (C,De%). (@)

Let C,De%. First, we note that (C A D)k € Ck, Dk. Now suppose that . € 2/« is such that
A < Ck,Dk. We prove that 4 < (Ca D). By (2.5), there exist M,, M, e .# such that
M, < Cand M, < D. Since % is anideal of 2, M, and M, liein%. Hence M; AM, < CAD.
But (M, M;)ek and so, by (C3), (M, AM,,M;)ex. Hence M = Mxk=(M;AMk<
(CAD)x. Thus (a) holds. This shows that #/k is a lower subsemilattice of &'/x. Hence
(T2) holds.

Equation (2.7) defines an action of G on & [k by order automorphisms, as already noted;
thus (T3) holds. Finally, we show that &/k = G(%/x). Let Ae%. Then there exist Be %
and geG such that A = gB. Hence Ax = (gB)x = g(Bx). Thus (T4) holds. Consequently,
(G, [x, ¥[x) is a McAlister triple.
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Now let S=P(G, ¥, %), T = P(G, ¥/, ¥[x). Let (4,9)eS. Then g~'Ae and so
g~ 1(Ax) = (g 'A)xe¥/x. Thisenables us to define 6 : S — T by the rule that (4, g)0 =(4x, g).

(i) Let (4,9), (B,h)eS. To show that 8 is a homomorphism it suffices to prove that
Ak A g(Bx) = (A AgB)x. Now

Ax A g(BK) = g[g~(Ak) A Bx]
= gl(g ™ A)x A Bk]
=gl(g™'4 A B)x], by (),
=[g(g™ "4 A B)lk = (A A gB)x,

as required. Since the idempotents of T are the elements of the form (A4x,1) = (4,1)0
(Ae®), where 1 denotes the identity of G, S8 is a full inverse subsemigroup of 7.

(ii) Let (4,9), (B,h)e S be such that (4,9)8 = (B,h)f. Then g =h and so, by (2.2),
006~ ! < g, the least group congruence on S. Hence, since S is E-unitary, 806~ ! isidempotent-
determined, by Lemma 1.7.

(iii) Suppose that each k-class of & is lower directed. Let (dx,g)e T, where A%, geG.
Then g ~*(Ak)e%¥/k; thatis, (9 *A)ke®¥/[k. Hence there exists Be¥ such that (¢~'4, B)ex.
Since each x-class is lower directed, there exists Ce% such that C< g~ !4, C< B and
(C,g *A)ex. Now gC < A, since C< g 'A4; hence gCe%, since Ae¥. Also Ce%, since
Be®. Hence (gC,g)eS. Furthermore, (gC,A4) =(gC,g(g"'A)ex, by (C4). Thus
(gC)x = Ak and so (¢gC, g)f = (Ak,g). Hence 8 is surjective.

(iv) Suppose that each x-class of &' is lower directed and that & is a lower semilattice.
Let 4,Be%. To show that [k is a lower semilattice it is enough to prove that

(A A B)x = Ak A Bk.

Clearly, (4 A B)x < Ak, Bx. Let #eZ [k be such that # < Ak, Bx. By (2.5), there exist
M,,M,e 4 such that M, < A and M, < B. Hence, since .# is lower directed, there exists
Mjye A such that M5 < M, and M; < M,. Itfollowsthat M; < AABandso # < (4 A B)x.
Thus Ak A Bk exists and is equal to (4 A B)k. ||

Henceforth if (G, &, %) is a McAlister triple and k is a T-congruence on & then
(G, ¥ [x, %|x) will denote the McAlister triple formed in the manner described above.

We now describe a second method for forming new McAlister triples from a given one.
By the kernel of a McAlister triple (G, %, %) we shall mean the set {geG : g4 = A for all
AeZ}. It will be denoted by ker (G, &', %). Evidently ker (G, Z', %) is a normal subgroup of
G.

The proof of the following result is straightforward and will be omitted.

LEMMA 2.9. Let (G, &', %) be a McAlister triple and let N be a normal subgroup of G such
that N € ker (G, &, %¥). Then the mapping from GIN x Z to &, defined by the rule that
(yN)A=gA4 (9geG,Ae%),

is an action of G|N on & by order automorphisms and, with respect to this action, (G|N, ', ¥)
is a McAlister triple.
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Write S = P(G, %, %), T = P(GIN, &, %) andlet 0 : S — T be defined by (4, )8 = (4, gN).
Then

(i) 8 is a surjective homomorphism,

(ii) the congruence 600~ on S is idempotent-separating. |}

We remark that, in general, not every idempotent-separating congruence on S is of the
form 600~ for some @ defined as above.

For the remainder of the paper, if (G, &, %) is a McAlister triple and if N is a normal
subgroup contained in its kernel then (G/N, &, %) will denote the McAlister triple defined in
Lemma 2.9.

3. Idempotent-determined congruences on P-semigroups. We now apply the foregoing
results to the problem of describing the quotient of a P-semigroup S by an idempotent-deter-
mined congruence. Since S is E-unitary, it follows from Lemma 1.7 that a congruence p
on S is idempotent-determined if and only if p = n* for some normal equivalence = on the
semilattice of S. Thus we shall examine quotients of the form S/n*.

First we have a technical lemma.

LeEmMMA 3.1. Let (G, &, ¥) be a McAlister triple, let S= P(G, ¥, %) and let # be a
congruence on %. Let C,DeXZ have the property that, for some n, there exist elements
Co=C,C,Cy ...,Co,=D in & and gy,9,,...,9,€G such that g,C,_,,9,C,e¥ and
9:Ci-1,9,C)er (i=1,...,n). Let AcZ be such that A< C. Then

AANCACLA...AC

exists (i=1,...,n). Writt Mo=A,M;,=AANC,A...AC,. Then g;M;_,,g,M,e¥ and
GM;—,gM)er (i=1,...,n).

Proof. Let1 < i< nand suppose that we have shown that M;_, exists. Then M,_; <
C,_;and so g;M;_, <g,C;_,. Butg,C;,_,e%; hence g;M,_€%. Also g;,C;e¥. Thus
giM;_y Ag,C,;exists and lies in &. It follows that M (= M,_, A C)) exists and that g,M,e%.
Now (9;C;-1,9:.C)efand so (g;M;_ Ag:Ci—1,9:M;_, Ag;C;)ER, since # is a congruence on
%. Hence (g;M;_,,g;M;)ef. But M;_, exists for i=1. Hence, taking i=1,2,...,n
successively, we obtain the result. |

THEOREM 3.2. Let (G, X, %) be a McAlister triple, let S = P(G, &, %), let E denote the
semilattice of S and let 1 denote the identity of G. Let n be a normal equivalence on E. Then the
relation f defined on ¥ by

(4,B)ef = ((4,1), (B,1))en

is a congruence on %/. Let x denote the transitive closure of the following relation on % .
{(C,D) : gC,gDe% and (¢9C, gD)e# for some geG}.

Then k is a T-congruence on & and S{z* = P(G, ¥ |k, ¥[x). Moreover, if & is a lower semi-
lattice then so also is Z'[k.
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Proof. Since A—(A,1) is an isomorphism from & to E, and = is a normal equivalence
on E,# is a congruence on %. By (T4), x is reflexive. Since x is evidently symmetric and
transitive, it is an equivalence on 2. We now show that it is a T-congruence.

Let A4,C,De&% be such that A < C and (C, D)ek. Since (C,D)ex and # is a congruence
on ¥ there exist elements C,,g; satisfying the hypotheses of Lemma 3.1. Thus, by the
lemma, M;=AAC,AC A ...AC; exists (i=0,...,n); further, g;M;.,,g;M;€% and
gM;-,gM)er(@i=1,...,n). Write B=CyAC;n...AC,. Then

B<C,D; (A,AAB)ex. (o)

Since 4 A B < D it follows that k satisfies (Cl).

Next we show that each x-class is convex. Let 4,C,DeZ be such that D < 4 < Cand
(C,D)ek. From (), there exists Be 2 such that B< Dand (4, AAB)ek. Since B D<A
we have that 4 A B = B. Hence (4, B)ex. On the other hand, («) holds with 4 =C. Hence
(C,CAB)ex and so, since B < C, (C,B)ex. Combining these results, we see that (4, C)ex.
This shows that Ck is convex. Thus (C2) is satisfied.

We now prove that k(% x &) = f. Clearly # € k(% x %). Accordingly, let (C, D)e
KN(¥ x #). Then there exist elements C;, g; satisfying the hypotheses of Lemma 3.1. Taking
A = Cin the lemma, we see that CoAC, A ... AC; = M;exists fori =0, ..., n; furthermore,
giM;_,gM;e® and (gM,_,,g;M)eR (i=1,...,n). Now since M;<Cy=Ce? it
follows that M,e® (i=0,...,n). Hence (M;_,,g;7 )eS (i=1,...,n) and a simple com-
putation shows that

(Mi—l’gi—l)(giMi—ls l)(j‘{i—hgi“l)_I =(Mi~ls |)s
(Mi—lsgi_l)(giMi! 1)(M|‘—ligi-l)_1 =(Mi’1)'

Thus since = is a normal equivalence on E and ((g;M;_,, 1), (g;M;, 1))er, it follows that
((M;_,1), (M,,1))en. Hence (M;_,M)e#. But this holds for i=1,...,n. Hence
(Mo, M )ef; thatis, (C,CoAC, A ...AC)ef. Since C, = D asimilar argument will prove
that (D,CoAC A ... AC,)eft. Hence(C,D)e#. Thus we have shown that k(% x ¥) c #.
Consequently, k(% x %) = f. Since ® is a congruence on %, « satisfies (C3).

Last, we show that x satisfies (C4). Let (C,D)ex and let heG. Then there exist
elements Cy =C,C,,...,C,=D in & and g,,...,9,€G such that ¢,C;_,,9;:C,e¥ and
(9:Ci-1,9:.C)er(i=1,...,n). Write C/ =hC;and g;/ = g;h~*. Then Cy’ = IhC, C,' =hD.
Also g/C/_,=¢,C;_ €%, g/C/ =¢;C;e¥ and (¢/C/_,,9/C/)eft (i=1,...,n). Hence
(hC,hD)ek. Thus k satisfies (C4). Hence « is a T-congruence on .

We note next that every k-class of Z is lower directed. To see this, let (C, D)ex. Then
there exists BeZ such that () holds for any A€ % such that A < C. Take 4 = C. Then
B < C,D and (C, B)ek.

Now let us apply Lemma 2.8. First, (G, &/x, ¥[x) is a McAlister triple. Let § =
PG, Z,%), T=P(G, Xk, ¥|x) and define 0 : S — T by (4,9)0 = (4x,g). Then fis a homo-
morphism. Also, 6 is surjective, since each x-class is lower directed. Thus S/0e07 !~ T,
Moreover, 800~! is idempotent-determined. Hence, by Lemma 1.7, since S is E-unitary,
000~! =n} for some normal equivalence m, on E. Now, for all 4, Be%,
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((A: 1)’ (B’ 1))67171
< (A4,1)0 = (B,1)0, since 00" '(E x E) =m,,
<> (4,B)ex,
<> (A4, B)ef, since k(¥ x¥) = #,
< ((4,1), (B,D)em.

Hence n; = n. Consequently, S/z* = T, as required.
Finally, since each x-class of 2 is lower directed it follows from Lemma 2.8 (iv) that if &
is a lower semilattice then so also is &/x. ||

4. Idempotent-separating congruences on P-semigroups. Let (G, &, %) be a McAlister
triple, let S'= P(G, &, %) and let p be an idempotent-separating congruence on S. Since
p € J#, it follows from (2.1) that if (4, g), (B, h)€ S are p-equivalent then A = B. Denote the
identity of G by 1. We shall be interested in the following two subsets of G associated with p:

M,=1{geG :((4,9), (4,1))ep forall Ae®¥ for which (4,g)eS};
N,={geG:((4,9), (4,1))ep forsome Ae¥ forwhich (4,g9)eS}.

Clearly, 1e M, N,. Also M, < N,. Furthermore, if {, 5 are idempotent-separating con-
gruences on S such that { < » then M, < M, and N, S N,.

In the next four lemmas we obtain some further properties of these subsets. To save
repetition, we shall assume here that S = P(G, &, %) as above.

LemMa 4.1, Let p be an idempotent-separating congruence on S. Then N, is a normal
subgroup of G.

Proof. Let g,heN,. Then there exist 4,Be% such that (4,g), (B,h)eS and
((4,9), (4, 1) ep, (B, ), (B, 1))ep. Since p is a congruence, (4, g)B, k)", (4, 1)(8,1)" e p;
that is, (AAgh~'B,gh™'), (AAB,1))ep. But p< 5 and so Argh 'B=AAB. Hence
gh™'eN, and so N, is a subgroup of G. The proof that N, is normal in G is on similar lines
and will be omitted. |

By contrast, M, need not always be a subsemigroup of G. But the situation is simplified
when p is E-unitary, as will now be shown.

Lemma 4.2, Let p be an E-unitary idempotent-separating congruenceon S. Then M, = N,,.

Proof. We need only show that N, < M. LetgeN,. Then there exists A €% such that
(A,g)e S and ((4,9), (4,1))ep. Let B be any element of %4 such that (B,g)eS. Then
((B,1)(4,g9), (B,1)(4,1))ep. Hence, ((4AB,1)(B,g), (AArB,1))ep and so, since p is E-
unitary, ((B,g)?% (B,g))ep. Hence, by (1.1), there exists Ce® such that (B, g), (C,1))ep.
Butp € s# andso C = B. Thus((B,g),(B,1))ep. ThisshowsthatgeM,. Hence N, = M,. |

LEMMA 4.3.  Ler &, n be idempotent-separating congruences on S and let n be E-unitary.
Then

e <« N, SN,
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Proof. We have already noted that if { =n then N, = N,. Suppose that N; S N,.
By (1.2), to show that ¢ < # it is enough to show that (4, 1)é = (4, 1)nforall Ae%. LetAe¥
and let (B,g)e(4,1)¢. Then, since { = #, B=A. Hence geN, and so, by hypothesis,
geN,. But, since y is E-unitary, N, = M,, by Lemma 4.2. Hence ge M, and so (B,g) =
(4,9)e(4,1)n. Hence (4, 1)é = (4,1)n. 1

1t follows from Lemma 4.3 that if &, n are E-unitary idempotent-separating congruences
“on S then

§=n < N§=Nﬂ'

LemMMA 4.4. Let p be an idempotent-separating congruence on S. Let N be a normal
subgroup of G such that N = M,. A relation x is defined on & by the rule that

(4,B)ex < B=nA for some neN.

Then x is a T-congruence on & such that k(% x %) =1, and N < ker (G, ¥k, ¥|x). Let
T = P(GIN, X[k, ¥[x) and let 0 : S — T be defined by (A, g)0 = (Ax,gN). Then

(i) 6 is a surjective homomorphism;
(ii) 007! is an E-unitary (idempotent-separating) congruence contained in p;
(iii) Nooo-l - N.

Proof. Since N is a subgroup of G, x is an equivalence on . We first show that
K@ X ¥) = 14. (o)

Let (4, B)exn(¥ x %). We have to show that 4 = B. Since (4, B) e there exists ne N
such that B=nd. Since Be%, (4,n"*)eS. Butn™'eN< M, and so ((4,n71), (4,1))ep.
Hence ((nd,n), (4,1)) =((4,n~ )" ,(4,1) " Y)ep. But pc #. Hence nd =A; that is,
B=A.

We now verify that x is a T-congruence. Let A4,C,De&% be such that 4 < C and
(C,D)ex. Then there exists ne N since that D = nC. Hence nd < nC = D; also (4,nd)ex.
Thus (C1) is satisfied. It is immediate from () that x satisfies (C3). We prove next that it
satisfies (C4). Let (4,B)ex and let geG. Then B = nA for some neN and so gB = gnd =
n'gA, for some n’' e N, since N is normal in G. Thus (94, gB)ex. Hence x satisfies (C4).

It remains to show that « satisfies (C2). The result will follow if we prove that no two
distinct k-equivalent elements of & are comparable. Suppose that there exist 4, BeZ such
that 4< B and (4, B)ex. We show that this leads to a contradiction. Since & = G%, there
exists g€ G such that gBe®%. Now g4 <gB and so g4€%, since % is an ideal of &. But
(gA,gB)ek, since (4, B)ex and k satisfies (C4). Hence (g4,gB)exn(¥ x %) and so, by
(2), gA = gB. This conflicts with the inequality g4 < gB obtained above. Hence each x-class
is (trivially) convex; that is, « satisfies (C2). We have thus shown that x is a 7-congruence on
Z.

By Lemma 2.8, (G, &/x, %/x) is a McAlister triple. Let neN. Then, for all AeZ,
(nA)x = Ax; thatis, n(dx) = Ax. Thus N < ker (G, [k, ¥/x). Hence, by Lemma 2.9, we
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can form the McAlister triple (G/N, %[k, #/x), where the action of G/N on &/« is according
to the rule that
(gN)(4K) = g(4x) = (gA)x (geG, AeZ).

Let T= P(G/N, Z/x, ¥/x) and let § : S — T be defined by (4, g)8 = (4k, gN).

(i) Let us denote P(G, &/x, ¥/x) by U. By Lemma 2.8, the mapping 0, : (4, g)+ (4x, g)
is a homomorphism from S to U and, by Lemma 2.9, the mapping 8, : (4x, g)— (4x,gN)isa
homomorphism from Uto T. Now 6 = 6,0, and so 0 is a homomorphism. We show further
that 0 is surjective. Let (Ax,gN)eT, where Ae¥, geG. Then (gN) '(4x)e%/x. But
(GN)"'(4x) = (" IN)(4x) = g~ 1(4x) = (g~ *A)x. Hence there exists Be®¥ such that
(B,g~'A)ex and so there exists ne N such that B=ng 4. Since Be%¥ it follows that
(4,9n"Y)eS. Moreover, (4,gn"1)0 = (Ax,gN). Thus 0 is surjective. (It is tempting to
assume that 6, : S — U is surjective; but this is not always true.)

(ii) Since 0 is surjective, S/§o6~! = T. But T'is E-unitary; hence 800~! is an E-unitary
congruence. We now show that 006~! < p. By (1.2), it suffices to show that (4,1)0.07! =
(A, Dpforall Ae%. Let Ae¥ and let (B, g)e S be such that (B, g)0 = (4,1)0. Then (4, B)ex
and gN = N. Since (4, B)yekn(#¥ x %) it follows from () that 4 = B. Thus (B, g) = (4, 9).
Also, geN< M,; hence (4,9)e(4,1)p. Thus (4,1)800° ' =(4,1)p. Consequently
007! = p. Since p is idempotent-separating, so also is §o 01,

(iii) Let geNy,o-1- Then there exists 4e% such that (4,g)eS and (4, 9)0 = (4, 1)8.
Thus gN = N and so ge N. Hence Ny 4-1 © N. Conversely, let ge N. Then, by (T5), there
exists A€% such that g~'4e®. Thus (4,9)€S and (4, g)8 = (4k,gN) = (4k, N) = (4, 1),
which shows that ge Ny 4-1. Hence N < Ny o-1. |

As a consequence of these lemmas, we have

THEOREM 4.5. Let (G, X, %) be a McAlister triple, let S = P(G, &, %) and let p be an E-
unitary idempotent-separating congruence on S. A relation x is defined on & by the rule that

(4,B)ex < B=nA for some neN,.

Then x is a T-congruence on & such that k(% x ¥) = 14 and N, < ker (G, & [k, ¥[x). Further,
S/p = P(G/N,, Z[x, ¥|x).

Proof. Since p is E-unitary, M, = N,, by Lemma 4.2, Letus take N = N, in Lemma 4.4.
Then k is a T-congruence on &', kN(¥ x %) = 14 and' N, < ker (G, %[, ¥/[x). Now define 0
as in Lemma 4.4. Since 8 is a surjective homomorphism, S/8e0~! = P(G/N,, Z[x, ¥/x).
Also, Ng,e-1 = N,. Hence, by Lemma 4.3, 8.6~ = p. ||

5. An application. In this section we apply the results of the previous two sections to
obtain a proof of McAlister’s Theorems A and B stated in §2.
First, we have the following lemma, which combines the results of Theorems 3.2 and 4.5.

LEMMA 5.1.  Let S be a P-semigroup and let p be a congruence on S. Then there exists a
P-semigroup T such that T is isomorphic to a quotient of S by an idempotent-determined con-
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gruence and S|p = T[t, where 1 is an idempotent-separating congruence on T. Furthermore,
if p is E-unitary then S|p is isomorphic to a P-semigroup.

Proof. LetS= P(G, Z, %) for some McAlister triple (G, Z, %). Write n = pn(E x E),
where E denotes the semilattice of S. Then = is a normal equivalence on E and S/p &
(S/n*)/(p/n*). But n* is an idempotent-determined congruence on S and S/zn* is isomorphic
to a P-semigroup 7, say, by Theorem 3.2. Also p/n* is idempotent-separating. Hence
S/p = T/z, for some idempotent-separating congruence T on 7. Now suppose, in addition,
that p is E-unitary. Then t is E-unitary and so T/t is isomorphic to a P-semigroup, by
Theorem 4.5. §

Next, we review some properties of free inverse semigroups. The structure of such semi-
groups was determined by Scheiblich [18, 19]; different approaches have been given, in-
dependently, by Munn [10, 11] and Preston [14].

Let Z be a nonempty set and let G = FY,, the free group on Z. Following Scheiblich,

we define a partial ordering < of G by the rule that, for all a,be G, a € b if and only if, when
a and b are written in reduced form, a is an initial segment of b. The identity of G will be

denoted by 1 and we make the convention that 1 <a for all aeG. For aeG we write
d={xeG:x<a}and for 4 = G wewrite 4 = Ua. Itis easily verified that a subset 4 of G

acA

which contains 1 is convex under < if and only if 4 = 4.

We now describe Scheiblich’s construction for the free inverse semigroup on Z. Let %
denote the set of all finite convex subsets of G containing 1 and at least one other element.
Write

F={(4,9)e¥ x G :geA}.

For g € G and any nonempty subset B of 4 let gB denote {gb : be B}. It can be shown that if
(4,9), (B,h)e F then AugBe%. Hence we can define a multiplication on F by the rule:

(As g)(B’ h) = (AUgB’ gh)

Under this multiplication F is the free inverse semigroup #.#, on Z [18, 19].

A subset M of an inverse semigroup S is termed a set of generators of S if and only if
every element of S can be expressed as a product of elements of the form x* (xe M, g€ {1, —1}).
Let K= {k, : ze Z}, where k, = ({1,z},z). Then it can be shown that K generates F. More-
over, if ¢ is an arbitrary mapping from K to an inverse semigroup S then ¢ can be extended
uniquely to a homomorphism from F to S (and this is surjective if K¢ generates S). We
express this condition by saying that K generates F freely. Free generators of free inverse
semigroups have been studied by Reilly [15].

McAlister and McFadden [7] observed that F can be expressed as a P-semigroup. We
outline a proof. First, let us write

X ={gd:geG, Ae¥}.
This is a subset of the power set of G and we define a partial ordering < of it by the rule:

C<D <« C2D.
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Next, we note that the mapping (g, C)— gC is an action of G on & by order automorphisms.
It can then be shown that (G, Z', %) is a McAlister triple and that

g 'AeW < ged (geG, AeP). ™

Let S = P(G, &, %). Inview of (*) the elements of S coincide with those of F. Furthermore, the
multiplication of elements of S agrees with thatin F. Thus the semigroups Sand Fare identical.

Let t denote the least group congruence on F. Then, from (TS) and (2.2), Flr =2 G =
F%,. Moreover, with K as above, Kth = {k,t : ze Z} is a set of free generators of F/z.

Evidently, F does not have an identity. In fact, % (which is isomorphic to the semilattice
of F) has 2| Z| maximal elements if Z is finite (| Z| if Z is infinite). These are the elements
{1,2} and {1,z7 '} (zeZ). A straightforward argument, making use of (2.2) and (2.3), shows
that F! is an F-inverse semigroup. From this it can be deduced (McAlister, unpublished) that
Z is a lower semilattice. Alternatively, for this last result we may proceed directly as follows.
Consider two typical elements g4, hBe % (g,heG ; A, Be®¥). Suppose that, in reduced form,
g =kg,, h = kh,, where g,,h, have no common initial segment except 1. Then it may be
checked that gAuhBUkG, Ukh, is the greatest lower bound of g4 and gB in Z.

Using the fact that a free inverse semigroup can be expressed as a P-semigroup we now
derive McAlister’s Theorems A and B.

THEOREM 5.2 (McAlister). Let S be an inverse semigroup.

(i) There exists a P-semigroup T and an idempotent-separating congruence t on T such
that S = Tl.
(ii) If' S is E-unitary then S is isomorphic to a P-semigroup.

Proof. Let M be a set of generators of S, let Z be a set of the same cardinal as M and
let F=%.#,. Then there exists a surjective homomorphism 0 : F— S. Thus S F/0.0"!,
But F can be expressed as a P-semigroup. The result now follows immediately from Lemma
5.1. 8

By a quasi-free inverse semigroup we shall mean a semigroup which is isomorphic to a
quotient of a free inverse semigroup by an idempotent-determined congruence. We end this
section with a theorem concerning such semigroups.

THEOREM 5.3. (i) FEvery inverse semigroup is isomorphic to the quotient of a quasi-free
inverse semigroup by an idempotent-separating congruence.

(iiy Let S be a quasi-free inverse semigroup. Then there exists a McAlister triple
(G, Z', "), where G is a free group and X' is a lower semilattice, such that S = P(G, Z', %¥").
Moreover, S* is an F-inverse semigroup.

(iii) Let S be an inverse semigroup with least group congruence a. Then S is quasi-free if
and only if () S/c is a free group and (b) S has a set M of generators such that o | M IS injective
and Mah generates S|o freely.

Proof. (i) This foliows from Lemma 5.1 in the same way as does Theorem 5.2 (i).
(ii) Suppose, without loss of generality, that S = F/p, where F'is a free inverse semigroup
and p is an idempotent-determined congruence on F. Now F = P(G, &, %) for some McAlister
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triple (G, &, %), with G a free group and & a lower semilattice. Hence, by Theorem 3.2, there
exists a T-congruence x on % such that Fjp = P(G, %', ¥"), where &' = ¥ [k and ¥’ = ¥/«k;
further, since & is a lower semilattice, so also is Z’. Moreover, F! is an F-inverse semigroup
and so, by Lemma 1.7, $* is an F-inverse semigroup.

(iii) Suppose that S is quasi-free. We shall assume that S = F/p, where F = ##, for
some Z and p is an idempotent-determined congruence on F. Let k, denote ({1, 2}, z) for all
zeZ and let K= {k, :z2eZ}. Write M = Kpt = {k,p : ze Z}. Then M generates S, since
K generates F. Let 7 denote the least group congruence on F. Then, by Lemma 1.7, p< =
and so, by (1.5), t/p = o, the least group congruence on S. Now there exists a McAlister
triple (G, &, %), with G = #9,, such that F= P(G, &, %). Also, for all (4, 9), (B,h)€eF,

(4,9)pat = (B, h)pot <> ((4,9)p, (B,h)p)ea
< ((4,9), (B,h)er
< g=h, by(22).

Hence we can define an injective mapping 8 : G — S/o by the rule that g8 = (4, g)poh for some
(any) Ae€% such that (4,g)eF. Clearly 0 is also a surjective homomorphism and so an
isomorphism. Thus S/o is free. Also, since 20 = k,pah for all ze Z and 0 is injective, it
follows that ¢t | u is injective. Further, Z0 = Mgh. Hence, since Z generates G freely, MaH
generates Sjo freely.

Conversely, suppose that (a) S/o is free and (b) S has a set M of generators such that o4 | M
is injective and Mal generates S/o freely. Choose a set Z of the same cardinal as M and let
¢ : Z > M be a bijection. Write F = # £, and let k.,(z€ Z), K be defined as before. Then K
generates F and the bijection k +—z¢ from K to M can be extended to a (unique) homo-
morphism # : F— S. Since M generates S it follows that 0 is surjective. Thus S 2 F/§.07!.
Let t denote the least group congruence on F. By Lemma 1.7, to show that S is quasi-free it
suffices to prove that 8.0~! = 1.

Since A4 is a homomorphism from F to S/e and 7 is the least group congruence on F,
there exists a surjective homomorphism y : Fjt — S/o such that 6ot = thy. Now 6 | gisa
bijection from K to M and, by hypothesis, o | ,, is a bijection from M to Moh. Thus thy | ¢ is
a bijection from K to Mok, But zh , k is a bijection from K to K74, by (2.2). Hence y induces
a bijection from Kth to Moh. But F/t is a free group, freely generated by Kth; also, by
hypothesis, S/o is a free group, freely generated by Mel. Hence Y must be an isomorphism,
Consequently,

00071 = (Boh)o(Bah) ™! = (thh)o(thyY) ™! = tho(th) ™! =1,

and so S is quasi-free. |

REMARK. It is possible to construct a McAlister triple whose middle component is not a
lower semilattice. Let (G', Z', %") be one such and let S = P(G’, Z', %’). By Theorem 5.3 (i)
and (ii), S = T/t, where T = P(G, Z, %) for some McAlister triple (G, Z, %) in which ¥ is a
lower semilattice, and where 7 is an idempotent-separating congruence on 7. Then, by
Theorem 4.5 and the isomorphism theorem, there exists a T-congruence x on £ such that 2’
is order isomorphic to &'/x. Hence, in this case, k is not a semilattice congruence on Z.
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6. The lattice of E-unitary congruences. We conclude with a brief discussion of pro-
perties of the set of all E-unitary congruences on an arbitrary inverse semigroup.

THEOREM 6.1. Let S be an inverse semigroup with semilattice E and least group congruence
a. Let A(S) denote the lattice of congruences on S and let A* denote the subset of A(S) consisting
of all E-unitary congruences. ’

(i) A* is a complete lattice with respect to inclusion.
(ii) The least element A of A* is contained in ¢ and {peA(S) : A < p S o} is a complete
sublattice of A*.
(iii) Ifa, B A* are such that o < B and an(E x E) = Bn(E x E) then {yeA* :a Sy < }
is a complete modular sublattice of A*.

Proof. (i) We first note that S x SeA*. Let (p,);; be a nonempty family of elements of
A* and let p denote () p;. We show that pe A*. Let q,b€S be such that (ab,b)ep and

el

(b,b*)ep. Then, for all iel, (ab,b)ep; and (b, b*)€ p;, from which it follows that (a,a*)ep;.
Hence (a,a*) e p and so pe A*. Thus (p;);., has a greatest lower bound in A*, namely p. Now,
since A* has a greatest element, the subset {te A* : 7 2 p; for all iel} is nonempty and the
intersection p of all its members is again in A*. Hence (p;);.; has a least upper bound in A*,
namely p. We have thus shown that A* is a complete lattice with respect to inclusion (and
also a complete lower subsemilattice of A(S)). In particular, as noted by O’Carroll [12,
Theorem 5], A* has a least element A.

(ii)) Every group congruence on S lies in A* and so A= a. Write M = {peA(S) :
AS pcoe}. Evidently M is a complete sublattice of A(S). We show that M = A*. Let
pEM. Then p/2 = g/A. But g/A is the least group congruence on S/4, by (1.5). Hence, by
Lemma 1.7, p/A is an E-unitary congruence on S/A. Now S/p = (S/3)/(p/A). Hence S/p is
E-unitary and so peA*. Thus M < A*. Since M is a complete sublattice of A(S) it must
therefore also be a complete sublattice of A*. (It is easy to see that M is isomorphic to the
lattice of all idempotent-determined congruences on S/1.)

(iii) Let o, fe A* be such that & = § and an(E x E) = Bn(E x E). We apply the results
of §4 to the E-unitary inverse semigroup Sfa. By Theorem 5.2 (ii), we may, without loss of
generality, take S/a = P(G, 2, %) for some McAlister triple (G, Z, %). For any idempotent-
separating congruence £ on S/u let subsets M, N; of G be defined as in §4. In particular, by
Lemma 4.1, N, is a normal subgroup of G and, by Lemma 4.2, if £ is E-unitary then M, = N,.
Write p = f/a. Then p is an E-unitary idempotent-separating congruence on Sfa. Now
y>7/o is an order isomorphism from {yeA* :a =y < f} to the set I', of all E-unitary
(idempotent-separating) congruences on S/a contained in p. Let I, denote the set of all
normal subgroups of G contained in M,. Since p is E-unitary, M, is a normal subgroup of G
and so Z, is a complete modular lattice with respect to inclusion. Now consider the mapping
¢ :T',— X, defined by £¢ = N,. By Lemma 4.4 (iii), ¢ is surjective and so, by Lemma 4.3, ¢
is an order isomorphism. |

The following example shows that A* need not be a sublattice of A(S). Let G be a non-
trivial group and let H denote the direct product G x G. Take S to be the semilattice of groups
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GUH, with H as least ideal and multiplication determined by the structure homomorphism
¢ : G— H defined by g¢p = (g,9) [1, Theorem 4.11}. It is easily seen that S is an E-unitary
inverse semigroup and that the relations

p1 = {{(a,0), (b,c))e H x H}uis,
p2 = {((a,b), (a,c))e H x H}uig

are E-unitary idempotent-separating congruences on S. Let p, v p, denote the join of p, and
p2 in A(S). Then p,vp, =(H x H)uig. Hence S/{(p, v p,) = G°® and so, since G is non-
trivial, p; v p, is not E-unitary. Thus, in this case, A* is not a sublattice of A(S).

Now let us again assume the hypotheses of Theorem 6.1, with S an arbitrary inverse seni-
group. Let 7 be a normal equivalence on £ and let A v n* denote the join of 4 and #n* in A(S).
Since 2 € Avn* € ¢ it follows from part (ii) of the theorem that Ava*eA*. From this we
deduce that, for any O-class © of A(S) (see (1.3)),

ONA*£0D < 00,

where < denotes the partial ordering of the quotient lattice A(S)/0.

Finally, suppose that in part (iii) of the theorem we no longer assume that f is E-unitary,
Then, with the notation of the proof, we again have an order isomorphism from {yeA* :
a €y € B} to Z,, the set of normal subgroups of G contained in M, and ordered by inclusion;
however, M, need no longer be a subgroup of G. A straightforward application of Zorn’s
lemma shows that {yeA* : « = y = } has a maximal element and that every element of this
set is contained in a maximal element. These remarks apply, in particular, to the case in
which p( = B/a) is the greatest idempotent-separating congruence on S/a.
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