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Abstract

Nonlocal calculus is often overlooked in the mathematics curriculum. In this paper
we present an interesting new class of nonlocal problems that arise from modelling the
growth and division of cells, especially cancer cells, as they progress through the cell
cycle. The cellular biomass is assumed to be unstructured in size or position, and its
evolution governed by a time-dependent system of ordinary differential equations with
multiple time delays. The system is linear and taken to be autonomous. As a result, it
is possible to reduce its solution to that of a nonlinear matrix eigenvalue problem. This
method is illustrated by considering case studies, including a model of the cell cycle
developed recently by Simms, Bean and Koeber. The paper concludes by explaining
how asymptotic expressions for the distribution of cells across the compartments can be
determined and used to assess the impact of different chemotherapeutic agents.
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1. Introduction

Nonlocal calculus is a general term used to describe situations (arising in models)
where cause and effect are separated explicitly in time (a delay), space, age, or even
size, depending on how the cohort or state variables are structured. Arguably the
simplest case considered is a time delay where the current evolutionary dynamics
depend, in an explicit way, on the state of the system at an earlier time. We consider
this situation here, albeit in a system which has many compartments.
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Models can have point delays or these can be distributed over earlier time intervals.
The former have a long history; see, for example, the book by Bellman and Cooke [4].
In the second case, where the models are called distributed delay differential equations
(DDDESs) [6, 8], one can often eliminate the nonlocal effect by a simple transformation.
Point delays generally resist this and thereby preserve their capacity to simply model
complex behaviour. In this paper we focus on point time delays for linear equations.
We provide a generic procedure for obtaining exact analytical solutions to equations
of this type. By solving the resulting transcendental equations, the solution is then
obtained explicitly.

When applied to a multistage model of the cell cycle (details given by Basse
et al. [1-3]), our method provides asymptotic expressions for the proportions of cells in
the different cell cycle compartments. These results constitute a useful underpinning
procedure for evaluating experimentally the effectiveness of potential new drugs for
chemical treatment of cancer cells when they are administrated “in vitro” [7].

2. A simple example

The following, classic textbook problem illustrates nicely the richness that delay
problems exhibit [4]. Let x(#) be a time-dependent variable whose time rate of change
at time ¢ depends on its value at a time 7 > O earlier:

dx
—=x(t-T). 2.1
g = t=1) 2.1
Delay differential equations of this type are particularly useful when one is seeking a
simple formulation for modelling complex phenomena, for example the growth of a
population of cells which take, on average, T time units to produce a new offspring.
The spanning set of equation (2.1) is the countably infinite set

Q={e":1e€A}, where A={1:e =2} (2.2)

The equation in A for A has only one real (positive) root Ay (with 1g = 0.5671 when
T =1) and an infinite number of complex roots in complex conjugate pairs with
negative real part. This enables the problem to be well posed with an arbitrary initial
condition

x(t) = xo(t), -T<t<0.

We remark that when 7" = 0, the spanning set is one dimensional.

The set A of A values can be expressed in terms of the Lambert W function, which
is defined as the solution of W(z)e"@ = z. If, in equation (2.2), we write z = AT, the
condition for z is ze* = T, and so

1
=W (T), A= TWk(T),

where k=1, 2, . .. are the branch values of the Lambert W function.
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Figure 1. Solution of equation (2.1) with unit step time delay (7 = 1) and constant initial condition
(x(t) = 1 for —1 <t < 0) obtained by iteration, over successive time intervals.

It is straightforward to deduce the asymptotic behaviour of x(¢):
x(1) ~ Kpe®™  for large f,

where the constant K depends, in an explicit way, on xo(¢). This result, which is easily
obtained by Laplace transforms, is far from obvious from the piecewise integration of
equation (2.1), which when T =1 and xo(¢) = 1 gives x(¢) as a polynomial of degree n
in nT <t < (n+ T), with discontinuities in higher derivatives as n increases at the end
points. This is shown in Figure 1. The pattern here (of the increasing degree of the
polynomial as ¢ increases) suggests that the long-term behaviour of x(¢) is faster than
any power function. However, it does not easily give the value of the exponent in the
asymptotic behaviour (x(f) ~ €% for t large).

The general solution of equation (2.1) is obtained by finding the set A in (2.2).
When T = 1 this gives the transcendental equation A = e~*. If we introduce 1; = Re(1)
and A; = Im(Q), then A, and A, satisfy the simultaneous equations

() A =e M cos (L), (i) A = —e " sin(dy). (2.3)

These loci are drawn in Figure 2, with (i) in red and (ii) in blue. The roots are thus the
intersections of the red and blue lines.

3. Multiple delays: a case study

Multiple delays can arise naturally in many systems. In Section 3.1 we introduce an
example based on a model for cell cycle population dynamics due to Simms et al. [10].
We now give the general method for solving such a system explicitly. This is abstracted

and written as p
= = Ax(t-[T)) (3.1)
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Ficure 2. The roots of the transcendental equations (2.3). The only roots shown are A= 0.5671,
—1.543 +4.375i, —2.402 + 10.776i. The real part is shown in red and the imaginary part in blue.

where x(¢) is a column vector of functions {x(?), ..., x;(#), ..., x,(H)}, Aisann X n
(constant) matrix, T = (T;;) and [T] denotes T;; when x is replaced by x; to write (3.1)
in component form; that is,

% = Z aijx;(t = Tj;). 3.2)

To solve equation (3.2) we let x(¢) = exp(Af)c, where ¢ is a constant eigenvector
and A the corresponding eigenvalue. This was the form of the solution used by Hale
et al. [5], whose main focus was to determine the effect of the delays on the stability of
the trivial solution. Here we extend that system [5] to the case where there is a matrix
of delays rather than a vector, and we determine the stability (as Hale et al. did) by the
existence of a value of A for which Re(4) > 0.

We then have Ac = B(1)c, where B(1) = [a; je"mi ]. So

Aef{d:det(B) - A =0}=A.

This is a “nonlinear in A” eigenvalue problem with a countably infinite number of
“eigenvalues” and associated eigenvectors c¢(4d). The general solution of dx/dt =
Ax(t — [T)) is, therefore,

x(0)= )" eVe(A).

AeA

We note the following properties which are inferred from examples only:
e If T;; > 0 (as in the tumour model below) for all i, j then there are a finite number
of real eigenvalues which are positive, and all others (an infinite number) are
complex, occurring in conjugate pairs, with smaller real part.
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FiGure 3. Schematic of the cell cycle model developed by Simms et al. [9, 10], showing how cells progress
through the seven model phases. Each phase is associated with a specific cell cycle phase (inner cyclic
arrows). Square boxes are used to denote storage phases, while circles represent nonstorage phases. The
parameters on arrows from storage phases represent the fixed time that a cell spends in that model phase,
while the parameters on arrows from nonstorage phases represent the rates of transition from those phases.

e Since the number of real and positive eigenvalues is finite, we deduce the
asymptotic behaviour x(r) ~ e%'¢(1y) as t — oo, where A is the “eigenvalue”
with largest real part.

e Consequently, x;()/x;(t) ~c;/c; as t — oo, that is, the proportions evolve to
constants at long times. This result will be useful when we consider the response
of tumours to chemotherapy.

3.1. Model development Mathematical models often decompose the cell cycle into
three distinct phases: the G1 (gap, written as G), S (DNA replication) and G2/M
(gap/mitosis, written as M) phases. In the model of Simms et al. [9, 10], these phases
are further subdivided into storage and nonstorage phases, the latter being ones in
which the cells are responsive to their environment. Storage phases are ones in which
the cells stay for a fixed time. A schematic of the Simms et al. model is presented in
Figure 3, reproduced from their paper [10].

We introduce Ng, (f) = x1(t), Ng, () = x2(), . . ., Ny, (t) = x7(¢) to represent the
number of cells in the G,, Gy, . .., M}, phases at time ¢, respectively, and recall that
dX(t)/dt represents the time rate of change of X(7). Referring to Figure 3, we deduce
that the model equations may be written as follows:

d
% = 2Bx:(t) — 2Bx7(t = 1), (3.3)
d
% = 2Bx7(t — 1) — yxa(t), (3.4)
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ddi: = yx(t) = yxo(t — 73), (3.5)
dd% = yx2(t — 13) — yx2(t — T3 — T2), (3.6)
ddi; = yxo(t — 13 — T2) — axs(t), (3.7
ddi: = axs(t) — axs(t — 14), (3.8)
ddi; = axs(t = 74) - B (1), (3.9)

The parameters «, 3, y represent rate constants for movement from the nonstorage
phases/compartments into the storage compartments. The factor “2” indicates cell
division into two daughter cells. All these parameters are taken as constant, making
our system autonomous. The 7 values are the fixed times the cells stay in the four
storage phases (see Figure 1). These equations are of the general form presented in
equation (3.1). Consequently, in the subsections that follow we apply the method from
the first part of Section 3 to study this problem.

3.2. Model simplification and analysis Scrutiny of the equations (3.3)—(3.9) reveals
that the four storage phases xj, x3, x4, X¢ decouple and, hence, that the system is
effectively driven by a smaller, three-dimensional system that comprises equations
(3.4), (3.7) and (3.9). Following the approach outlined at the beginning of Section 3,
it is straightforward to show that the “eigenvalues” satisfy the transcendental equation

B4 (@+B+YA + @B+ Py +ya)d + afy(l — 21T+ = 0. (3.10)

Equation (3.10) could easily be solved (numerically) and the corresponding
eigenvectors obtained. However, we do not do this here as we are interested in
determining the fraction of cells in each of the seven compartments (including the
storage ones) and this can be accomplished for the full system in one step. We observe
that A = 0 is not a solution of equations (3.3)—(3.9), showing that there are no constant
solutions of this core solution. Further, there is just one real solution which is positive,
and it will drive the dynamics of the solution in the long term if the system is not
perturbed. This is clarified in the next section where all of the equations are included.

3.3. Analysis of the full system Here we use the method from the beginning of
Section 3 to solve the full model as defined by equations (3.3)-(3.9). It is, however,
important to note that the transcendental equation arising from (3.3)—(3.9) will be
the same as that in (3.10), apart from the fact that 1 =0 will be an “eigenvalue” of
geometric multiplicity four, showing that there are constant solutions (not growing in
time) as well as possibly some with slower (algebraic) growth in time. Secondly, by
writing X = ), x; for the total number of cells, we see on adding the seven equations
(3.3)=(3.9) that
dX

E =,3X7.
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TaBLE 1. Parameters from the cancer cell lines in the paper by Simms et al. [10].

Symbol Value and units

@ 0.6700 h™!
B 2.3100 h™!
y 0.3284 h~!
7 575h
™ 1.00 h
5 9.00 h
7 3.40 h

So the total number of cells mirrors that of its constituent components with the same
asymptotic behaviour.

Before proceeding to solve the full system, we observe that some of the components
have more than one delay. For example, x, appears in the governing equations
evaluated at time ¢ (that is, with no delay) and also evaluated at times ¢ — 73 and
t — 13 — 1 (two different delays). We therefore need to adapt the method above to
account for more general systems of the form

dx )] (1) 2) (2) 3) (3)
E:A x(t - [TY]) + AY x(r — [TY]) + AYVx(¢ — [T™]). (3.11)
That is, there are three different “matrices of delay times”, T®, k=1,2,3. Values
from the experimental situation [10] are given in Table 1. This gives the six, very
sparse, 7 X 7 matrices below:

0 0 0 0 0 0 28 0 0 0 0 0 0 O
0 -y 00 0 0 O 000O0O0O 0O
0y 00 0 0 O 000O0O0O0O0
AY=10 0 00 0 0 Of, T™=|0 0 0 O O O 0|]=0,
0 0 00 - 0 0 000O0O0O OO0
0 000 a 0 0 000O0O0O0O0
o 0o 00 0 0 -pl 0 0 000 0 ol
0 0 0 0 0 0 —28 0 0 0 0 0 0 7
0 0 00 0 0 28 00 00 0 0 7
0 -y 00 0 0 O 073 00 0 0 0
A?=0 y 00 0 0 O, T®=(0 73 0 0 0 0O Of,
00 00O 0 0 O 00 00 0 0 O
0 0 00 —a 0 O 00 00 7 0O
0 0 00 «a 0 O 0 0 0 0 74 O O
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Figure 4. Loci for F (1) = det(B(1) — Al) = 0. The real parts are shown in red and the imaginary part in
blue.

0 0 0 0 0 0 O 0 0 00 0O0O

0 0 00 0O0OO 0 0 00 0O0O

0 0 00 0O0O0 0 0 00 0O0O
AY=l0 =y 0 0 0 0 0, T®=[0 75+73 0 0 0 O O

0O y 00 0O0O0 0 7+73 0 0 0 0 O

0 0 00 0O0O0 0 0 00 0O0O

0 0 0 0 0 0 of L0 0 00 0O0O
From the corresponding equation

F(1) =det(B(1) — AI) =0, (3.12)

where
(k)

3
B() = ) (AP ),
k=1

we obtain the diagram in Figure 4. So x ~ e'ma’¢, with Aye = 0.02909 h™'. Now we
just need to find ¢ = (cy, . . ., ¢7) such that

B(Amax)€ = AmaxC. (3.13)

In this cell-growth case study, the relative signs of the real parts of the roots of
the equation for A give an indication of the rate of approach to the asymptotic form.
In Figure 4, we see that the second eigenvalues A, (a complex conjugate pair) have
positive real part and are the only such ones, in fact, along with A,,,x. So the approach
to the solution above will be relatively slow but it will happen as

x(t) ~ e/lmaxl‘ c+ eflzf c(2) - e/lmaxl(c + e(ﬂz—ﬂmax)lc@))

where ¢@ is an eigenvector association with the “eigenvalue” A,. Thus the time
constant of the approach to that of the basic exponential growth, with constant
proportions given by the elements of the vector c, is Re(d3) — Amax < 0.

https://doi.org/10.1017/51446181113000102 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181113000102

[9] Calculus from the past 125

Equation (3.13) gives

r 0.0442 r Gy
0.1218 Gy
0.4380 G,

c=]| 0.2680 |, corresponding to the phases | S,
0.0373 Sh
0.0809 M,

L 0.0097 | L M, |

from Figure 3. That is, in the long term, the cell proportions are approximately
0.0442 + 0.1218 + 0.4380 = 60.3% in the G phase, 30.1% in the S phase, and 9.1%
in the M phase. The solution vector is

x(1) ~ (0.0442, 0.1218, 0.4380, 0.2680, 0.0373, 0.0809, 0.0097)¢”,

where p =0.029 h~!. This approximate solution gives the asymptotic proportion of
cells in each compartment at long times.

4. Conclusion

We have presented an explicit method for solving systems of the form (3.1) and
extensions of the form (3.11). The method produces a countable number of solutions
which span the set of all solutions. When the dimension of the system is odd (here 7
or 3) there is one real positive time constant that is bigger than the real parts of any
other solutions for 4 in equation (3.12) and dominates the long-term behaviour of the
solution. This has neglected the effects of logistic inputs. The complex roots of F(1) =
0 give damped oscillatory behaviour. This seemingly simple example illustrates the
fact that delay and especially multiple-delay systems can exhibit complex behaviour.
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