A NORM PROPERTY FOR SPACES OF COMPLETELY BOUNDED MAPS BETWEEN C*-ALGEBRAS

by TADASI HURUYA

(Received 26 November, 1985)

Let M_n be the C*-algebra of $n \times n$ complex matrices. If A is a C*-algebra, let $M_n(A)$ denote the C*-algebra of $n \times n$ matrices $a = [a_{ij}]$ with entries in A. For a linear map $\phi: A \to B$ between C*-algebras, we define the multiplicity map $\phi_n: M_n(A) \to M_n(B)$ by $\phi_n([a_{ij}]) = [\phi(a_{ij})]$. A linear map ϕ is said to be *completely bounded* if $\sup_n ||\phi_n|| < \infty$. Let B(A, B), CB(A, B) denote the Banach space of bounded linear maps, the set of completely bounded maps from A to B, respectively.

A C*-algebra A is said to be subhomogeneous if all irreducible representations of A are finite dimensional with bounded dimension. Let M be the von Neumann algebra consisting of all operators which are of the form $a = \sum_{n=1}^{\infty} \bigoplus a_n$, where $a_n \in M_n$ and $\sup_n ||a_n|| < \infty$. Smith proved in [5] that if A is an infinite dimensional C*-algebra and B is a C*-algebra containing M then the closure of CB(A, B) in B(A, B), with respect to the operator norm topology, is nowhere dense. He also asked whether this result remains true if B is replaced by a non-subhomogeneous algebra. In this note we shall settle this in the affirmative if A is separable.

A linear map $\phi: A \to B$ between C*-algebras is said to be *completely positive* if each multiplicity map $\phi_n: M_n(A) \to M_n(B)$ is positive. If $\phi \in CB(A, B)$, we put the norm $\|\phi\|_{cb} = \sup_n \|\phi_n\|$. If ϕ is completely positive then $\|\phi\|_{cb} = \|\phi\|$ by Stinespring's theorem [6, IV, Theorem 3.6(ii)].

LEMMA 1. If a C^* -algebra B is not subhomogeneous then there exists a sequence $\{B_n\}$ of C^* -subalgebras of B satisfying the following conditions.

- (1) If $n \neq m$ then $a_n a_m = 0$ for any a_n in B_n and a_m in B_m .
- (2) Given any positive number r > 0, there exist completely positive contractions $\psi_n: M_n \to B_n$ and $\phi_n: B \to M_n$ such that $||\phi_n \circ \psi_n \mathrm{id}|| < r$ on M_n for each n.

Proof. For a representation π of a C*-algebra, let dim π denote the dimension of π . If a C*-subalgebra B_0 of B admits an irreducible representation π with dim $\pi \ge m$, there exist completely positive contractions $\psi_0: M_m \to B_0$ and $\phi_0': B_0 \to M_m$ such that $\|\phi_0' \circ \psi_0 - \mathrm{id}\| < r$ on M_m by [5, Lemma 2.7] or [2, Lemma 2], according as B_0 is unital or nonunital. Since M_m is an injective C*-algebra, the map ϕ_0' has a completely positive, norm preserving extension $\phi_0: B \to M_m$. Hence we show that there exists a sequence $\{B_n\}$ with condition (1) such that each B_n admits an irreducible representation π_n with dim $\pi_n \ge n$.

(i) We assume first that B has an irreducible representation π on an infinite dimensional Hilbert space H. Since $\pi(B)$ is infinite dimensional, there exists, by a

Glasgow Math. J. 29 (1987) 181-184.

standard argument, a self-adjoint element a in B such that the spectrum Y of $\pi(a)$ is infinite (see, for example, the proof of [5, Lemma 2.3]). Then Y is a closed subset of the spectrum X of a by [6, I, Corollary 8.4]. There then exists a sequence $\{f_n\}$ of positive continuous functions on $X \cup \{0\}$ such that $||f_n|| = 1$, $f_n(0) = 0$, $f_n(Y)$ is an infinite set and $f_n f_m = 0$ for $n \neq m$.

Since $f_n(a)$ is regarded as an element of B, let B_n denote the C^* -subalgebra generated by the algebra $f_n(a)Bf_n(a)$. Then $\{B_n\}$ satisfies condition (1). Let Q_n denote the projection of H on the closed subspace generated by $\pi(f_n(a))(H)$. Since the spectrum of $\pi(f_n(a))$ contains $f_n(Y)$, the space $Q_n(H)$ is infinite dimensional. Let $\pi(B_n)^-$ be the weak closure of $\pi(B_n)$. Then $Q_n(H)$ is an invariant subspace under $\pi(B_n)^-$. Since $\pi(B_n)^- \mid Q_n(H) = Q_n\pi(B)^- \mid Q_n(H) = B(Q_n(H))$, we have the desired irreducible representation π_n of B_n defined by $\pi_n(a) = \pi(a) \mid Q_n(H)$.

(ii) Suppose that any irreducible representation of B is finite dimensional. Let B^{\wedge} denote the set of primitive ideals of B with the Jacobson topology. Since B is of type 1, a primitive ideal uniquely corresponds to a unitarily equivalent class of irreducible representations. Also B contains an essential ideal J which has continuous trace by [4, Theorem 6.2.11]. Let J^{\wedge} be the set of primitive ideals K of B such that $K \not\equiv J$. Then J^{\wedge} is a dense subset of B^{\wedge} as J is essential. By [4, Proposition 4.4.10], there exists a sequence $\{\pi_n\}$ of distinct irreducible representations such that dim $\pi_n \ge n$ and $K_n \in J^{\wedge}$, where K_n denotes the kernel of π_n . Since J has continuous trace, J^{\wedge} is a locally compact Hausdorff space by [4, Theorem 6.1.11]. Then there exists a sequence $\{f_n\}$ of positive continuous functions on B^{\wedge} such that the support of f_n is contained in J^{\wedge} , $f_n(K_n) = 1$, $||f_n|| = 1$ and $f_n f_m = 0$ for $n \ne m$. By Dauns-Hofmann's theorem [4, Corollary 4.4.8], each f_n is regarded as an element of the centre of the multiplier of B.

Let B_n denote the C*-subalgebra generated by f_nB . Then $\{B_n\}$ satisfies condition (1). Since $\pi_n(f_nb) = f_n(K_n)\pi_n(b) = \pi_n(b)$ for all b in B, the restriction of π_n to B_n is the desired irreducible representation.

LEMMA 2. Let $C_0(N)$ denote the C^* -algebra of sequences convergent to 0. If a C^* -algebra B is not subhomogeneous then there exists a bounded linear map $\phi: C_0(N) \to B$ such that ψ is not completely bounded whenever $\|\psi - \phi\| < \frac{1}{2}$.

Proof. For a positive integer n, let $l_{\infty}(n)$ be the C*-algebra of finite sequences $\{x_i\}_{i=1}^n$ and put

$$k(n) = \sup\{\|\psi\|_{cb} \mid \psi: l_{\infty}(n) \to M_2 n, \|\psi\| \le 1\}.$$

Using Lanford's example, Loebl [3] and Tsui [7] showed that $k(n) \to \infty$ as $n \to \infty$; since both $l_{\infty}(n)$ and M_2n are finite dimensional, we choose $v_n: l_{\infty}(n) \to M_2n$ such that $||v_n||_{cb} = k(n)$ and $||v_n|| = 1$. From Lemma 1, we have a sequence $\{B_n\}$ of B and completely positive contractions $\psi_n: M_2n \to B_n$ and $\phi_n: B \to M_2n$ such that $||\phi_n \circ \psi_n - \mathrm{id}|| < \frac{1}{2}$ on M_2n for each n.

Each element a in $C_0(N)$ can be written as $a = \sum_{n=1}^{\infty} \oplus a_n$, where $a_n \in l_{\infty}(n)$ and $\lim_n ||a_n|| = 0$. If $a = \sum_{n=1}^{\infty} \oplus a_n \in C_0(N)$ then $||\sum_{n=1}^{\infty} (\psi_n \circ v_n)(a_n)|| = \sup_n ||(\psi_n \circ v_n)(a_n)||$ and

hence $\sum_{n=1}^{\infty} (\psi_n \circ v_n)(a_n)$ belongs to B. We define a linear map $\phi: C_0(N) \to B$ by

$$\phi(a) = \sum_{n=1}^{\infty} (\psi_n \circ \nu_n)(a_n).$$

Then ϕ has norm at most one.

Suppose that there exists a completely bounded map $\psi: C_0(N) \to B$ such that $\|\psi - \phi\| < \frac{1}{2}$. Then

$$\|\psi\|_{cb} \ge \|\phi_{n} \circ \psi \mid l_{\infty}(n)\|_{cb}$$

$$\ge \|\nu_{n}\|_{cb} - \|(\phi_{n} \circ \psi_{n} - \mathrm{id}) \circ \nu_{n}\|_{cb} - \|\phi_{n} \circ (\psi - \phi) \mid l_{\infty}(n)\|_{cb}$$

$$\ge (1 - \frac{1}{2} - \|\psi - \phi\|)k(n)$$

$$= (\frac{1}{2} - \|\psi - \phi\|)k(n) \to \infty$$

as $n \to \infty$. This contradicts the fact that $\|\psi\|_{cb}$ is finite, and completes the proof.

The above lemma is based on an idea of Smith [5, Theorem 2.5].

THEOREM 3. Let A be a separable, infinite dimensional C*-algebra. If a C*-algebra B is not subhomogeneous then there exists a bounded linear map $\Phi: A \to B$ such that ψ is not completely bounded whenever $\|\psi - \Phi\| < \frac{1}{4}$.

Proof. (i) We first show that there exist completely bounded maps $\phi_0: A \to C_0(N)$ and $v_0: C_0(N) \to A$ such that $\phi_0 \circ v_0$ is the identity map on $C_0(N)$, $\|\phi_0\|_{cb} \le 2$ and $\|v_0\|_{cb} \le 2$.

Let αN denote the one-point compactification of the discrete set of positive integers. If A is unital, by [1, Lemma 5], there exist completely positive unital maps $\phi': A \to C(\alpha N)$, $\nu': C(\alpha N) \to A$ such that $\phi' \circ \nu'$ is the identity map on $C(\alpha N)$. Since $C(\alpha N)$ is regarded as $C_0(N) + \mathbb{C}I$, we define $\phi_0: A \to C_0(N)$ by $\phi_0(b) = \phi'(b) - f(\phi'(b))I$, where f denotes a state on $C(\alpha N)$ such that f(a) = 0 for all a in $C_0(N)$, so that $\|\phi_0\|_{cb} \le 2$ and $\phi_0(I) = 0$. Then ϕ_0 and the restriction ν_0 of ν' to $C_0(N)$ are the desired maps. We remark that $\|\nu_0\|_{cb} \le 1$.

If A is nonunital, by the above, there exist $\phi'': A + \mathbb{C}I \to C_0(N)$ and $v'': C_0(N) \to A + \mathbb{C}I$ such that $\phi'' \circ v''$ is the identity map, $\|\phi''\|_{cb} \leq 2$, $\phi''(I) = 0$ and $\|v''\|_{cb} \leq 1$. Let h be a state on $A + \mathbb{C}I$ such that h(a) = 0 for all a in A. We define $v_0: C_0(N) \to A$ by $v_0(b) = v''(b) - h(v''(b))I$. Then $\|v_0\|_{cb} \leq 2$. Since $\phi''(I) = 0$, the restriction $\phi_0 = \phi'' \mid A$ and v_0 are the desired maps.

(ii) Let ϕ be the map as in Lemma 2. Using ϕ_0 and v_0 as in (i), we put $\Phi = \phi \circ \phi_0 : A \to B$. Suppose that there exists a completely bounded map $\psi : A \to B$ with $\|\psi - \Phi\| < \frac{1}{4}$. Then $\psi \circ v_0 : C_0(N) \to B$ is a completely bounded map with

$$\|\psi \circ v_0 - \phi\| = \|\psi \circ v_0 - \Phi \circ v_0\| \le \|\psi - \Phi\| \|v_0\| < \frac{1}{2}.$$

By Lemma 2, $\psi \circ v_0$ is not completely bounded. This is a contradiction, and completes the proof.

REFERENCES

- 1. T. Huruya, Decompositions of completely bounded maps, Acta Sci. Math. (Szeged), 50 (1986), 183-189.
- 2. T. Huruya and J. Tomiyama, Completely bounded maps of C*-algebras, J. Operator Theory 10 (1983), 141–152.
 - 3. R. I. Loebl, A Hahn decomposition for linear maps, Pacific J. Math. 65 (1976), 119-133.
 - 4. G. K. Pedersen, C*-algebras and their automorphism groups (Academic Press, 1979)
- 5. R. R. Smith, Completely bounded maps between C*-algebras, J. London Math. Soc. (2) 27 (1983), 157-166.
 - 6. M. Takesaki, Theory of operator algebras I (Springer, 1979).
 - 7. S.-K. J. Tsui, Decompositions of linear maps, Trans. Amer. Math. Soc. 230 (1977), 87-112.

FACULTY OF EDUCATION NIIGATA UNIVERSITY NIIGATA 950–21, JAPAN